Validation for scientific computations
Interval arithmetic

Cours de recherche master informatique
Nathalie Revol
Nathalie.Revol@ens—-lyon.fr

26 January 2007

References for today’s lecture

e R. Moore: Interval Analysis, Prentice Hall, Englewood Cliffs, 1966.

e A. Neumaier: Interval methods for systems of equations, CUP, 1990.

e E. Hansen and W. Walster: Global optimization using interval
analysts, MIT Press, 2004.

e R.B. Kearfott: Rigorous global search: continuous problems, Kluwer,
1996.

e V. Kreinovich, A. Lakeyev, J. Rohn, P. Kahl: Computational
Complexity and Feasibility of Data Processing and Interval
Computations, Dordrecht, 1997.

e L.H. Figueiredo, J. Stolfi: Affine arithmetic http://www.ic.
unicamp.br/~stolfi/EXPORT/projects/affine-arith/.

e Taylor models arith.: M. Berz and K. Makino, N. Nedialkov, M. Neher.

Validation in scientific computing - Nathalie Revol 1 26-01-2007

http://www.ic.unicamp.br/~stolfi/EXPORT/projects/affine-arith/
http://www.ic.unicamp.br/~stolfi/EXPORT/projects/affine-arith/

Historical remarks
Who invented Interval Arithmetic?

e Ramon Moore in 1962 - 1966 7
e T. Sunaga in 1958 7
e Rosalind Cecil Young in 1931 7

Cf. http://www.cs.utep.edu/interval-comp/, click on Farly papers.
Popularization in the 1980, German school (U. Kulisch).

IEEE-754 standard for floating-point arithmetic in 1985: directed
roundings are standardized and available (7).

Since the nineties: interval algorithms.

Validation in scientific computing - Nathalie Revol 2 26-01-2007

http://www.cs.utep.edu/interval-comp/

A brief introduction

Interval arithmetic: replace numbers by intervals and compute.

Fundamental theorem of interval arithmetic:
(or “Thou shalt not lie”):

the exact result (number or set) is contained in the computed interval.

No result is lost, the computed interval is guaranteed to contain every
possible result.

Validation in scientific computing - Nathalie Revol 3 26-01-2007

A brief introduction

Interval Arithmetic and validated scientific computing:

two directions

1. replace floating-point arithmetic by interval arithmetic to bound from

above roundoff errors:

2. replace floating-point arithmetic and algorithms by interval ones to

compute guaranteed enclosures.

Validation in scientific computing - Nathalie Revol 26-01-2007

A brief introduction

Interval arithmetic: replace numbers by intervals and compute.

Initially: introduced to take into account roundoff errors (Moore 1966)

and also uncertainties (on the physical data. . .).
Then: computations “in the large”, computations with sets.

Interval analysis: develop algorithms for reliable (or verified, or

guaranteed) computing,
that are suited for interval arithmetic,
I.e. different from the algorithms from classical numerical analysis.

Validation in scientific computing - Nathalie Revol 5 26-01-2007

A brief introduction: examples of applications

e control the roundoff errors, cf. computational geometry

e solve several problems with verified solutions: linear and nonlinear
systems of equations and inequations, constraints satisfaction,

(non/convex, un/constrained) global optimization, integrate ODEs e.g.
particules trajectories. . .

e mathematical proofs: cf. Hales' proof of the Kepler's conjecture
Cf. http://www.cs.utep.edu/interval-comp/

Validation in scientific computing - Nathalie Revol 6 26-01-2007

http://www.cs.utep.edu/interval-comp/

Agenda

e Definitions of interval arithmetic (operations, function extensions)

e Cons (overestimation, complexity)
and pros (contractant iterations: Brouwer's theorem)

e Some algorithms

— solving linear systems

— Newton

— global optimization wo/with constraints
— constraints programming

e Variants: affine arithmetic, Taylor models arithmetic

Validation in scientific computing - Nathalie Revol 7 26-01-2007

Agenda

e Definitions of interval arithmetic (operations, function extensions)

e Cons (overestimation, complexity)
and pros (contractant iterations: Brouwer's theorem)

e Some algorithms

— solving linear systems

— Newton

— global optimization wo/with constraints
— constraints programming

e Variants: affine arithmetic, Taylor models arithmetic

Validation in scientific computing - Nathalie Revol 8 26-01-2007

Definitions: intervals
Objects:

e intervals of real numbers = closed connected sets of R

— interval for 7: [3.14159, 3.14160)]
— data d measured with an absolute error less than +e: [d —e,d + €]

e interval vector: components = intervals; also called box

[0;2]
[4;4.5]
[-6; -5]

_ [0;2]
1021 ([4 : 5])

e interval matrix: components = intervals.

