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Theorem
CTL∗ model-checking is PSPACE-complete.

Proof.
hardness in PSPACE: CTL∗ subsumes LTL.

membership in PSPACE: labeling algorithm involving LTL
model-checking algorithm.
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Theorem
ECTL+ model-checking is ∆P

2 -complete.

Proof.
hardness in NP: easy encoding of SAT as a CTL+

model-checking problem.
Hardness in ∆P

2 is an intricate extension of that encoding.

membership in ∆P
2 : using an oracle for deciding

LTL1-subformulas;
�



Outline of the course

1 Branching-time temporal logics
Complexity
Alternating-time Temporal Logic

2 Timed temporal logics
Timed models
Timed logics
Undecidability



Multi-agent systems

Problem
The CTL formula

A G(E F cabin.ground floor)

is not exactly what we mean with

it is always possible to reach the ground floor.



Multi-agent systems

Problem
The CTL formula

A G(E F cabin.ground floor)

is not exactly what we mean with

it is always possible to reach the ground floor.

We rather mean that there is a strategy that makes the cabin
eventually reach the ground floor. Moreover, we’d prefer that
this strategy only involves the button at the third floor (say) and
the buttons in the cabin.



Multi-agent systems

Definition
A CGS C is a 6-tuple (Q ,AP, `,A,Mv,Edg) s.t:

Q : a finite set of locations;
AP: a finite set of atomic propositions;
` : Q → 2AP: a labeling function;

A = {A1, ...,Ak }: a set of agents (or players);

Mv : Q ×A→ P(Z+) the choice function.
Mv(`,Ai) = set of possible moves for player Ai from `.
Edg : Q ×Z+k

→ Q : the transition table.



Semantics of CGSs

From a location `, each agent Ai chooses some mAi with

mAi ∈Mv(`,Ai).

Edg(`,mA1 , · · · ,mAk ) gives the new location.
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Semantics of CGSs

From a location `, each agent Ai chooses some mAi with

mAi ∈Mv(`,Ai).

Edg(`,mA1 , · · · ,mAk ) gives the new location.

Notations:
Next(`) =

{
Edg(`, · · ·mAi · · · ) | ∀mAi · 1 ≤ i ≤ k

}
Next(`,Aj ,m) =

{
Edg(`, · · · ,mAj−1 ,m,mAj+1 , · · · )

}



Strategies and outcomes

Definition
A computation is an infinite sequence ρ = `0`1 · · · such
that ∀i, `i+1 ∈ Next(`i).

A strategy for agent Ai is a function fAi s.t.
fAi (`0, · · · , `m) ∈Mv(`m,Ai).

The outcomes Out(`, fAi ) are the set of computations
from ` that agree with the strategy fAi of Ai .

Those notions extend to coallitions of agents: given A ⊆ A,
we write

FA = {fAi |Ai ∈ A }
Out(`,FA )



Another example

`0

A wins B wins B wins A wins

〈1.1〉

〈1.2〉 〈2.1〉

〈2.2〉

player A has no strategy to win.
player B has no strategy to win.

Synchronous games are not determined.

Theorem (Martin, 1975)
Turn-based games (with reasonnable winning conditions) are
determined.



Another example

`0

A wins B wins B wins A wins

〈1.1〉

〈1.2〉 〈2.1〉

〈2.2〉

player A has no strategy to win.
player B has no strategy to win.

Synchronous games are not determined.

Theorem (Martin, 1975)
Turn-based games (with reasonnable winning conditions) are
determined.



Syntax of ATL

Definition
The syntax of ATL is defined by the following grammar:

ATL 3 ϕs , ψs ::= p | ¬ϕs | ϕs ∨ ψs | 〈〈A〉〉ϕp | ~A�ϕp

ϕp ::= X ϕs | ϕs U ψs .

where p ranges over the set AP and A over the subsets of A.

