Modeling and verifying reactive systems Temporal logics

Nicolas Markey

Lab. Specification et Verification ENS Cachan & CNRS, France

Outline of the course

Linear-time temporal logics

- Algorithms for verifying LTL formulas (cont'd)
- Back to expressiveness

Branching-time temporal logics

- Expressiveness of branchig-time logics
- Complexity

Definition

A word *w* is *ultimately periodic* if it can be written $u \cdot v^{\omega}$, where *u* and *v* are finite words and *v* is not the empty word.

Definition

A word *w* is *ultimately periodic* if it can be written $u \cdot v^{\omega}$, where *u* and *v* are finite words and *v* is not the empty word.

Theorem

A formula $\varphi \in LTL+Past$ is satisfiable iff it is satisfiable by an ultimately periodic word $u \cdot v^{\omega}$ where u and v have size exponential in $|\varphi|$.

Definition

A word *w* is *ultimately periodic* if it can be written $u \cdot v^{\omega}$, where *u* and *v* are finite words and *v* is not the empty word.

Theorem

A formula $\varphi \in LTL+Past$ is satisfiable iff it is satisfiable by an ultimately periodic word $u \cdot v^{\omega}$ where u and v have size exponential in $|\varphi|$.

Proof.

The witnessing execution of the Büchi automaton associated to φ is ultimately periodic, and has size exponential.

Definition

We write LTL_1 for the fragment of LTL where modalities cannot be nested.

Example

$(p \ \mathbf{U} \ q) \land \mathbf{G} \ r$ is a formula of LTL₁ $(p \land r) \ \mathbf{U} \ (q \land \mathbf{G} \ r)$ is not a formula of LTL₁

Definition

We write LTL_1 for the fragment of LTL where modalities cannot be nested.

Theorem

Deciding the satisfiability of a formula of LTL₁ is NP-complete.

Definition

We write LTL_1 for the fragment of LTL where modalities cannot be nested.

Theorem

Deciding the satisfiability of a formula of LTL₁ is NP-complete.

Proof.

- prove the existence of a small witness, i.e., a polynomial-size ultimately-periodic word that satisfies the formula;
- the NP algorithm consists in guessing that polynomial-size witness, and check (in polynomial time) that it satisfies φ.
- Hardness in NP follows from that of the satisfiability of a propositional logic formula.

Definition

We write LTL_1 for the fragment of LTL where modalities cannot be nested.

Theorem

Model-checking for LTL₁ is NP-complete.

Proof.

- prove the existence of a small witness (that should now be a path of the Kripke structure);
- non-deterministically guess, then check, a polynomial-size witnessing run in the Kripke structure.
- Hardness in NP: easy encoding of 3SAT.

Outline of the course

Linear-time temporal logics

- Algorithms for verifying LTL formulas (cont'd)
- Back to expressiveness

Branching-time temporal logics

- Expressiveness of branchig-time logics
- Complexity

Theorem

LTL+Past can be exponentially more succinct than LTL.

Theorem

LTL+Past can be exponentially more succinct than LTL.

Proof.

Consider the following property, built on $AP = \{p_0, \dots, p_n\}$:

 (\mathcal{P}) : any two states that agree on propositions p_1 to p_n also agree on proposition p_0 .

Proof.

(\mathcal{P}): any two states that agree on propositions p_1 to p_n also agree on proposition p_0 .

It can be expressed in LTL by enumerating the possible valuations for p_0 to p_n :

$$\bigwedge_{(b_0,...,b_n)\in\{\top,\bot\}^{n+1}} \left(\mathsf{F}\Big(\bigwedge_{i\geq 0} p_i = b_i\Big) \Rightarrow \, \mathsf{G}\Big(\Big(\bigwedge_{i\geq 1} p_i = b_i\Big) \Rightarrow \, p_0 = b_0\Big)\right)$$

The size of this formula is exponential in *n*.

Proof.

 (\mathcal{P}) : any two states that agree on propositions p_1 to p_n also agree on proposition p_0 .

Let \mathcal{R} be a Büchi automaton corresponding to property (\mathcal{P}).

Let $\Sigma = \{a_0, a_1, ..., a_{2^n-1}\}$ be the subsets of $\{p_1, ..., p_n\}$.

Proof.

(\mathcal{P}): any two states that agree on propositions p_1 to p_n also agree on proposition p_0 .

For each $K \subseteq \{0, ..., 2^n - 1\}$, we define $w_K = b_0 ... b_{2^n - 1}$ with

$$b_i = egin{cases} a_i & ext{if } i \in K \ a_i \cup \{p_0\} & ext{otherwise} \end{cases}$$

Proof.

 (\mathcal{P}) : any two states that agree on propositions p_1 to p_n also agree on proposition p_0 .