Validation in scientific computing - Nathalie Revol 9 26-01-2007

Definitions: operations

xoy=Hul{zoy :
Arithmetic and algebraic operations: use the monotony

z, T+ |y, ¥
Z, f o :gv g
T, T) X |y, T

z, 7]’

1/ |y, 7

z, 7]/ |y, ¥
z, 7]

r€x,yE<y}

z+y, T+ Y|
L — g? T — Q}
min(z X Y,z X ¥, T X y, T X), max(ibid.)}

X
‘min(z?, 52),max(x2, :1:2)} fO¢ |z, 7]

0, max(z?, T%)| otherwise
_mm(l/y, 1/y) max(1/y, 1/@)} if 0 & [Qa g}

2, %] x (1/ [y, 7)) if 0 & [y, 7]

/Z,VT| if0<z, |0,V/T] otherwise

Validation in scientific computing - Nathalie Revol 10 26-01-2007

Definitions: operations

Algebraic properties: associativity, commutativity hold, some are lost:

e subtraction is not the inverse of addition, in particular x — x £ [0]
e division is not the inverse of multiplication
e squaring is tighter than multiplication by oneself

e multiplication is only sub-distributive wrt addition

Validation in scientific computing - Nathalie Revol 11 26-01-2007

Definitions: functions

Definition:
an interval extension f of a function f satisfies

v, f(z) C f(z), and Vo, f({z}) = f({z}).

Elementary functions: again, use the monotony.

exp & = |expz,exp T
log x = |logx,log Z] if x > 0,|—00,log Z| if T >0
sin|r/6,27/3] = [1/2,1]

Validation in scientific computing - Nathalie Revol 12 26-01-2007

Definitions: function extension

Example: f(z) =22 — 2+ 1 with x € [-2,1].

[—2,1]* = [-2,1] +1=1[0,4] + [-1,2] +1 = [0, 7].

Sincez? —z+1=x(x—1)+1, weget [-2,1]-([-2,1] — 1) +1
(—2,1] - [-3,0] + 1 =[-3,6] + 1 = [-2,7].

Since z° — x4+ 1= (z —1/2)%? + 3/4, we get ([-2,1] — 1/2)* + 3/4
(—5/2,1/2]* 4+ 3/4=0,25/4] + 3/4 = [3/4,7] = f([-2,1]).

Problem with this definition: infinitely many interval extensions,

syntactic use (instead of semantic).
How to choose the best extension? How to choose a good one?

Validation in scientific computing - Nathalie Revol 13 26-01-2007

Definitions: function extension

Mean value theorem of order 1 (Taylor expansion of order 1):
VI, ¥y, ey € (1,y) 2 fly) = f(@) +(y—2) - [(Cy)

Interval interpretation:
Vy ex,Vicw, f(y) € f(Z)+(y—2) f(z)
= f(z) C f(Z) + (¢ —2) - f'(x)

Mean value theorem of order 2 (Taylor expansion of order 2):

Ve, Vy, 3ny € (2,y) 1 Fy) = f(2) + (y — 2) - F(2) + 252 (e,)

Interval interpretation:
~\2
Yy € z,Vi€w, f(y) € f(@)+ (y— &) @)+ 5 (=)

)
= f(z) C f(@)+ (z —2)- f(z) + 52 (=)

Validation in scientific computing - Nathalie Revol 14 26-01-2007

Definitions: function extension
No need to go further:

e it is difficult to compute (automatically) the derivatives of higher order,

especially for multivariate functions;
e there is no (theoretical) gain in quality.

Theorem:

e for the natural extension f of f, it holds d(f(x),f(x)) < O(w(x))
e for the first order Taylor extension fr, of f, it holds

d(f(z), fr,(z)) < O(w(z)?)
e getting an order higher than 3 is impossible without the squaring
operation, is difficult even with it. . .