ATL subsumes CTL, since we have:

Eϕp ≡ 〈〈A〉〉ϕp ,

Aϕp ≡ 〈〈∅〉〉ϕp .



Semantics of ATL

Definition
Semantics

` |= 〈〈A〉〉ϕp iff ∃FA ∈ Strat(A). ∀ρ ∈ Out(`,FA ). ρ |= ϕp

ρ |= ϕs U ψs iff ∃i.ρ[i] |= ψs and ∀0 ≤ j < i.ρ[j] |= ϕs

ρ |= X ϕs iff ρ[1] |= ϕs

We have 〈〈A〉〉ϕ⇒ ¬ 〈〈Ar A〉〉 ¬ϕ,
but

¬ 〈〈A〉〉ϕ; 〈〈Ar A〉〉 ¬ϕ.

The semantics of ~A�ϕ is that of ¬ 〈〈A〉〉 ¬ϕ
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Model checking ATL

Theorem
Model-checking ATL is PTIME-complete.

Proof.
hardness in PTIME: ATL subsumes CTL.

membership in PTIME: extend CTL labeling algorithm to
handle “multi-agent” transitions.

�

we cannot restrict to modalities 〈〈A〉〉X, 〈〈A〉〉G and 〈〈A〉〉U:
modality ~A�U cannot be expressed from those three
modalities;
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Example
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Examples

first floor
open1

go 3rd floor
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closed1

go 3rd floor

second floor
go 3rd floor

third floor
closed3

go 3rd floor

third floor
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G(go 3rd floor ⇒ F≤4 cabin.open3)



Adding “time” in Kripke structures
basic idea: counting the number of transitions:

Examples

first floor
open1

go 3rd floor

first floor
closed1

go 3rd floor

second floor
go 3rd floor

third floor
closed3

go 3rd floor

third floor
open3

A G(E F≤10 cabin.open1)
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Adding “time” in Kripke structures
basic idea: counting the number of transitions:

slightly more involved: adding timing informations in Kripke
structures:

Examples

first floor
open1

go 3rd floor

first floor
closed1

go 3rd floor

second floor
go 3rd floor

third floor
closed3

go 3rd floor

third floor
open3

2 5 5 2

G(go 3rd floor ⇒ F≤14 open3)



Adding “time” in Kripke structures
basic idea: counting the number of transitions:

slightly more involved: adding timing informations in Kripke
structures:

Examples

first floor
open1

go 3rd floor

first floor
closed1

go 3rd floor

second floor
go 3rd floor

third floor
closed3

go 3rd floor

third floor
open3

2 5 5 2

A G(E F≤25 open1)
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Adding “time” in Kripke structures
basic idea: counting the number of transitions:

slightly more involved: adding timing informations in Kripke
structures:

{ those models are not very expressive (only more succinct);
{ in this settings, the logics also are not more expressive:

A G(E F≤25 open1) ≡ A G(E X(open1 ∨ E X(open1 ∨

E X(open1 ∨ E X(open1...)))))

Theorem
Model-checking TCTL on timed Kripke structures is
PSPACE-complete.
Model-checking TLTL on timed Kripke structures is
EXPSPACE-complete.



Timed automata

Definition
A timed automaton is a tuple A = 〈Q ,Q0,C,→,Σ, `〉 s.t.:

Q is the set of locations, of which Q0 are initial;
C is a (finite) set of clock variables;
→ is the set of transitions
Σ is the alphabet;
` labels either the states or the transitions.

Clocks are used on transitions: a transition is labeled with a
guard, i.e., a list of constraints x ∼ n where x ∈ C, n ∈ Z+ and
∼ ∈ {<,≤,=,≥, >}.
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Two different ways of extending temporal logics:
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Outline of the course

1 Branching-time temporal logics
Complexity
Alternating-time Temporal Logic

2 Timed temporal logics
Timed models
Timed logics
Undecidability



MTL and TPTL are very expressive

Lemma
The halting problem for a Turing machine can be encoded in
TPTL and MTL (with past) in both (pointwise and continuous)
frameworks.



