9. Network Interface

Outline
@ Quick introduction
@ Sockets and ports
@ Primitive operations
@ Examples

@ Threaded server model




Sockets

What?
@ Bidirectional communication channel across systems (called hosts)

@ Common interface to multiple layers of multiple networking protocol stacks




Sockets

What?
@ Bidirectional communication channel across systems (called hosts)

@ Common interface to multiple layers of multiple networking protocol stacks

Networking Domains
@ INET: Internet Protocol (IP)
@ UNIX: efficient host-local communication
@ And many others (IPv6, X.25, etc.)

@ $ man 7 socket
$ man 7 ip (for INET sockets)

$ man 7 unix




Sockets

What?
@ Bidirectional communication channel across systems (called hosts)

@ Common interface to multiple layers of multiple networking protocol stacks

<

Socket Types

@ STREAM: connected FIFO streams, reliable (error detection and replay),
without message boundaries, much like pipes across hosts

@ DGRAM: connection-less, unreliable (duplication, reorder, loss) exchange of
messages of fixed length (datagrams)

@ RAW: direct access to the raw protocol (not for UNIX sockets)

@ Each type is associated with a specific mechanism to address remote sockets
» ¢ man 7 tcp (for STREAM sockets)
» $ man 7 udp (for DGRAM sockets)
> $ man 7 raw (for RAW sockets)

@ Typical example
32-bit IPv4 address and 16-bit port for STREAM/DGRAM INET sockets




Establishing a Socket-to-Socket Connection

LOCAL HOST REMOTE HOST

Socket Socket
Descriptor Descriptor



Establishing a Socket-to-Socket Connection

LOCAL HOST REMOTE HOST

Socket
Descriptor

Socket
Descriptor
e.g., bind()
to 212.27.54.252
port 80 (HTTP)



Establishing a Socket-to-Socket Connection

LOCAL HOST REMOTE HOST

Socket
Descriptor

Socket
Descriptor
e.g., bind()
to 212.27.54.252
port 80 (HTTP)
listen()

s = accept()



Establishing a Socket-to-Socket Connection

LOCAL HOST REMOTE HOST

Socket
Descriptor

Socket
Descriptor

e.g., bind() connect ()
to 212.27.54.252 to 212.27.54.252
port 80 (HTTP) port 80

listen()
s = accept()

“CONNECTED" COMMUNICATION CHANNEL



Scenarios for Socket-to-Socket Connection

Direct Communication Scenario
@ Create a socket with socket ()
@ Bind to a local address with bind ()
o Call 1isten() to tell the socket that new connections shall be accepted

@ In the remote host, go through the first 2 steps exchanging the roles of local
and remote addresses, and calling connect () instead of bind()

Only DGRAM (UDP) sockets can be operated that way

@ In addition to the unreliability of UDP, this approach leads to painful
problems
© Port numbers provide only a partial support for a rendez-vous protocol: no
synchronization is enforced
© Reading or writing from an unconnected socket raises SIGPIPE (like writing to
a pipe without readers)
© The socket cannot be reused for another connection




Scenarios for Socket-to-Socket Connection

TCP Abstraction: Creation of a Private Channel

Create a socket with socket ()
Bind to a local address with bind ()
Call 1isten() to tell the socket that new connections shall be accepted

Call accept () to wait for an incoming connection, returning a new socket
associated with a private channel for this connection

In the remote host, go through the first 2 steps exchanging the roles of local
and remote addresses, and calling connect () instead of bind ()

The original pair of sockets can be reused to create more connections




Example: Establishing a Socket for Incoming

Connections

#include <netdb.h>

#include <sys/socket.h>

int establish(unsigned short portnum) {
char myname [MAXHOSTNAME+1] ;
int s;
struct sockaddr_in sa;

bzero(&sa, sizeof (struct sockaddr_in));

gethostname (myname, MAXHOSTNAME) ;

struct hostent *hp = gethostbyname (myname) ;

if (hp == NULL)
return -1;

sa.sin_family= hp->h_addrtype;

sa.sin_port= htons(portnum) ;

if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0)
return -1;

if (bind(s, &sa,sizeof(sa), 0) < 0) {

close(s);
return -1;
}
listen(s, 3);
return s;

//
//
//
//

//

//
//

//

//

clear our address
who are we?

get our address info
we don’t exist !?

this is our host address

and our big-endian port
create socket

bind address to socket

max # of queued connections




Example: Waiting for Incoming Connections

int wait_for_connections(int s) {
struct sockaddr_in isa;
int i;
int t;

if ((t = accept(s, &isa, &i)) < 0)

return -1;
return t;

socket created with establish()
address of socket

size of address

socket of connection

accept connection if there is ome




Example: Opening an Outgoing Connection

int call_socket(char *hostname, unsigned short portnum) {

struct sockaddr_in sa;
struct hostent *hp;
int a, s;

if ((hp = gethostbyname (hostname)) == NULL) {
errno = ECONNREFUSED;
return -1;

3

bzero(&sa, sizeof(sa));

bcopy (hp—>h_addr, (char *)&sa.sin_addr, hp->h_length); //

sa.sin_family = hp->h_addrtype;
sa.sin_port = htons(portnum) ;

if ((s = socket(hp->h_addrtype, SOCK_STREAM, 0)) < 0)
return -1;

if (connect(s, &sa, sizeof(sa)) < 0) {
close(s);
return -1;

}

return s;

//

//

do we know
the host’s address?
no

set address

get socket

connect




Communicating Through a Pair of Sockets

Connected Socket 1/0

@ System calls read () and write () work as usual on connected sockets
(otherwise raise STGPIPE)

@ System calls recv () and send() refine the semantics of read () and
write () with additional flags to control socket-specific 1/O (out-of-band,
message boundaries, etc.)

Connection-Less Socket 1/0

o A single DGRAM (UDP) socket can be used to communicate

@ System calls: recvfrom() and sendto()




Application: Threaded Server Model
Dynamic Thread Creation

© A main thread listens for a connection request on a predefined port

© After accepting the request, the server creates a thread to handle the
request and resumes listening for another request

© The thread detaches itself, performs the request, closes the socket in
response to the client’s closing and returns

— Key system call: accept (): the thread function takes the socket returned
from the system call as a parameter




Application: Threaded Server Model
Dynamic Thread Creation

© A main thread listens for a connection request on a predefined port

© After accepting the request, the server creates a thread to handle the
request and resumes listening for another request

© The thread detaches itself, performs the request, closes the socket in
response to the client’s closing and returns

— Key system call: accept (): the thread function takes the socket returned
from the system call as a parameter

Worker Pool
© A main thread plays the role of a producer
@ A bounded number of worker threads play the role of consumers

© The main thread listens for connection requests and asks the workers to
process them (e.g., with a signal)




Application: Threaded Server Model
Dynamic Thread Creation

© A main thread listens for a connection request on a predefined port

© After accepting the request, the server creates a thread to handle the
request and resumes listening for another request

© The thread detaches itself, performs the request, closes the socket in
response to the client’s closing and returns

— Key system call: accept (): the thread function takes the socket returned
from the system call as a parameter

Worker Pool
© A main thread plays the role of a producer
@ A bounded number of worker threads play the role of consumers

© The main thread listens for connection requests and asks the workers to
process them (e.g., with a signal)

More Information and Hard Core Optimizations
http://www.kegel.com/c10k.html