Validation in scientific computing - Nathalie Revol 15 26-01-2007

Agenda

e Definitions of interval arithmetic (operations, function extensions)

e Cons (overestimation, complexity)
and pros (contractant iterations: Brouwer's theorem)

e Some algorithms

— solving linear systems

— Newton

— global optimization wo/with constraints
— constraints programming

e Variants: affine arithmetic, Taylor models arithmetic

Validation in scientific computing - Nathalie Revol 16 26-01-2007

Cons: overestimation (1/2)

The result encloses the true result, but it is too large:
overestimation phenomenon.
Two main sources: variable dependency and wrapping effect.

(Loss of) Variable dependency:

r—zrz={r—y:rxexycax}#{r—x : xzecax}=1{0}.

Validation in scientific computing - Nathalie Revol 17 26-01-2007

Cons: overestimation (2/2)

S >
- (x) |
F(X) ~1
image of f(x) 2 successives rotations of 7/4
with f : R? — R? of the little central square

Validation in scientific computing - Nathalie Revol 18 26-01-2007

Cons: Complexity: almost every problem is NP-hard

Gaganov 1982, Rohn 1994 ff, Kreinovich. . .

e evaluate a function on a box (cartesian product of intervals)
e evaluate a function on a box up to ¢

e solve a linear system

e solve a linear system up to 1/4n* (n = dim. of the system)
e determine if the solution of a linear system is bounded

e compute the matrix norm || A| .1

e determine if an interval matrix (= a matrix with interval coefficients)
iIs regular, i.e. if every possible punctual matrix in it is regular

Validation in scientific computing - Nathalie Revol 19 26-01-2007

Cons: Complexity: Gaganov 1982

evaluation of a multivariate polynomial with rational coeff. on a box is NP-hard

Idea: reduce polynomially the CNF-3 problem to this problem.
On n boolean variables ¢1,--- , q,, a formula f in CNF-3 is defined by

1,207r3

J = /\fi with f; = \/ Ti
i=1

j=1

with Tij =d(k; . OF T j = (g, ..
2J 2J

1. to each boolean variable g;, let us associate a real variable z; € |0, 1].
Meaning: z; =0if¢g,=F andx; =11t g, ="1T.

Validation in scientific computing - Nathalie Revol 20 26-01-2007

+ Goal: get a polynomial which takes only values in [0, 1]
i.e. allow only product of terms or sums of the form (1— term).
A product corresponds to a conjunction and 1 — x to a negation
= express f and the f; using conjonctions and negations
= express the f; as — /\1 20T .

2. to each r; ; let us associate a polynomial y; ; (corresponding to the
negation of 7; ;) defined by

3. to each f;, let us associate a polynomial p; (corresponding to the
negation of fz) defined by fz = /\7“7;,]' — pZ(CIZ) = Hyz7](.f€)

Validation in scientific computing - Nathalie Revol 21 26-01-2007

4. to f, let us associate the polynomial p defined by f = /\;11 fi —

p(r) = H?;(l — pi(z)).

Validation in scientific computing - Nathalie Revol 22 26-01-2007

Cons: Complexity: Gaganov 1982

evaluation of a multivariate polynomial with rational coeff. on a box is NP-hard

Lemma:

1. Vx € [0,1], p(z) € [0,1].
2. if v is a boolean vector and (3 is the associated 0 — 1 vector, then

fla) = T = pB) =1
fla) = F = p(B) 0.

3. if f is not feasible, then Vz € [0,1]", p(z) < 7/8.

Validation in scientific computing - Nathalie Revol 23 26-01-2007

Proof of (3): (proving (1) and (2) is easy).
Vx € |0,1]™, let us consider G the 0-1 vector obtained by rounding x to
the nearest.

Since f is not feasible, p(3) = 0.

Since p(z) = [[,2,(1 — pi(x)), Jig such that 1 — p;,(5) = 0.

One can prove that p;,(z) > 1/8, using the fact that it is the product of
at most three terms, each of them < 1/2, using the fact that J is the
rounding to nearest of z. Thus 1 —p; (z) < 7/8.

The remaining factors 1 — p;(x) are less or equal to 1.

Thus p(z) = [17,(1 - pi(a)) < 7/8

Consequence: since checking the feasibility of a CNF-3 formula is NP-
hard, evaluating a multivariate polynomial (up to a small €) is NP-hard.

Validation in scientific computing - Nathalie Revol 24 26-01-2007

Pros: set computing

safe? On x, are the extrema of the function f
controllable? dangerous? | > f!, < f3?

always controllable. No if f(z) =[f, f] g [f2, f1].

