Modeling and verifying reactive systems
Temporal logics

Nicolas Markey

Lab. Specification et Verification
ENS Cachan & CNRS, France

Outline of the course

ﬂ Linear-time temporal logics
@ Algorithms for verifying LTL formulas (cont'd)

NP-complete fragments of LTL+Past

Definition
A word w is ultimately periodic if it can be written u - v¥,
where u and v are finite words and v is not the empty word.

NP-complete fragments of LTL+Past

Definition
A word w is ultimately periodic if it can be written u - v¥,
where u and v are finite words and v is not the empty word.

Theorem

A formula ¢ € LTL+Past is satisfiable iff it is satisfiable by an
ultimately periodic word u - v where u and v have size
exponential in |¢p|.

NP-complete fragments of LTL+Past

Definition
A word w is ultimately periodic if it can be written u - v¥,
where u and v are finite words and v is not the empty word.

Theorem

A formula ¢ € LTL+Past is satisfiable iff it is satisfiable by an
ultimately periodic word u - v where u and v have size
exponential in |¢p|.

Proof.

The witnessing execution of the Blichi automaton associated
to ¢ is ultimately periodic, and has size exponential. O

An NP-complete fragment of LTL+Past

Definition
We write LTL4 for the fragment of LTL where modalities cannot
be nested.

Example

(pUqg) A Gr isaformula of LTL4
(p Ar)U(g A Gr) isnotaformula of LTL4

An NP-complete fragment of LTL+Past

Definition
We write LTL4 for the fragment of LTL where modalities cannot
be nested.)

Theorem
Deciding the satisfiability of a formula of LTL is NP-complete.

<

An NP-complete fragment of LTL+Past

Definition
We write LTL4 for the fragment of LTL where modalities cannot
be nested.

Theorem
Deciding the satisfiability of a formula of LTL is NP-complete.

Proof.

@ prove the existence of a small witness, i.e., a
polynomial-size ultimately-periodic word that satisfies the
formula;

@ the NP algorithm consists in guessing that polynomial-size
witness, and check (in polynomial time) that it satisfies ¢.

@ Hardness in NP follows from that of the satisfiability of a
propositional logic formula. O

An NP-complete fragment of LTL+Past

Definition
We write LTL4 for the fragment of LTL where modalities cannot
be nested.

Theorem
Model-checking for LTL4 is NP-complete.

Proof.

@ prove the existence of a small witness (that should now be
a path of the Kripke structure);

@ non-deterministically guess, then check, a polynomial-size
witnessing run in the Kripke structure.

@ Hardness in NP: easy encoding of 3SAT. O

Outline of the course

0 Linear-time temporal logics

@ Back to expressiveness

Succinctness of LTL+Past

Theorem
LTL+Past can be exponentially more succinct than LTL.

Succinctness of LTL+Past

Theorem
LTL+Past can be exponentially more succinct than LTL.

Proof.
Consider the following property, built on AP = {po, ..., pn}:

(P): any two states that agree on propositions p1 to p, also
agree on proposition py.

Succinctness of LTL+Past

Proof.

(P): any two states that agree on propositions p1 to p, also
agree on proposition pp. J

It can be expressed in LTL by enumerating the possible
valuations for pg to pp:

A [HAn=0) = el(A\n=0) = =)

(bo,--,bn)e{T,L}n+1 i=0 i>1

The size of this formula is exponential in n.

Succinctness of LTL+Past
Proof.

(P): any two states that agree on propositions p1 to p, also
agree on proposition pp.

Let A be a Buchi automaton corresponding to property (P).

Let X = {ag, ay, ..., aon_1} be the subsets of {p1, ..., pn}.

Succinctness of LTL+Past
Proof.

(P): any two states that agree on propositions p1 to p, also
agree on proposition pp. J

For each K € {0, ...,2" — 1}, we define wx = byg...bon_1 With

,_|a ifie K
" laiu{p} otherwise

Succinctness of LTL+Past
Proof.

(P): any two states that agree on propositions p1 to p, also
agree on proposition py. J

For each K € {0, ...,2" — 1}, we define wx = byg...bon_1 With

,_|a ifie K
" laiu{p} otherwise

Lemma
There are 22" different such words. J

Succinctness of LTL+Past
Proof.

(P): any two states that agree on propositions p1 to p, also
agree on proposition pp. J

For each K € {0, ...,2" — 1}, we define wx = byg...bon_1 With

,_|a ifie K
" laiu{p} otherwise

Lemma
For any K C {0, ...,2" — 1}, the word W% is accepted by A. J

Succinctness of LTL+Past
Proof.

(P): any two states that agree on propositions p1 to p, also
agree on proposition pp. J

For each K € {0, ...,2" — 1}, we define wx = byg...bon_1 With

,_|a ifie K
" laiu{p} otherwise

Lemma
For any K C {0, ...,2" — 1}, the word W% is accepted by A.

Lemma
For any K # K’, the word wg- - w)¢ is not accepted by A.

Succinctness of LTL+Past
Proof.

