
Modeling and verifying reactive systems
Temporal logics

Nicolas Markey

Lab. Specification et Verification
ENS Cachan & CNRS, France

Outline of the course

1 Linear-time temporal logics
Algorithms for verifying LTL formulas (cont’d)
Back to expressiveness

2 Branching-time temporal logics
Expressiveness of branchig-time logics
Complexity

NP-complete fragments of LTL+Past

Definition
A word w is ultimately periodic if it can be written u · vω,
where u and v are finite words and v is not the empty word.

NP-complete fragments of LTL+Past

Definition
A word w is ultimately periodic if it can be written u · vω,
where u and v are finite words and v is not the empty word.

Theorem
A formula ϕ ∈ LTL+Past is satisfiable iff it is satisfiable by an
ultimately periodic word u · vω where u and v have size
exponential in |ϕ|.

NP-complete fragments of LTL+Past

Definition
A word w is ultimately periodic if it can be written u · vω,
where u and v are finite words and v is not the empty word.

Theorem
A formula ϕ ∈ LTL+Past is satisfiable iff it is satisfiable by an
ultimately periodic word u · vω where u and v have size
exponential in |ϕ|.

Proof.
The witnessing execution of the Büchi automaton associated
to ϕ is ultimately periodic, and has size exponential. �

An NP-complete fragment of LTL+Past

Definition
We write LTL1 for the fragment of LTL where modalities cannot
be nested.

Example

(p U q) ∧ G r is a formula of LTL1

(p ∧ r) U (q ∧ G r) is not a formula of LTL1

An NP-complete fragment of LTL+Past

Definition
We write LTL1 for the fragment of LTL where modalities cannot
be nested.

Theorem
Deciding the satisfiability of a formula of LTL1 is NP-complete.

An NP-complete fragment of LTL+Past

Definition
We write LTL1 for the fragment of LTL where modalities cannot
be nested.

Theorem
Deciding the satisfiability of a formula of LTL1 is NP-complete.

Proof.

prove the existence of a small witness, i.e., a
polynomial-size ultimately-periodic word that satisfies the
formula;
the NP algorithm consists in guessing that polynomial-size
witness, and check (in polynomial time) that it satisfies ϕ.

Hardness in NP follows from that of the satisfiability of a
propositional logic formula. �

An NP-complete fragment of LTL+Past

Definition
We write LTL1 for the fragment of LTL where modalities cannot
be nested.

Theorem
Model-checking for LTL1 is NP-complete.

Proof.

prove the existence of a small witness (that should now be
a path of the Kripke structure);
non-deterministically guess, then check, a polynomial-size
witnessing run in the Kripke structure.

Hardness in NP: easy encoding of 3SAT. �

Outline of the course

1 Linear-time temporal logics
Algorithms for verifying LTL formulas (cont’d)
Back to expressiveness

2 Branching-time temporal logics
Expressiveness of branchig-time logics
Complexity

Succinctness of LTL+Past

Theorem
LTL+Past can be exponentially more succinct than LTL.

Succinctness of LTL+Past

Theorem
LTL+Past can be exponentially more succinct than LTL.

Proof.
Consider the following property, built on AP = {p0, . . . ,pn}:

(P): any two states that agree on propositions p1 to pn also
agree on proposition p0.

Succinctness of LTL+Past

Proof.

(P): any two states that agree on propositions p1 to pn also
agree on proposition p0.

It can be expressed in LTL by enumerating the possible
valuations for p0 to pn:

∧
(b0,...,bn)∈{>,⊥}n+1

F(∧
i≥0

pi = bi

)
⇒ G

((∧
i≥1

pi = bi

)
⇒ p0 = b0

)
The size of this formula is exponential in n.

Succinctness of LTL+Past

Proof.

(P): any two states that agree on propositions p1 to pn also
agree on proposition p0.

Let A be a Büchi automaton corresponding to property (P).

Let Σ = {a0,a1, ...,a2n−1} be the subsets of {p1, ...,pn}.

Succinctness of LTL+Past

Proof.

(P): any two states that agree on propositions p1 to pn also
agree on proposition p0.

For each K ⊆ {0, ...,2n
− 1}, we define wK = b0...b2n−1 with

bi =

ai if i ∈ K
ai ∪ {p0} otherwise

Succinctness of LTL+Past

Proof.

(P): any two states that agree on propositions p1 to pn also
agree on proposition p0.

For each K ⊆ {0, ...,2n
− 1}, we define wK = b0...b2n−1 with

bi =

ai if i ∈ K
ai ∪ {p0} otherwise

Lemma
There are 22n

different such words.

Succinctness of LTL+Past

Proof.

(P): any two states that agree on propositions p1 to pn also
agree on proposition p0.

For each K ⊆ {0, ...,2n
− 1}, we define wK = b0...b2n−1 with

bi =

ai if i ∈ K
ai ∪ {p0} otherwise

Lemma
For any K ⊆ {0, ...,2n

− 1}, the word wωK is accepted by A.

Succinctness of LTL+Past

Proof.

(P): any two states that agree on propositions p1 to pn also
agree on proposition p0.

For each K ⊆ {0, ...,2n
− 1}, we define wK = b0...b2n−1 with

bi =

ai if i ∈ K
ai ∪ {p0} otherwise

Lemma
For any K ⊆ {0, ...,2n

− 1}, the word wωK is accepted by A.

Lemma
For any K , K ′, the word wK ′ · wωK is not accepted by A.

Succinctness of LTL+Past

Proof.

(P): any two states that agree on propositions p1 to pn also
agree on proposition p0.

Lemma
For any K ⊆ {0, ...,2n

− 1}, the word wωK is accepted by A.

Lemma
For any K , K ′, the word wK ′ · wωK is not accepted by A.