For each $K \subseteq \{0, ..., 2^n - 1\}$, we define $w_K = b_0 ... b_{2^n - 1}$ with

$$b_i = egin{cases} a_i & ext{if } i \in K \ a_i \cup \{p_0\} & ext{otherwise} \end{cases}$$

Lemma

There are 2^{2^n} different such words.

Proof.

 (\mathcal{P}) : any two states that agree on propositions p_1 to p_n also agree on proposition p_0 .

For each $K \subseteq \{0, ..., 2^n - 1\}$, we define $w_K = b_0 ... b_{2^n - 1}$ with

$$b_i = egin{cases} a_i & ext{if } i \in K \ a_i \cup \{p_0\} & ext{otherwise} \end{cases}$$

Lemma

For any $K \subseteq \{0, ..., 2^n - 1\}$, the word w_K^{ω} is accepted by \mathcal{A} .

Proof.

 (\mathcal{P}) : any two states that agree on propositions p_1 to p_n also agree on proposition p_0 .

For each $K \subseteq \{0, ..., 2^n - 1\}$, we define $w_K = b_0 ... b_{2^n - 1}$ with

$$b_i = egin{cases} a_i & ext{if } i \in K \ a_i \cup \{p_0\} & ext{otherwise} \end{cases}$$

Lemma

For any $K \subseteq \{0, ..., 2^n - 1\}$, the word w_{κ}^{ω} is accepted by \mathcal{A} .

Lemma

For any $K \neq K'$, the word $w_{K'} \cdot w_{K}^{\omega}$ is not accepted by \mathcal{A} .

Proof.

(\mathcal{P}): any two states that agree on propositions p_1 to p_n also agree on proposition p_0 .

Lemma

For any $K \subseteq \{0, ..., 2^n - 1\}$, the word w_K^{ω} is accepted by \mathcal{A} .

Lemma

For any $K \neq K'$, the word $w_{K'} \cdot w_{K}^{\omega}$ is not accepted by \mathcal{A} .

For any $K \neq K'$, the states reached after reading w_K and after reading $w_{K'}$ must be different.

Proof.

(\mathcal{P}): any two states that agree on propositions p_1 to p_n also agree on proposition p_0 .

Lemma

For any $K \subseteq \{0, ..., 2^n - 1\}$, the word w_K^{ω} is accepted by \mathcal{A} .

Lemma

For any $K \neq K'$, the word $w_{K'} \cdot w_{K}^{\omega}$ is not accepted by \mathcal{A} .

Theorem

Any Büchi automaton \mathcal{A} characterizing property (\mathcal{P}) has at least 2^{2^n} states.

Proof.

(\mathcal{P}): any two states that agree on propositions p_1 to p_n also agree on proposition p_0 .

Theorem

Any Büchi automaton $\mathcal A$ characterizing property $(\mathcal P)$ has at least 2^{2^n} states.

Corollary

Any LTL formula expressing property (\mathcal{P}) has size at least 2^{n-1} .

Proof.

Consider now the following property, slightly different:

 (\mathcal{P}') : any state that agrees on propositions p_1 to p_n with the initial state also agrees on proposition p_0 .

Proof.

Consider now the following property, slightly different:

 (\mathcal{P}') : any state that agrees on propositions p_1 to p_n with the initial state also agrees on proposition p_0 .

This can be expressed in LTL+Past by the following (polynomial-size) formula:

$$\mathbf{G}\Big(\Big(\bigwedge_{i\geq 1}p_i \Leftrightarrow \mathbf{F}^{-1}\,\mathbf{G}^{-1}\,p_i\Big) \Rightarrow \Big(p_0 \,\Leftrightarrow\, \mathbf{F}^{-1}\,\mathbf{G}^{-1}\,p_0\Big)\Big).$$

Proof.

Consider now the following property, slightly different:

 (\mathcal{P}') : any state that agrees on propositions p_1 to p_n with the initial state also agrees on proposition p_0 .

This can be expressed in LTL+Past by the following (polynomial-size) formula:

$$\mathbf{G}\Big(\Big(\bigwedge_{i\geq 1}p_i \,\Leftrightarrow\, \mathbf{F}^{-1}\,\mathbf{G}^{-1}\,p_i\Big) \Rightarrow \Big(p_0 \,\Leftrightarrow\, \mathbf{F}^{-1}\,\mathbf{G}^{-1}\,p_0\Big)\Big).$$

Let φ be an LTL formula expressing property (\mathcal{P}'). Then **G** φ precisely expresses property (\mathcal{P}), and thus has size at least 2^{n-1} .

