CHAPTER 7

Computing rate-distortion functions

7.1. Introduction

The entropy of a given probability distribution is easy to compute. The rate-
distortion function of a distribution with respect to a distortion measure is just
defined as the infimum value of a minimization problem. The minimization prob-
lem fortunately enjoys nice features. It is stated in the following way:

dnf Eq, [D (Qvix[[Eq, [Qvix])]  where Eq, o, [p(X,V)]| <D,

Y|z
or equivalently to
inf 1 (Qx;Qyis)  where Eq, |Eq, , [o(X.Y)]] <D.
Y|z
It should be pointed out that the set of possible values of Qy/, may be identified

with a compact and convex subspace of RYI*I¥l. On the hand, we have seen
that the functional Qy|, — I (QX; Qy|$) is convex. Hence the computation of
the rate-distortion function is a special case of a classical problem: minimizing a
convex function over a convex and compact domain.

In order to solve approximately this problem, we will proceed in two steps. We
will first put the moment constraint in a more tractable form by resorting to the
Lagrangian formalism. We will prove that the Lagragian satisfies a strong duality
property. This duality will allow us to focus on a convex function defined on an
easily described compact and convex domain. The minimization of this function
will be carried out using an alternative minimization procedure.

7.2. Duality formulae

The Lagrangian is defined by
L(@vps A) = 1 (QxiQvia) + A (Eqy [Eqy, [(X, V)] = D)

for any conditional probability distribution Qy|,and non-negative multiplier .
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THEOREM 7.2.1. [STRONG DUALITY THEOREM FOR RATE DISTORTION FUNC-
TION| Let Qx denote any probability on X, let the distortion p, and the Lagrangian
be defined as above then

R(D) = sup min L(Qyy; A) = minsup L(Qyg; A) .

A>0 Qvjz Qviz A>0

REMARK 7.2.2. This duality formula could be derived by resorting to a general
min-max Theorem such as Sion Min-Max Theorem (already used to compare
minimax and maximin redundancy in universal coding). In the present context,
ad hoc arguments allow a direct proof of the strong duality, moreover ad hoc
arguments tell us something about the location of the saddlepoint.

The formulation R(D) = sup, ming,,, L(Qy|q; A) is computationally appealing,
since for each A > 0, we ming,,, L(Qyls; A) is now defined as an infimum over
all conditional probabilities. As such it may seem easier to compute than the
rate-distortion function itself. Second, if the infimum of

G £ 1(QxiQria) + A (Bax [Eay,, (X, V)] )

can be computed for every A, then the supremum of G(\) — AD, can be searched
efficiently.

PROOF. Let us first check that
R(D) = min sup L(Qy|$; A)

Qviz A>0

If R(D) = oo (this may only occur if X is infinite), we are done.

Otherwise, if Qy|, is such that
Egy [EQY\x [p(X7 Y)]] —-D=>0
the supremum with respect to A > 0 is infinite. Assume that
Eqy [E@y\z [/)(X,Y)]] <D,

then L(Qy; A) =1 (QX; @y‘x) , the minimum is achieved by picking the optimal
joining.

Consider now

supmin L(Qy5; A).
A>0 Qv

Picking the optimal joining in the definition of R(D) we get that
R(D) > sup min L(Qyg; A).

A>0 Qviz
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Now by the monotonicity and convexity properties of the rate-distortion function
there exists some \* > 0, such that for all D’ > D,

R(D') > R(D) — (D' — D),
—\* is a sub-gradient of R() at D. Consider now L(-, \*). Let Qy|, be such that
Egy |Egy,. [o(X, Y)]] — D' >D. Then

L(Qyp; A") > R(D') + A*(D' = D) > R(D) .
0

This proves that the Lagrangian has a saddlepoint which first component is the
conditional distribution which witnesses the value of R(D) and which second
component is the opposite of a sub-gradient of R()at D.

In order to compute G()\), we will define a function F(;) of two conditional
probabilities in the following way:

F(Qviai Qh,) 2 Eax [P (QvielBay [Q])] + NEay [Eay., [0(X, V)] -
LEMMA 7.2.3. For a fized Qy ., the functional:
Qgﬂm = F(@Y\x; QIY\;L«)
is minimized by @g/lw = Qy|z,and the minimum equals

The proof of this Lemma is just what we need to establish the remark at the end
of th first section.