Validation in scientific computing - Nathalie Revol 25 26-01-2007

Pros: Brouwer-Schauder theorem

A function f which is continuous on the unit ball B and which satisfies
f(B) C B has a fixed point on B.

Furthermore, if f(B) C intB then f has a unique fixed point on B.

The theorem remains valid if B is replaced by a box K.

Validation in scientific computing - Nathalie Revol 26 26-01-2007

Agenda

e Definitions of interval arithmetic (operations, function extensions)

e Cons (overestimation, complexity)
and pros (contractant iterations: Brouwer's theorem)

e Some algorithms

— solving linear systems

— Newton

— global optimization wo/with constraints
— constraints programming

e Variants: affine arithmetic, Taylor models arithmetic

Validation in scientific computing - Nathalie Revol 27 26-01-2007

Algorithm: linear SyStemS SO'Ving (Hansen-Sengupta)
Problem: solve Ax = b or equivalently:

Az’1331—|——|—AZ’Z:IZZ—|——FAZ,nJ}n:beOI’lSZSn

Determine Hull (333(A,b)) = Hull ({x : 3A € A, 3b € b, Ax = b}).

Pre-processing: multiply the system by an approximate mid(A)™?.

New system = mid(A) ' Ax = b. Hope: contracting iteration.

Algorithm: apply Gauss-Seidel iteration
while convergence not reached loop
fors =1 to n do

Validation in scientific computing - Nathalie Revol 28 26-01-2007

Algorithm: solving a nonlinear system: Newton
Why a specific iteration for interval computations?

Usual formula:

B f(x)
Direct interval transposition:

f(z)
f' ()

f(z)
f' (@)

Li+1 — Lk —

) > w(axy)

wlansn) = w(e) +u

divergence!

Validation in scientific computing - Nathalie Revol 29 26-01-2007

Algorithm: interval Newton
principle of an iteration

(Hansen & Greenberg 83, Baker Kearfott 95-97, Mayer 95, van Hentenryck et al. 97)
tangent with the deepest slope

tangent with the
smallest slope

x(k)

X(k+1)

e A

X(k)
(5N

Validation in scientific computing - Nathalie Revol 30 26-01-2007

Algorithm: interval Newton
principle of an iteration

tangent with the smallest slope tangent with the deepest slope
N [.
| \M: MK | N
i X(k+1) | X(k+1)
X(k)

Validation in scientific computing - Nathalie Revol 31 26-01-2007

Algorithm: interval Newton

Input: F, F', x // @y initial search interval
Initialization: £ = {xy}, a = 0.75 //any value in]0.5, 1] is suitable
Loop: while £ # 0
Suppress (x, L)
x = mid(x)
(1, 22) := (x — Fﬁgﬁ{;};)) Nx // ® and x3 can be empty
if w(xy) > aw(x) or w(xz) > aw(x) then (1, x2) := bisect(x)
if 21 # 0 and F(x;) > 0 then
if w(xy)/|mid(x1)| < e, or w(F(x1)) < ey then Insert x; in Res
else Insert x; in L

same handling of x>

Output: Res, a list of intervals that may contain the roots.

Validation in scientific computing - Nathalie Revol 32

26-01-2007

Algorithm: interval Newton

. . properties
Existence and uniqueness of a root are proven:

if there is no hole and if the new iterate (before (1)) is contained in the
interior of the previous one.

Existence of a root is proven:

e using the mean value theorem:
OK if f(inf(x)) and f(sup(x)) have opposite signs.
(Miranda theorem in higher dimensions).

e using Schauder theorem: if the new iterate (before (1)) in contained in
the previous one.

Validation in scientific computing - Nathalie Revol 33 26-01-2007

Algorithm: optimize a continuous function

Problem: f : R" — R, determine z* and f* that verify

f* = f(z7) = min f(z)

T

Assumptions:

e search within a box xg

e r* € in the interior of (x),
not at the boundary

e f continuous enough: C?

Validation in scientific computing - Nathalie Revol 34

26-01-2007

Algorithm: optimize a continuous function

(Ratschek and Rokne 1988, Hansen 1992, Kearfott 1996. . .)

Goal: determine the minimum of f, continuous function on a box xy.