Outline of the course

Linear-time temporal logics

- Algorithms for verifying LTL formulas (cont'd)
- Back to expressiveness

Pranching-time temporal logics

- Expressiveness of branchig-time logics
- Complexity

CTL, \mbox{CTL}^+ and \mbox{CTL}^*

Definition

$$CTL = \mathcal{B}(\mathbf{X}, \mathbf{U}) \ni \varphi_b ::= \mathbf{p} \mid \neg \varphi_b \mid \varphi_b \lor \varphi_b \mid \mathbf{E}\varphi_l \mid \mathbf{A}\varphi_l$$
$$\varphi_l ::= \mathbf{X} \varphi_b \mid \varphi_b \mathbf{U} \varphi_b$$

$$CTL^{+} = \mathcal{B}^{+}(\mathbf{X}, \mathbf{U}) \ni \varphi_{b} ::= p \mid \neg \varphi_{b} \mid \varphi_{b} \lor \varphi_{b} \mid \mathbf{E}\varphi_{l} \mid \mathbf{A}\varphi_{l}$$
$$\varphi_{l} ::= \neg \varphi_{l} \mid \varphi_{l} \lor \varphi_{l} \mid \mathbf{X} \varphi_{b} \mid \varphi_{b} \mathbf{U} \varphi_{b}$$

$$CTL^* = \mathcal{B}^*(\mathbf{X}, \mathbf{U}) \ni \varphi_b ::= \mathbf{p} \mid \neg \varphi_b \mid \varphi_b \lor \varphi_b \mid \mathbf{E}\varphi_l \mid \mathbf{A}\varphi_l$$
$$\varphi_l ::= \varphi_b \mid \neg \varphi_l \mid \varphi_l \lor \varphi_l \mid \mathbf{X} \varphi_l \mid \varphi_l \mathbf{U} \varphi_l$$

Theorem CTL^+ can be translated in CTL.

Example

$$\begin{split} \mathbf{E}(p \ \mathbf{U} \ q \land p' \ \mathbf{U} \ q') &\equiv \mathbf{E}(p \land p') \ \mathbf{U} \ (q \land \mathbf{E}p' \ \mathbf{U} \ q') \lor \\ \mathbf{E}(p \land p') \ \mathbf{U} \ (q' \land \mathbf{E}p \ \mathbf{U} \ q) \end{split}$$

Theorem

 CTL^+ can be translated in CTL.

Theorem

EGF *p* cannot be expressed in CTL.

Example

The tentative formula **EGEF** *p* is not equivalent:

Theorem

 CTL^+ can be translated in CTL.

Theorem

EGF *p* cannot be expressed in CTL.

Definition

$$\mathsf{ECTL} = \mathcal{B}(\mathbf{X}, \mathbf{U}, \mathbf{\tilde{F}})$$
$$\mathsf{ECTL}^+ = \mathcal{B}^+(\mathbf{X}, \mathbf{U}, \mathbf{\tilde{F}})$$

Theorem

 CTL^+ can be translated in CTL.

Theorem

EGF *p* cannot be expressed in CTL.

Theorem $\mathbf{E}(\mathbf{\tilde{F}} p \land \mathbf{\tilde{F}} q)$ cannot be expressed in ECTL.

Theorem

 CTL^+ can be translated in CTL.

Theorem

EGF *p* cannot be expressed in CTL.

Theorem $\mathbf{E}(\mathbf{\tilde{F}}p \wedge \mathbf{\tilde{F}}q)$ cannot be expressed in ECTL.

Theorem

 $E(p U q \lor p' U q') U r$ cannot be expressed in $ECTL^+$.

Theorem

 CTL^+ can be translated in CTL.

Theorem

EGF *p* cannot be expressed in CTL.

Theorem $\mathbf{E}(\tilde{\mathbf{F}}p \wedge \tilde{\mathbf{F}}q)$ cannot be expressed in ECTL.

Theorem

 $E(p U q \lor p' U q') U r$ cannot be expressed in $ECTL^+$.

Outline of the course

Linear-time temporal logics

- Algorithms for verifying LTL formulas (cont'd)
- Back to expressiveness

Pranching-time temporal logics

- Expressiveness of branchig-time logics
- Complexity

Complexity of branching-time logic verification

Theorem

	Model-checking	Satisfiability
CTL	PTIME-complete	EXPTIME-complete
CTL ⁺	Δ_2^{P} -complete	2EXPTIME-complete
ECTL	PTIME-complete	EXPTIME-complete
ECTL ⁺	Δ_2^{P} -complete	2EXPTIME-complete
CTL*	PSPACE-complete	2EXPTIME-complete

ECTL model-checking

Theorem

Model-checking ECTL is PTIME-complete.

ECTL model-checking

Theorem

Model-checking ECTL is PTIME-complete.

Proof.

- hardness in PTIME: encode CIRCUIT-VALUE as a CTL model-checking problem.
- membership in PTIME: recursively label each state with the set of subformulas it satisfies.