
8. Threads

Outline

Principles and motivating examples

Thread creation and synchronization

Threads and signals

Thread-level parallelism for shared-memory parallel computing

Facilitating Shared Memory Concurrency and
Parallel Computing

Motivation

Fine-grain concurrency to reduce process creation and context switch
overhead
→ Lightweight processes

Implement shared-memory parallel applications
→ Take advantage of cache-coherent parallel processing hardware: SMT
(simultaneous multi-threaded or hyper-threaded), CMP (chip multi-processor
or multi-core), SMP (symmetric multi-processor), or NUMA (non-uniform
memory architecture)

Principles

Thread-level concurrency : a single process may contain multiple control
threads, or simply, threads

I Share the same global memory : code, data and heap
I Distinct, separate stack

$ man 7 pthreads

Multi-Threaded Applications

Thread-Level Concurrency

Many algorithms express more naturally with independent computation flows
I Reactive and interactive systems: safety critical controller, graphical user

interface, web server, etc.
I Large applications with modular structure: distributed component engineering

(CORBA), remote function/method call/invocation, etc. (combine processes
and threads)

Thread-Level Parallelism

Found largely in server (database, web server, etc.) and computational
(numerical simulation, signal processing, etc.) applications

Goals
I Tolerate latency (I/O or memory), e.g., creating more logical threads than

hardware threads
I More scalable usage of hardware resources, due to physical limitations of

nanometric circuit technologies, e.g., multi-core processors

Threads vs. Processes

Shared Attributes

PID, PPID, PGID, SID, UID, GID

Current and root directories, controlling terminal, open file descriptors, record
locks, file creation mask (umask)

Timers, signal settings, priority (nice), resource limits and usage

Distinct Attributes

Thread identifier: pthread t data type

Signal mask (pthread sigmask())

errno variable

Scheduling policy and real-time priority

CPU affinity (NUMA machines)

Capabilities (Linux only)

To use POSIX threads, link with -lrt or compile with -pthread

Threads vs. Processes

Shared Attributes

PID, PPID, PGID, SID, UID, GID

Current and root directories, controlling terminal, open file descriptors, record
locks, file creation mask (umask)

Timers, signal settings, priority (nice), resource limits and usage

Distinct Attributes

Thread identifier: pthread t data type

Signal mask (pthread sigmask())

errno variable

Scheduling policy and real-time priority

CPU affinity (NUMA machines)

Capabilities (Linux only)

To use POSIX threads, link with -lrt or compile with -pthread

Threads vs. Processes

Shared Attributes

PID, PPID, PGID, SID, UID, GID

Current and root directories, controlling terminal, open file descriptors, record
locks, file creation mask (umask)

Timers, signal settings, priority (nice), resource limits and usage

Distinct Attributes

Thread identifier: pthread t data type

Signal mask (pthread sigmask())

errno variable

Scheduling policy and real-time priority

CPU affinity (NUMA machines)

Capabilities (Linux only)

To use POSIX threads, link with -lrt or compile with -pthread

Thread-Local Storage

Thread Static Data (TSD)

Private memory area associated with each thread

Some static and global variables “want to be private”

Example: errno

More examples: OpenMP programming language extensions
General compilation method: privatization

Finalization Functions

Privatization of non-temporary data may require
I Copy-in: broadcast shared value into multiple private variables
I Copy-out: select a private value to update a shared variable upon termination

Memory management (destructors) for dynamically allocated TSD

System Call: pthread create()

Create a New Thread

#include <pthread.h>

int pthread_create(pthread_t *thread, pthread_attr_t *attr,
void *(*start_routine)(void *), void *arg);

Semantics

The new thread calls the function start routine passing it arg as first
argument

The attr argument corresponds to thread attributes, e.g., it can be detached
or joinable, see pthread attr init() and pthread detach() for details
If NULL, default attributes are used (it is joinable (i.e., not detached) and has
default (i.e., non real-time) scheduling policy

Returns 0 on success, or a non-null error condition (not errno); stores
identifier of the new thread in the location pointed to by the thread
argument

System Call: pthread exit()

Terminate the Calling Thread

#include <pthread.h>

void pthread_exit(void *retval);

Semantics

Terminates execution
I After calling cleanup handlers (set with pthread cleanup push()
I Then calling finalization functions for thread-specific data (see

pthread key create())

The retval argument (an arbitrary pointer) is the return value for the
thread; it can be consulted with pthread join()

The function is called implicitely if the thread routine returns (using its return
value)

pthread exit() never returns

System Call: pthread join()

Wait For Termination of Another Thread

#include <pthread.h>

int pthread_join(pthread_t th, void **thread_return);

Semantics

Suspends execution of the calling thread until the th terminates or is
canceled (see pthread cancel())

If thread return is not null
I It stores the pointer returned upon termination of th
I Or it stores PTHREAD CANCELED if th was canceled

Thread th must be in the joinable state (i.e., not detached , e.g. calling
pthread detach())

Thread resources are not freed upon termination, only when calling
pthread join() (except if detached); watch out for memory leaks!

Important: at most one thread may wait for the termination of a given one

Returns 0 on success, or a non-null error condition (not errno)

Threads and Signals

Sending a Signal to A Particular Thread

→ pthread kill()
Behaves like kill(), but signal actions and handlers are global to the process

Blocking a Signal in A Particular Thread

→ pthread sigmask()
Behaves like sigprocmask()

Suspending A Particular Thread Waiting for Signal Delivery

→ sigwait()
Behaves like sugsuspend(), with a hybrid of thread-local — suspending thread
execution — and process-global behavior — blocking a set of signals.

Example: Typical Thread Creation/Joining

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <errno.h>

#include <sys/times.h>

#define NTHREADS 5

void *thread_fun(void *num) {

int i = *(int *)num;

printf("Thread %d\n", i); // Or: pthread_self()

// ...

// More thread-specific code

// ...

pthread_exit(NULL); // Or simply: return NULL

}

Example: Typical Thread Creation/Joining

pthread_t threads[NTHREADS];

int main(int argc, char *argv[]) {

pthread_attr_t attr;

int i, error;

for (i = 0; i < NTHREADS; i++) {

pthread_attr_init(&attr);

int *ii = malloc(sizeof(int));

*ii = i;

error = pthread_create(&threads[i], &attr, &thread_fun, ii);

if (error != 0) {

fprintf(stderr, "Error in pthread_create: %s \n", strerror(error));

exit(1);

}

}

for (i=0; i < NTHREADS; i++) {

void *ptr;

int error = pthread_join(threads[i], &ptr);

if(error != 0) {

fprintf(stderr, "Error in pthread_join: %s \n", strerror(error));

exit(1);

}

}

}