Ty current box
f current upper bound of f*

while there is a box in the waiting list
if f(z)> f then
reject x
otherwise
update f: if f(mid(x)) < f then f = f(mid(x))
bisect & into 1 and a»
examine x; and oo

Validation in scientific computing - Nathalie Revol 35 26-01-2007

Algorithm: optimize a continuous function
the rejection procedure

F(X1) 1

' |
|
| | :
R | | |
f ! I I
| o | |
| | : | | :
' [' [
f : : [: ' |
- = = -
X1 X2 X3
ftrop haute : F(XI) > f fnon convexe sur X3
0 n’est pas dans G(X2)

Validation in scientific computing - Nathalie Revol 36

26-01-2007

Algorithm: optimize a continuous function

the reduction procedure

26-01-2007

37

Validation in scientific computing - Nathalie Revol

Algorithm: optimize a continuous function

Hansen algorithm Hansen 1992

L = list of not yet examined boxes := {xy}
while £ # () loop
remove x from L
reject x?
yes if f(z) > f
yes if Gradf(x) #
yes if H f(x) has its diagonal non > 0
reduce x
Newton applied to the gradient
solve y C x such that f(y) < f
bisect y: insert the resulting y; and y5 in L

Validation in scientific computing - Nathalie Revol 38 26-01-2007

15 HH
1 = T
0.5 -
‘{:’ 4 H
0 miRilnl : -
1] | i
] ,J, ? i HEN
-0.5 ammi i i HHHH
[HHH HI i JI
T J ol
1 1
ulln HH
T HHH fil
1.5 R e E fia
Hmujina i B
]
_2 =
) 1.5 -1 0.5 0 0.5 1 15 2

Validation in scientific computing - Nathalie Revol 39 26-01-2007

Algorithm: constrained optimization

Problem: f : R" =R andc¢ : R" —- R™,
determine x* and f* that verify

f©=f(z") = min f(z)

{z]c(z)<0}

Assumptions:

e search within a box x
e f continuous enough: C?
e c continuous enough: C!

Validation in scientific computing - Nathalie Revol 40 26-01-2007

Algorithm: constrained optimization c¢(z) < 0
the rejection procedure

F(X1)
T
:
|
f |
:ﬁ'
X2
f trop haut contraintes non satisfaites: ¢(X2) > 0

x| c(x)<=0 x| c(x)<=0

Validation in scientific computing - Nathalie Revol 41 26-01-2007

Algorithm: constrained optimization c¢(z) < 0
the reduction procedure

|

-

x| c(x)<=0 x| c(x)<=0

Validation in scientific computing - Nathalie Revol 42 26-01-2007

Algorithm: constrained optimization c¢(z) <0

L :=A{x} L= {zo}
while £ # () loop while £ # () loop
remove x from L remove x from L
reject x? reject x?
yes if f(xz) > f yes if f(x) > f
yes if Gradf(x) # 0 yes if c(x) > 0
yes if f not convex on x
reduce reduce x
sovey Cz | fly)<f 'solve y C « such that ¢(y) <
Newton applied to the gradient Newton applied to the Lagran
bisect y into y; and y- bisect y into y; and ¥y

insert y; and ys in L insert y; and ys in L

Validation in scientific computing - Nathalie Revol 43 26-01-2007

Algorithm: constraints programming

Cleary 1987, Benhamou et al. 1999, Jaulin et al. 2001

Problem:)
c1(x1,.-.,Tn) = 0
\
\ cp(x1,...,Tn) = 0
expressed as:
yr = yioy; forn+1<k<mandj<k
Y auxiliary variable
where yr = (y;) forn+1<k<mandi<k

Validation in scientific computing - Nathalie Revol 44 26-01-2007

Algorithm: constraints programming

Initializations: y; == x,..., vy, == o,

Propagation: forward mode
fork=n+1 tom loop

Yi = Ui 0 Y; or Y := ©(y;)

Propagation: backward mode
for k = m to n loop
iIf yi iIs defined as y; ¢ y; then
Y = (Yo" y;j) Ny
Y 1= (yz o~ yk) My
else if yy is defined as p(y;) then
Yi := o (Yr) N Ys

Validation in scientific computing - Nathalie Revol 45 26-01-2007

|
-

175 — 273

Algorithm: constraints programming:
8 prog 8 {cosx1+x3 = 0

Validation in scientific computing - Nathalie Revol 46 26-01-2007

X = [0,271'/3], Lo = [—1,1], I3 — [—1/2,3]
iter. 1: forward 1y = y3

Ys = Y1Ya
Yo = 2Y3
Y7 =Ys — Yo
Ys = COS Yy
Yo = Ys + Y3
backward Yo = Ys + Y3
Ys = COS Y1
Y =Ys — Ys
Yo = 2Y3
Ys = Y1Ya
Yg = y22

