
9. Network Interface

Outline

Quick introduction

Sockets and ports

Primitive operations

Examples

Threaded server model



Sockets

What?

Bidirectional communication channel across systems (called hosts)

Common interface to multiple layers of multiple networking protocol stacks



Sockets

What?

Bidirectional communication channel across systems (called hosts)

Common interface to multiple layers of multiple networking protocol stacks

Networking Domains

INET : Internet Protocol (IP)

UNIX : efficient host-local communication

And many others (IPv6, X.25, etc.)

$ man 7 socket

$ man 7 ip (for INET sockets)

$ man 7 unix



Sockets

What?

Bidirectional communication channel across systems (called hosts)

Common interface to multiple layers of multiple networking protocol stacks

Socket Types

STREAM: connected FIFO streams, reliable (error detection and replay),
without message boundaries, much like pipes across hosts

DGRAM: connection-less, unreliable (duplication, reorder, loss) exchange of
messages of fixed length (datagrams)

RAW: direct access to the raw protocol (not for UNIX sockets)

Each type is associated with a specific mechanism to address remote sockets
I $ man 7 tcp (for STREAM sockets)
I $ man 7 udp (for DGRAM sockets)
I $ man 7 raw (for RAW sockets)

Typical example
32-bit IPv4 address and 16-bit port for STREAM/DGRAM INET sockets



Establishing a Socket-to-Socket Connection

Internet

Socket

Descriptor

Socket

Descriptor

REMOTE HOSTLOCAL HOST



Establishing a Socket-to-Socket Connection

Internet
to 212.27.54.252
port 80 (HTTP)

e.g., bind()

Socket

Descriptor

Socket

Descriptor

REMOTE HOSTLOCAL HOST



Establishing a Socket-to-Socket Connection

Internet
to 212.27.54.252
port 80 (HTTP)

e.g., bind()

listen()

s = accept()

Socket

Descriptor

Socket

Descriptor

REMOTE HOSTLOCAL HOST



Establishing a Socket-to-Socket Connection

Internet
to 212.27.54.252
port 80 (HTTP)

e.g., bind()

listen()

s = accept()

connect()

to 212.27.54.252
port 80

Socket

Descriptor

Socket

Descriptor

REMOTE HOSTLOCAL HOST

“CONNECTED” COMMUNICATION CHANNEL



Scenarios for Socket-to-Socket Connection

Direct Communication Scenario

Create a socket with socket()

Bind to a local address with bind()

Call listen() to tell the socket that new connections shall be accepted

In the remote host, go through the first 2 steps exchanging the roles of local
and remote addresses, and calling connect() instead of bind()

Only DGRAM (UDP) sockets can be operated that way

In addition to the unreliability of UDP, this approach leads to painful
problems

1 Port numbers provide only a partial support for a rendez-vous protocol: no
synchronization is enforced

2 Reading or writing from an unconnected socket raises SIGPIPE (like writing to
a pipe without readers)

3 The socket cannot be reused for another connection



Scenarios for Socket-to-Socket Connection

TCP Abstraction: Creation of a Private Channel

Create a socket with socket()

Bind to a local address with bind()

Call listen() to tell the socket that new connections shall be accepted

Call accept() to wait for an incoming connection, returning a new socket
associated with a private channel for this connection

In the remote host, go through the first 2 steps exchanging the roles of local
and remote addresses, and calling connect() instead of bind()

The original pair of sockets can be reused to create more connections



Example: Establishing a Socket for Incoming
Connections
#include <netdb.h>

#include <sys/socket.h>

int establish(unsigned short portnum) {

char myname[MAXHOSTNAME+1];

int s;

struct sockaddr_in sa;

bzero(&sa, sizeof(struct sockaddr_in)); // clear our address

gethostname(myname, MAXHOSTNAME); // who are we?

struct hostent *hp = gethostbyname(myname); // get our address info

if (hp == NULL) // we don’t exist !?

return -1;

sa.sin_family= hp->h_addrtype; // this is our host address

sa.sin_port= htons(portnum); // and our big-endian port

if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0) // create socket

return -1;

if (bind(s, &sa,sizeof(sa), 0) < 0) {

close(s);

return -1; // bind address to socket

}

listen(s, 3); // max # of queued connections

return s;

}



Example: Waiting for Incoming Connections

int wait_for_connections(int s) { // socket created with establish()

struct sockaddr_in isa; // address of socket

int i; // size of address

int t; // socket of connection

if ((t = accept(s, &isa, &i)) < 0) // accept connection if there is one

return -1;

return t;

}



Example: Opening an Outgoing Connection

int call_socket(char *hostname, unsigned short portnum) {

struct sockaddr_in sa;

struct hostent *hp;

int a, s;

if ((hp = gethostbyname(hostname)) == NULL) { // do we know

errno = ECONNREFUSED; // the host’s address?

return -1; // no

}

bzero(&sa, sizeof(sa));

bcopy(hp->h_addr, (char *)&sa.sin_addr, hp->h_length); // set address

sa.sin_family = hp->h_addrtype;

sa.sin_port = htons(portnum);

if ((s = socket(hp->h_addrtype, SOCK_STREAM, 0)) < 0) // get socket

return -1;

if (connect(s, &sa, sizeof(sa)) < 0) { // connect

close(s);

return -1;

}

return s;

}



Communicating Through a Pair of Sockets

Connected Socket I/O

System calls read() and write() work as usual on connected sockets
(otherwise raise SIGPIPE)

System calls recv() and send() refine the semantics of read() and
write() with additional flags to control socket-specific I/O (out-of-band,
message boundaries, etc.)

Connection-Less Socket I/O

A single DGRAM (UDP) socket can be used to communicate

System calls: recvfrom() and sendto()



Application: Threaded Server Model
Dynamic Thread Creation

1 A main thread listens for a connection request on a predefined port

2 After accepting the request, the server creates a thread to handle the
request and resumes listening for another request

3 The thread detaches itself, performs the request, closes the socket in
response to the client’s closing and returns

→ Key system call: accept(): the thread function takes the socket returned
from the system call as a parameter

Worker Pool

1 A main thread plays the role of a producer

2 A bounded number of worker threads play the role of consumers

3 The main thread listens for connection requests and asks the workers to
process them (e.g., with a signal)

More Information and Hard Core Optimizations

http://www.kegel.com/c10k.html



Application: Threaded Server Model
Dynamic Thread Creation

1 A main thread listens for a connection request on a predefined port

2 After accepting the request, the server creates a thread to handle the
request and resumes listening for another request

3 The thread detaches itself, performs the request, closes the socket in
response to the client’s closing and returns

→ Key system call: accept(): the thread function takes the socket returned
from the system call as a parameter

Worker Pool

1 A main thread plays the role of a producer

2 A bounded number of worker threads play the role of consumers

3 The main thread listens for connection requests and asks the workers to
process them (e.g., with a signal)

More Information and Hard Core Optimizations

http://www.kegel.com/c10k.html



Application: Threaded Server Model
Dynamic Thread Creation

1 A main thread listens for a connection request on a predefined port

2 After accepting the request, the server creates a thread to handle the
request and resumes listening for another request

3 The thread detaches itself, performs the request, closes the socket in
response to the client’s closing and returns

→ Key system call: accept(): the thread function takes the socket returned
from the system call as a parameter

Worker Pool

1 A main thread plays the role of a producer

2 A bounded number of worker threads play the role of consumers

3 The main thread listens for connection requests and asks the workers to
process them (e.g., with a signal)

More Information and Hard Core Optimizations

http://www.kegel.com/c10k.html