For any K , K ′, the states reached after reading wK and after
reading wK ′ must be different.

Succinctness of LTL+Past

Proof.

(P): any two states that agree on propositions p1 to pn also
agree on proposition p0.

Lemma
For any K ⊆ {0, ...,2n

− 1}, the word wωK is accepted by A.

Lemma
For any K , K ′, the word wK ′ · wωK is not accepted by A.

Theorem
Any Büchi automaton A characterizing property (P) has at
least 22n

states.

Succinctness of LTL+Past

Proof.

(P): any two states that agree on propositions p1 to pn also
agree on proposition p0.

Theorem
Any Büchi automaton A characterizing property (P) has at
least 22n

states.

Corollary

Any LTL formula expressing property (P) has size at least 2n−1.

Succinctness of LTL+Past

Proof.
Consider now the following property, slightly different:

(P′): any state that agrees on propositions p1 to pn with the
initial state also agrees on proposition p0.

Succinctness of LTL+Past

Proof.
Consider now the following property, slightly different:

(P′): any state that agrees on propositions p1 to pn with the
initial state also agrees on proposition p0.

This can be expressed in LTL+Past by the following
(polynomial-size) formula:

G
((∧

i≥1

pi ⇔ F−1 G−1 pi

)
⇒

(
p0 ⇔ F−1 G−1 p0

))
.

Succinctness of LTL+Past

Proof.
Consider now the following property, slightly different:

(P′): any state that agrees on propositions p1 to pn with the
initial state also agrees on proposition p0.

This can be expressed in LTL+Past by the following
(polynomial-size) formula:

G
((∧

i≥1

pi ⇔ F−1 G−1 pi

)
⇒

(
p0 ⇔ F−1 G−1 p0

))
.

Let ϕ be an LTL formula expressing property (P′). Then G ϕ
precisely expresses property (P), and thus has size at
least 2n−1. �

Outline of the course

1 Linear-time temporal logics
Algorithms for verifying LTL formulas (cont’d)
Back to expressiveness

2 Branching-time temporal logics
Expressiveness of branchig-time logics
Complexity

CTL, CTL+ and CTL∗

Definition

CTL = B(X, U) 3 ϕb ::= p | ¬ϕb | ϕb ∨ ϕb | Eϕl | Aϕl

ϕl ::= X ϕb | ϕb U ϕb

CTL+ = B+(X, U) 3 ϕb ::= p | ¬ϕb | ϕb ∨ ϕb | Eϕl | Aϕl

ϕl ::= ¬ϕl | ϕl ∨ ϕl | X ϕb | ϕb U ϕb

CTL∗ = B∗(X, U) 3 ϕb ::= p | ¬ϕb | ϕb ∨ ϕb | Eϕl | Aϕl

ϕl ::= ϕb | ¬ϕl | ϕl ∨ ϕl | X ϕl | ϕl U ϕl

CTL and CTL+ are equally expressive

Theorem
CTL+ can be translated in CTL.

Example

E(p U q ∧ p′ U q′) ≡ E(p ∧ p′) U (q ∧ Ep′ U q′)∨
E(p ∧ p′) U (q′ ∧ Ep U q)

CTL and CTL+ are equally expressive

Theorem
CTL+ can be translated in CTL.

Theorem
E G F p cannot be expressed in CTL.

Example
The tentative formula E G E F p is not equivalent:

¬p p ¬p

CTL and CTL+ are equally expressive

Theorem
CTL+ can be translated in CTL.

Theorem
E G F p cannot be expressed in CTL.

Definition

ECTL = B(X, U ,
∞

F)

ECTL+ = B+(X, U ,
∞

F)

CTL and CTL+ are equally expressive

Theorem
CTL+ can be translated in CTL.

Theorem
E G F p cannot be expressed in CTL.

Theorem
E(
∞

F p ∧
∞

F q) cannot be expressed in ECTL.

CTL and CTL+ are equally expressive

Theorem
CTL+ can be translated in CTL.

Theorem
E G F p cannot be expressed in CTL.

Theorem
E(
∞

F p ∧
∞

F q) cannot be expressed in ECTL.

Theorem
E(p U q ∨ p′ U q′) U r cannot be expressed in ECTL+.

CTL and CTL+ are equally expressive

Theorem
CTL+ can be translated in CTL.

Theorem
E G F p cannot be expressed in CTL.

Theorem
E(
∞

F p ∧
∞

F q) cannot be expressed in ECTL.

Theorem
E(p U q ∨ p′ U q′) U r cannot be expressed in ECTL+.

CTL

CTL+

ECTL
ECTL+ CTL∗

Outline of the course

1 Linear-time temporal logics
Algorithms for verifying LTL formulas (cont’d)
Back to expressiveness

2 Branching-time temporal logics
Expressiveness of branchig-time logics
Complexity

Complexity of branching-time logic verification

Theorem

Model-checking Satisfiability

CTL PTIME-complete EXPTIME-complete

CTL+ ∆P
2 -complete 2EXPTIME-complete

ECTL PTIME-complete EXPTIME-complete

ECTL+ ∆P
2 -complete 2EXPTIME-complete

CTL∗ PSPACE-complete 2EXPTIME-complete

ECTL model-checking

Theorem
Model-checking ECTL is PTIME-complete.

ECTL model-checking

Theorem
Model-checking ECTL is PTIME-complete.

Proof.
hardness in PTIME: encode CIRCUIT-VALUE as a CTL
model-checking problem.
membership in PTIME: recursively label each state with
the set of subformulas it satisfies.

�

	Linear-time temporal logics
	Algorithms for verifying LTLformulas (cont'd)
	Back to expressiveness

	Branching-time temporal logics
	Expressiveness of branchig-time logics
	Complexity