PROOF. It is enough to notice that:

EQX [D (QY\xHEQx [QIY\:J)} + )\]EQX [EQY\x [p(X7 Y)]]
= Eqy [D (QrplEox [Qia])]
+ D (Bqx [Qvi] [Eax [@),]) + ABqy [Eay., [o(X, V)]

On the right-hand-side, only the second summand depends on @gflm and it is
non-negative, and positive if Qly\x # Qy|z. O
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EXERCISE 7.3. |[ABOUT THE RATE-REDUNDANCY OF MIS-SPECIFIED RECON-
STRUCTION PROBABILITIES| In the proof of the direct lossy source coding Theo-
rem, we used the second marginal of the optimal distortion-compliant coupling as
a tool to generate a small codebook with small average distortion. We might have
generated a codebook using another probability Q) to generate the codebook.

Check that it would have been enough to consider code-books of size 2R for

log2 x R" > D (Q||Qx ® Q)

where Q is the coupling that witnesses the value of R(D ) and Qxis its first
marginal, that is the distribution of the source. The difference

D (Q||Qx ® Qy) — R(D)
is called the rate-redundancy of the quantizer (randomly) derived from Q).
LEMMA 7.3.1. For a fized @g/lw’ the functional:
s manimized by

1

Qvif{y | 2} 2 7y Bex [@ra{y | X} x exp (= ol )

where
Z(w) 2 Eq, [y, lexp (—p(z, V)]
and the minimum equals
—Eqy [log Z(X)] .

PROOF. Let Qy|, denote any conditional distribution, then
Eqx [D (QiellEax [Q41.])] + AEqy [Eqy,, [p(X, V)]

Qv{Y | X}
Egy | @AY | X7} exp (-Ap(X,Y)))

| | Z(X) x Qy{Y | X} 1]
L B [ @ (Y 1 X7 exp (<20(X, 7))
Eox [D (Quiell@rie) | — Ea log 2(X)

> _EQX [lOgZ(X)] :

= EQX EQY\I log

Eq, , |log — Eqy [log Z(X)]

In the last statement equality holds if and only if Qy |, = @y‘x ) O
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REMARK 7.3.2. Note that computing the rate-distortion function may also be
viewed as computing the minimum relative entropy between two convex sets
of probability distributions on X x ). The first set is constituted by those joint
distributions which first marginal is Qx and which satisfy Eg[p] < D. The second
set is constituted by product distributions Qx ® Q" where Q' is any distribution
over ).

LEMMA 7.3.3.

R(D) = —  min min {D (Qx[|Qy) + maxlog (Z Qx{z} exp [A(D = p(z, y))]) }

€M (X) A>0
x 1(%) reX

7.4. The Blahut-Arimoto algorithm

In this Section, Q’{,‘x denote the unique conditional distribution that minimizes
L(+; A),Q5 denotes the second marginal of the joining by Qx and Q¥

The Blahut-Arimoto algorithm is actually an iterative algorithm for computing

Define a sequence ( ?,‘x> , by taking @%/Iw such that every for all y € ),
N

ne

Q§|${y} > 0. For any n,let Q} denote the Y marginal of the joining defined by
Qx and Q%x. The recurrence relation is defined by:

nt1 _exp (=A(@,9))
Qv vz} = 7.2) Qy {v}

where Z,,(z) are normalization constants

Zn(x) = Qy {y}exp (—Ap(z,y)) .

LEMMA 7.4.1. Assume the sequence (@%m) 1s defined as above, and Q;‘x

zeX ,neN
denote the conditional distribution that minimizes F(;), then for all n,

F(Q5Q0,) — F (@:5Q5,) < D(Q1Q}) - D (Q3IQF) -
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PRrROOF. The first two equations follows from rearrangements of summations:
F ( ?Txl; %;) - F(Q: Q¥ ) =
05, 110
p— ]E ]E *

O | B 08 @Y|,E{Y|X}Z

e
(X
= EQX EQ{’W 10g

EQX @ypg {y ‘ X}

EQX [@ﬁrml {Y ‘ X}]
< D (Qy]lQy) — D (Q3|QFH) .

where the last line comes from the convexity of relative entropy. U

—Eqy |Eqy, log

THEOREM 7.4.2. Assume the sequence ( ?,‘x> s defined as above, and
reX ,neN

Q;Im denote the conditional distribution that minimizes F(;), then for all n :
0< F (@5 Q%) - F (@, Q)
QX{$}
< — _
— max log (;ex Z.(0) exp [—Ap(z,y)]

yey n

and F (Q’;T;; %m) converges monotonically toward F (Q’{/‘x; @;u) )

PROOF. The first inequality comes from the definition of Q;*,‘x.

The convergence follows from a telescoping sum argument. From Lemma above:

N
0 < S F(QF50Y,) - F (@)
n=1

< D(QyllQ'y) - D (Qy QYY)

< D(Qy]Q'y) .
This shows that F ( QJI;I; ?,‘x> - F (Q;‘x; @§|$) is the generic term of an ab-
solutely convergent series, hence it converges (monotonically) toward 0. This in
turns imply that @’;Ix converges toward (@§|$. O
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