8. Threads

Outline
@ Principles and motivating examples
@ Thread creation and synchronization
@ Threads and signals
@ Thread-level parallelism for shared-memory parallel computing

Facilitating Shared Memory Concurrency and
Parallel Computing

Motivation

@ Fine-grain concurrency to reduce process creation and context switch
overhead
— Lightweight processes

@ Implement shared-memory parallel applications
— Take advantage of cache-coherent parallel processing hardware: SMT
(simultaneous multi-threaded or hyper-threaded), CMP (chip multi-processor
or multi-core), SMP (symmetric multi-processor), or NUMA (non-uniform
memory architecture)

Principles
@ Thread-level concurrency: a single process may contain multiple control
threads, or simply, threads

> Share the same global memory: code, data and heap
» Distinct, separate stack

@ § man 7 pthreads

Multi-Threaded Applications

Thread-Level Concurrency

@ Many algorithms express more naturally with independent computation flows

» Reactive and interactive systems: safety critical controller, graphical user
interface, web server, etc.

> Large applications with modular structure: distributed component engineering
(CORBA), remote function/method call/invocation, etc. (combine processes
and threads)

Thread-Level Parallelism

@ Found largely in server (database, web server, etc.) and computational
(numerical simulation, signal processing, etc.) applications
o Goals
> Tolerate latency (I/O or memory), e.g., creating more logical threads than
hardware threads

> More scalable usage of hardware resources, due to physical limitations of
nanometric circuit technologies, e.g., multi-core processors

Threads vs. Processes

Shared Attributes
e PID, PPID, PGID, SID, UID, GID

@ Current and root directories, controlling terminal, open file descriptors, record
locks, file creation mask (umask)

@ Timers, signal settings, priority (nice), resource limits and usage

Threads vs. Processes

Shared Attributes
e PID, PPID, PGID, SID, UID, GID

@ Current and root directories, controlling terminal, open file descriptors, record
locks, file creation mask (umask)

@ Timers, signal settings, priority (nice), resource limits and usage

Distinct Attributes
@ Thread identifier: pthread t data type
@ Signal mask (pthread sigmask())
@ errno variable
@ Scheduling policy and real-time priority
o CPU affinity (NUMA machines)
o Capabilities (Linux only)

Threads vs. Processes

Shared Attributes
e PID, PPID, PGID, SID, UID, GID

@ Current and root directories, controlling terminal, open file descriptors, record
locks, file creation mask (umask)

@ Timers, signal settings, priority (nice), resource limits and usage

Distinct Attributes
@ Thread identifier: pthread t data type
@ Signal mask (pthread sigmask())
@ errno variable
@ Scheduling policy and real-time priority
o CPU affinity (NUMA machines)
o Capabilities (Linux only)

To use POSIX threads, link with ~1rt or compile with -pthread)

Thread-Local Storage

Thread Static Data (TSD)
@ Private memory area associated with each thread
@ Some static and global variables “want to be private”
@ Example: errno

@ More examples: OpenMP programming language extensions
General compilation method: privatization

Finalization Functions

@ Privatization of non-temporary data may require

» Copy-in: broadcast shared value into multiple private variables
» Copy-out: select a private value to update a shared variable upon termination

@ Memory management (destructors) for dynamically allocated TSD

System Call: pthread create()

Create a New Thread
#include <pthread.h>

int pthread_create(pthread_t *thread, pthread_attr_t *attr,
void *(*kstart_routine) (void *), void *arg);

Semantics

@ The new thread calls the function start routine passing it arg as first
argument

@ The attr argument corresponds to thread attributes, e.g., it can be detached
or joinable, see pthread attr_init () and pthread detach() for details
If NULL, default attributes are used (it is joinable (i.e., not detached) and has
default (i.e., non real-time) scheduling policy

@ Returns 0 on success, or a non-null error condition (not errno); stores
identifier of the new thread in the location pointed to by the thread
argument

System Call: pthread exit()

Terminate the Calling Thread
#include <pthread.h>

void pthread_exit(void *retval);

Semantics
@ Terminates execution

» After calling cleanup handlers (set with pthread cleanup push()
» Then calling finalization functions for thread-specific data (see
pthread key create())

@ The retval argument (an arbitrary pointer) is the return value for the
thread; it can be consulted with pthread join()

@ The function is called implicitely if the thread routine returns (using its return
value)

@ pthread exit () never returns

System Call: pthread join()

Wait For Termination of Another Thread
#include <pthread.h>

int pthread_join(pthread_t th, void **thread_return);

Semantics
@ Suspends execution of the calling thread until the th terminates or is
canceled (see pthread cancel())
@ If thread return is not null

> |t stores the pointer returned upon termination of th
» Or it stores PTHREAD CANCELED if th was canceled

@ Thread th must be in the joinable state (i.e., not detached, e.g. calling
pthread detach())

Thread resources are not freed upon termination, only when calling
pthread_join() (except if detached); watch out for memory leaks!

Important: at most one thread may wait for the termination of a given one

Returns 0 on success, or a non-null error condition (not errno)

Threads and Signals

Sending a Signal to A Particular Thread

— pthread kill()
Behaves like ki11(), but signal actions and handlers are global to the process

Blocking a Signal in A Particular Thread

— pthread_sigmask()
Behaves like sigprocmask ()

Suspending A Particular Thread Waiting for Signal Delivery

— sigwait ()
Behaves like sugsuspend (), with a hybrid of thread-local — suspending thread
execution — and process-global behavior — blocking a set of signals.

Example: Typical Thread Creation/Joining

#include
#include
#include
#include
#include
#include
#include

<pthread.h>
<stdio.h>
<stdlib.h>
<unistd.h>
<string.h>
<errno.h>
<sys/times.h>

#define NTHREADS 5

void *thread_fun(void *num) {

int i

*(int *)num;

printf ("Thread %d\n", i); // Or: pthread_self ()

2 ooo

// More thread-specific code

70 ooo

pthread_exit (NULL) ; // Or simply: return NULL

Example: Typical Thread Creation/Joining

pthread_t threads [NTHREADS] ;

int main(int argc, char *argv[]) {
pthread_attr_t attr;
int i, error;

}
}

(i = 0; i < NTHREADS; i++) {
pthread_attr_init(&attr);
int *ii = malloc(sizeof(int));
*ii = i;
error = pthread_create(&threads[i], &attr, &thread_fun, ii);
(error != 0) {
fprintf (stderr, "Error in pthread_create: %s \n", strerror(error));
exit(1);
}

(i=0; i < NTHREADS; i++) {

void *ptr;

int error = pthread_join(threads[i], &ptr);

if(error != 0) {
fprintf(stderr, "Error in pthread_join: %s \n", strerror(error));
exit(1);

}