MTL and TPTL are very expressive

Lemma
The halting problem for a Turing machine can be encoded in
TPTL and MTL (with past) in both (pointwise and continuous)
frameworks.

Proof (sketch).

the successive configurations of the Turing machine are
encoded on a one-time-unit-long segment;

a transition of the Turing machine is applied between one
configuration and its successor;
the final state of the Turing machine is eventually reached.

tick

n

tick

n+1

b b a b aq



MTL and TPTL are very expressive

Lemma
The halting problem for a Turing machine can be encoded in
TPTL and MTL (with past) in both (pointwise and continuous)
frameworks.

Proof (sketch).

the successive configurations of the Turing machine are
encoded on a one-time-unit-long segment;
a transition of the Turing machine is applied between one
configuration and its successor;

the final state of the Turing machine is eventually reached.

tick

n

tick

n+1

b b a b aq



MTL and TPTL are very expressive

Lemma
The halting problem for a Turing machine can be encoded in
TPTL and MTL (with past) in both (pointwise and continuous)
frameworks.

Proof (sketch).

the successive configurations of the Turing machine are
encoded on a one-time-unit-long segment;
a transition of the Turing machine is applied between one
configuration and its successor;

the final state of the Turing machine is eventually reached.

tick

n

tick

n+1

b b a b a b

=1

q



MTL and TPTL are very expressive

Lemma
The halting problem for a Turing machine can be encoded in
TPTL and MTL (with past) in both (pointwise and continuous)
frameworks.

Proof (sketch).

the successive configurations of the Turing machine are
encoded on a one-time-unit-long segment;
a transition of the Turing machine is applied between one
configuration and its successor;

the final state of the Turing machine is eventually reached.

tick

n

tick

n+1

b b a b a b b

=1

q



MTL and TPTL are very expressive

Lemma
The halting problem for a Turing machine can be encoded in
TPTL and MTL (with past) in both (pointwise and continuous)
frameworks.

Proof (sketch).

the successive configurations of the Turing machine are
encoded on a one-time-unit-long segment;
a transition of the Turing machine is applied between one
configuration and its successor;

the final state of the Turing machine is eventually reached.

tick

n

tick

n+1

b b a b a b b q′ b

=1

q



MTL and TPTL are very expressive

Lemma
The halting problem for a Turing machine can be encoded in
TPTL and MTL (with past) in both (pointwise and continuous)
frameworks.

Proof (sketch).

the successive configurations of the Turing machine are
encoded on a one-time-unit-long segment;
a transition of the Turing machine is applied between one
configuration and its successor;
the final state of the Turing machine is eventually reached.

tick

n

tick

n+1

b b a b a b b q′ bq



MTL and TPTL are very expressive

Theorem
Satisfiability of an MTL- or TPTL-formula is undecidable.



MTL and TPTL are very expressive

Theorem
Satisfiability of an MTL- or TPTL-formula is undecidable.

Definition
MITL is a (syntactic) fragment of MTL where punctuality is not
allowed: intervals cannot be singletons.



MTL and TPTL are very expressive

Theorem
Satisfiability of an MTL- or TPTL-formula is undecidable.

Definition
MITL is a (syntactic) fragment of MTL where punctuality is not
allowed: intervals cannot be singletons.

Theorem (Alur, Feder, Henzinger, 1991)
In the continuous semantics, with any MITL formula, we can
associate a timed automaton that accepts exactly the same set
of timed state sequences.



MTL and TPTL are very expressive

Theorem
Satisfiability of an MTL- or TPTL-formula is undecidable.

Definition
MITL is a (syntactic) fragment of MTL where punctuality is not
allowed: intervals cannot be singletons.

Theorem (Alur, Feder, Henzinger, 1991)
In the continuous semantics, satisfiability of an MITL formula is
EXPSPACE-complete.
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