Examen:

Modélisation et vérification des systèmes temporisés, hybrides ou concurrents

— Systèmes concurrents —

15 février 2007

Problem 1

Let $\widetilde{\Sigma} = (\{a, b\}, \{b, c\}, \{d\})$ be a distributed alphabet. Consider the following subsets of Σ^* :

$$L_1 = \{ w \in \Sigma^* \mid |w|_a = |w|_c \}$$
$$L_2 = \{ w \in \Sigma^* \mid |w|_a + |w|_d \text{ is even} \}$$
$$L_3 = \{ uadcv \mid u, v \in \Sigma^* \}$$

For i = 1, 2, 3, determine if

- (a) $L_i = [L_i]_{\sim_{\widetilde{\Sigma}}}$ (recall that $[L_i]_{\sim_{\widetilde{\Sigma}}} := \{ u \in \Sigma^* \mid \text{there is } v \in L_i \text{ such that } u \sim_{\widetilde{\Sigma}} v \}$).
- (b) $[L_i]_{\sim_{\widetilde{\Sigma}}}$ is regular.
- (c) there is an asynchronous automaton \mathcal{A} over $\widetilde{\Sigma}$ such that $L(\mathcal{A}) = [L_i]_{\sim_{\widetilde{\Sigma}}}$.
- (d) there is a product automaton \mathcal{A} over $\widetilde{\Sigma}$ such that $L(\mathcal{A}) = [L_i]_{\sim_{\widetilde{\Sigma}}}$.

(e) there is a locally accepting product automaton \mathcal{A} over $\widetilde{\Sigma}$ such that $L(\mathcal{A}) = [L_i]_{\sim_{\widetilde{\Sigma}}}$. Justify your answers!

(Recall that, for $w \in \Sigma^*$ and $\sigma \in \Sigma$, $|w|_{\sigma}$ denotes the number of occurrences of σ in w. For example, $|abaac|_a = 3$ and $|abc|_d = 0$.)

Problem 2

Let $\widetilde{\Sigma} = (\{a, b\}, \{b, c\}, \{d\})$ be a distributed alphabet. For any of the following rational expressions $\alpha_i \in \text{REX}_{\mathbb{TR}(\widetilde{\Sigma})}$ (i = 1, 2, 3), examine if α_i is star-connected. If not, is there a star-connected rational expression $\beta \in \text{REX}_{\mathbb{TR}(\widetilde{\Sigma})}$ such that $\mathcal{L}(\beta) = \mathcal{L}(\alpha_i)$?

 $\alpha_1 = \mathbf{\emptyset} \cdot (a \cdot c)^*$ $\alpha_2 = (a + c^*)^* \cdot d$ $\alpha_3 = (a \cdot (c \cdot b^*)^*)^*$

Problem 3

Let $Proc = \{1, 2, 3, 4\}$ and let Msg be a singleton set.

(a) Determine a formula $\varphi(x, y) \in MSO(Act, \{\leq, <_{mes}\})$ with free variables x and y such that, for any $\mathcal{M} = (E, \leq, \lambda) \in MS\mathbb{C}$ and any interpretation function \mathcal{I} ,

$$\mathcal{M} \models_{\mathcal{I}} \varphi(x, y) \text{ iff } (\mathcal{I}(x), \mathcal{I}(y)) \in (\leq \cup \leq^{-1})^*.$$

(b) Determine a sentence $\varphi \in MSO(Act, \{\leq, <_{mes}\})$ such that

$$\mathcal{L}_{\mathbb{MSC}}(\varphi) = \{ \mathcal{M} \in \mathbb{MSC} \mid \mathcal{M} \text{ is connected} \}.$$

Is there a rational expression $\alpha \in \text{REX}_{MSC}$ such that $\mathcal{L}(\alpha) = \mathcal{L}_{MSC}(\varphi)$?

(c) Determine a star-connected rational expression $\alpha \in \text{REX}_{MSC}$ such that

$$\mathcal{L}(\alpha) = \{ (E, \leq, \lambda) \in \mathbb{MSC} \mid \text{for any } e \in E, \ \lambda(e) \in \{1!2, 2?1, 2!3, 3?2, 3!4, 4?3\} \}.$$

Is there an equivalent rational expression that is not star-connected?

(d) Determine a star-connected rational expression $\alpha \in \text{REX}_{MSC}$ such that

$$\mathcal{L}(\alpha) = \{ (E, \leq, \lambda) \in \mathbb{MSC} \mid \text{for any } e \in E, \ \lambda(e) \in \{1!2, 2?1, 2!3, 3?2\} \}.$$

Is there an equivalent rational expression that is not star-connected?

Problem 4

Argue that the following problem is undecidable for $Proc = \{1, 2, 3\}$ and a singleton set Msg:

INPUT: MPA \mathcal{A} pver *Proc* and *Msg*.

QUESTION: Is $\mathcal{A} \exists B$ -bounded for some $B \geq 1$?