(P): any two states that agree on propositions p1 to p, also
agree on proposition pp.

Lemma
For any K € {0,,2" — 1}, the word wj, is accepted by A.

Lemma
For any K # K’, the word wg- - wy! is not accepted by A.

For any K # K’, the states reached after reading wy and after
reading wg. must be different.

Succinctness of LTL+Past
Proof.

(P): any two states that agree on propositions p1 to p, also
agree on proposition pp.

Lemma
For any K € {0,,2" — 1}, the word wj, is accepted by A.

Lemma
For any K # K’, the word wg- - wy! is not accepted by A.

Theorem

Any Blichi automaton A characterizing property () has at
least 22" states.

Succinctness of LTL+Past
Proof.

(P): any two states that agree on propositions p1 to p, also
agree on proposition py. J

Theorem

Any Bilichi automaton ‘A characterizing property () has at
least 22" states.

Corollary
Any LTL formula expressing property (P) has size at least 2"1.

v

Succinctness of LTL+Past

Proof.
Consider now the following property, slightly different:

(P’): any state that agrees on propositions py to p, with the
initial state also agrees on proposition pg. J

Succinctness of LTL+Past

Proof.
Consider now the following property, slightly different:

(P’): any state that agrees on propositions py to p, with the
initial state also agrees on proposition pg.

This can be expressed in LTL+Past by the following
(polynomial-size) formula:

G((/\ pi© F'G™ p,-) = (po o F'G™ po)).

i>1

Succinctness of LTL+Past

Proof.
Consider now the following property, slightly different:

(P’): any state that agrees on propositions py to p, with the
initial state also agrees on proposition pg.

This can be expressed in LTL+Past by the following
(polynomial-size) formula:

G((/\ pi© F'G™ pi) = (po o F'G™ po)).

i>1

Let ¢ be an LTL formula expressing property (#’). Then G ¢
precisely expresses property (), and thus has size at
least 2",

Outline of the course

e Branching-time temporal logics
@ Expressiveness of branchig-time logics

CTL, CTL" and CTL"

Definition

CTL=8(X,U) 3 ¢p
Q|

CTL* = B7(X, U) 3 ¢p

Pr -

CTL =8 (X, U) 3 ¢p
@

=P | —ob | ¢p V @b | Epy | Ap
=Xop | op U @p

=P =@p | op V @b | Eps | Ag)
=@ o V| Xep | op U @p

=P 2o | pp V @b | Ep; | Ag)
=@p | @il o Vol Xor| o U g

CTL and CTL™ are equally expressive

Theorem
CTL™ can be translated in CTL.

Example

ElpUgAap Uqg)=E(pAp)U(gArEp’ UQ)V
E(p Ap)U(qd AEpU q)

v

CTL and CTL™ are equally expressive

Theorem
CTL™ can be translated in CTL.

Theorem
E G F p cannot be expressed in CTL.

Example
The tentative formula E G EF p is not equivalent:

SRS
&

CTL and CTL™ are equally expressive

Theorem
CTL™ can be translated in CTL.

Theorem
E G F p cannot be expressed in CTL.

Definition
ECTL = B(X, U,F)
ECTL" = 8(X, U,F)

CTL and CTL™ are equally expressive

Theorem
CTL™ can be translated in CTL.

Theorem
E G F p cannot be expressed in CTL.

Theorem
E(Fp A Fq) cannot be expressed in ECTL.

CTL and CTL™ are equally expressive

Theorem
CTL™ can be translated in CTL.

Theorem
E G F p cannot be expressed in CTL.

Theorem
E(Fp A Fq) cannot be expressed in ECTL.

Theorem
E(p U g Vv p’ U q) U rcannot be expressed in ECTL™.

CTL and CTL™ are equally expressive

Theorem
CTL™ can be translated in CTL.

Theorem
E G F p cannot be expressed in CTL.

Theorem
E(Fp A Fq) cannot be expressed in ECTL.

Theorem
E(p U g Vv p’ U q) U rcannot be expressed in ECTL™.

CTL —— ECTL

\
cTLt —

ECTLT — CTL”

Outline of the course

e Branching-time temporal logics

@ Complexity

Complexity of branching-time logic verification

Theorem
Model-checking Satisfiability
CTL PTIME-complete | EXPTIME-complete
CTL* AP-complete 2EXPTIME-complete
ECTL PTIME-complete EXPTIME-complete
ECTL" AF-complete 2EXPTIME-complete
CTL PSPACE-complete | 2EXPTIME-complete

ECTL model-checking

Theorem
Model-checking ECTL is PTIME-complete.

ECTL model-checking

Theorem
Model-checking ECTL is PTIME-complete.

Proof.

@ hardness in PTIME: encode CIRCUIT-VALUE as a CTL
model-checking problem.

@ membership in PTIME: recursively label each state with
the set of subformulas it satisfies.

	Linear-time temporal logics
	Algorithms for verifying LTLformulas (cont'd)
	Back to expressiveness

	Branching-time temporal logics
	Expressiveness of branchig-time logics
	Complexity