Validation in scientific computing - Nathalie Revol

Y1

Yy =
Ys =
Yo =
Yr =
Ys =

Yo

{
{
{

:07277-/3]' Y2 — [_17 1]1 Ys = [_1/273]
0,1]

0, 27 /3]

:_176]

—6,1+27/3] 30

:_1/27 1]

—1,4] 50

Ys = (Yo — y3) Nys = [—1/2,1/2]
Ys = (Yo — ys) Nys = [—1/2,1/2]
Yy =cos lysNy; = /3, 2m/3]

ys = (y7 + yo) N y5 = [0, 27/3]
Yo = (Y5 — y7) Nye = |0,27/3]
ys = (1/2ys) Ny3 = [0,1/2]

Y1 = (ys/ys) N1 = |7/3,27/3]
Ys = (ys/9y1) Nys = [0, 1]

Yo = +/ys Nyo = [—1, 1]

47 26-01-2007

|
-

175 — 273

Algorithm: constraints programming:
8 prog 8 {cosx1+x3 = 0

Validation in scientific computing - Nathalie Revol 48 26-01-2007

= [0,2), @y = [-1,1], @5 = [-4,3] | w1 = %q], Yo = [=1,1], g5 = [0,]

Ys = 71]' Ys = [07 27T/3] Yo — [07 1]
yr =0, ys = [—1/2,1/2], yg =0
iter. 2: forward 1y, = y3 ys = [0, 1]
Ys = Y1Y4 ys = |0, 2m/3]
Ys = 293 ye = [0, 1]
Ys = COS Y1 Ys — :—1/27 1/2]
_ ys = (Yo — y3) Nys = [—1/2,0]
backward Yo = Ys+ s { ys = (Yo — ys) N ys = [0,1/2]

Ys = COS Yy Y1 = COS(_l Ys M 3)11 = [/ 2, 277]/ 3]

Ys = (Y7 + ys) N ys = |0, 1
Jr= 9 {y6:(y5_y7)my6::071]
Yo = 2Y3 ys = (1/2ys) Ny3 = [0,1/2]
Us = s { Y1 = (ys/ys) Ny1 = [7/2, 27 /3]

Ys = (ys/y1) Nya = |0,2/7]

ys = y3 Y2 = £/Ys N Y2 = [—\/2/m,\/2/7]

L1 = [072%]v L2 = [_17 1]1 L3 = [_%73] Y1 = [%72%]' Y2 = [_\/2/7‘-7 \/2/7-‘-]' Ys = [07%]

Validation in scientific computing - Nathalie Revol 49 26-01-2007

2 __
Problem: {mle 23

COS X1 + I3

with @ = [0,2F], @ = [—1,1], 23 = [—3, 3.

Optimal solution obtained after two iterations:

2 =55, m=[-\/2,/ & =01

Validation in scientific computing - Nathalie Revol

50

26-01-2007

Agenda

e Definitions of interval arithmetic (operations, function extensions)

e Cons (overestimation, complexity)
and pros (contractant iterations: Brouwer's theorem)

e Some algorithms

— solving linear systems

— Newton

— global optimization wo/with constraints
— constraints programming

e Variants: affine arithmetic, Taylor models arithmetic

Validation in scientific computing - Nathalie Revol 51 26-01-2007

Conclusions

Interval algorithms

e can solve problems that other techniques are not able to solve

e is a simple version of set computing

e give effective versions of theorems which did not seem to be effective
(Brouwer)

e can determine all zeros or all extrema of a continuous function

e overestimate the result

e is less efficient than floating-point arithmetic (theoretical factor: 4,
practical factor: 20)
= solve “small” problems.

Validation in scientific computing - Nathalie Revol 52 26-01-2007

Philosophical conclusion

Morale

e forget one’s biases:

— do not use without thinking algorithms which are supposed to be

good ones (Newton)
— do not reject without thinking algorithm which are supposed to be

bad ones (Gauss-Seidel)
e prefer contracting iterations whenever possible

Validation in scientific computing - Nathalie Revol 53 26-01-2007

	title [0]
	definitions [8]
	cons and pros [16]
	algos: lin sys [27]
	algos: Newton [29]
	algos: GOP [34]
	algos: cst [44]
	Conclusion [52]

