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I/O Redirection

Example

No redirection

Terminal

... ...

opening mode inode pointer

offset # of openings# of descriptors

Open file table Inode table

...

Descriptor table

file 1

file 2

No redirection

stdin
stdout
stderr



I/O Redirection

Example

Standard input redirection

Terminal

< file_1

... ...

opening mode inode pointer

offset # of openings# of descriptors

Open file table Inode table

...

Descriptor table

file 1

file 2

stdin
stdout
stderr



I/O Redirection

Example

Standard output redirection

Terminal

> file_2

... ...

opening mode inode pointer

offset # of openings# of descriptors

Open file table Inode table

...

Descriptor table

file 1

file 2

stdin
stdout
stderr



I/O Redirection

Example

Standard error redirection

Terminal

2> file_2

... ...

opening mode inode pointer

offset # of openings# of descriptors

Open file table Inode table

...

Descriptor table

file 1

file 2

stdin
stdout
stderr

(with sh/bash)



I/O System Call: dup()/dup2()

Duplicate a File Descriptor

#include <unistd.h>

int dup(int oldfd);
int dup2(int oldfd, int newfd);

Return Value

On success, dup() and dup2() return a (non-negative) file descriptor , which
is a copy of oldfd

I For dup(), it is the process’s lowest-numbered descriptor not currently open
I dup2() uses newfd() instead, closing it before if necessary
I Clears the flags of the new descriptor (see fcntl())
I Both descriptors share one single open file (i.e., one offset for lseek(), etc.)

Returns −1 on error

Error Conditions

An original errno code

EMFILE: too many file descriptors for the process



Redirection Example

$ command > file_1 // Redirect stdout to file_1

{
close(1);
open("file_1", O_WRONLY | O_CREAT, 0777);

}

$ command 2>&1 // Redirect stderr to stdout

{
close(2);
dup(1);

}



FIFO (Pipe)

Principles

Channel to stream data among processes

I Data traverses the pipe first-in (write) first-out (read)
I Blocking read and write (bounded capacity)
I Illegal to write in a pipe without reader
I Reading in a pipe without writer “simulates end of file”

Terminal

... ...

opening mode inode pointer

offset # of openings# of descriptors

Open file table Inode tableDescriptor table

...

p[0]

p[1]

FIFO inode



I/O System Call: pipe()

Create a Pipe

#include <unistd.h>

int pipe(int p[2]);

Description

Creates a pipe and stores a pair of file descriptors into p
I p[0] for reading (O RDONLY)
I p[1] for writing (O WRONLY)

Returns 0 on success, −1 if an error occurred



FIFOs and I/O Redirection

Question: implement
$ ls | more

Solution
I pipe(p)
I fork()
I Process to become ls

I close(1)
I dup(p[1])
I execve("ls", ...)

I Process to become more
I close(0)
I dup(p[0])
I execve("more", ...)

Terminal

... ...

opening mode inode pointer

offset # of openings# of descriptors

Open file table Inode tableDescriptor table

...

p[0]

p[1]

FIFO inode



FIFOs and I/O Redirection
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I Process to become more
I close(0)
I dup(p[0])
I execve("more", ...)

Terminal

... ...

opening mode inode pointer

offset # of openings# of descriptors

Open file table Inode tableDescriptor table
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p[0]

p[1]

FIFO inode



FIFO Special Files

Named Pipe

Special file created with mkfifo() (front-end to mknod())
See also mkfifo command

Does not store anything on the file system (beyond its inode)
Data is stored and forwarded in memory (like an unnamed pipe)

Supports a rendez-vous protocol
I Open for reading: blocks until another process opens for writing
I Open for writing: if no reader, fails with error ENXIO

Disabled when opening in O NONBLOCK mode



Pipe I/O

Writing to a Pipe

Writing to a pipe without readers delivers of SIGPIPE
I Causes termination by default
I Otherwise causes write() to fail with error EINTR

PIPE BUF is a constant > 512 (4096 on Linux)

Writing n bytes in blocking mode
I n 6 PIPE BUF: atomic success (n bytes written), block if not enough space
I n > PIPE BUF: non-atomic (may be interleaved with other), blocks until n

bytes have been written

Writing n bytes in non-blocking mode (O NONBLOCK)
I n 6 PIPE BUF: atomic success (n bytes written), or fails with EAGAIN
I n > PIPE BUF: if the pipe is full, fails with EAGAIN; otherwise a partial write

may occur

Reading from a pipe without writer returns 0 (end of file)

Like ordinary files, data sent to a pipe is unstructured: it does not retain
“boundaries” between calls to write (unlike IPC message queues)



Advanced Synchronization With Signals

Determinism and Atomicity

ISO C (pseudo UNIX V7) signals are error-prone and may lead to
uncontrollable run-time behavior: historical design flaw

I Example: install a signal handler (signal()) before suspension (pause())
I What happens if the signal is delivered in between?



Advanced Synchronization With Signals

Determinism and Atomicity

ISO C (pseudo UNIX V7) signals are error-prone and may lead to
uncontrollable run-time behavior: historical design flaw

I Example: install a signal handler (signal()) before suspension (pause())
I What happens if the signal is delivered in between?

parent child

Deadlock!

fork()

pause()

exit(code)

kill(getppid())

signal(handler)

Call handler



Advanced Synchronization With Signals

Determinism and Atomicity

ISO C (pseudo UNIX V7) signals are error-prone and may lead to
uncontrollable run-time behavior: historical design flaw

I Example: install a signal handler (signal()) before suspension (pause())
I What happens if the signal is delivered in between?

Asynchronous signal delivery
→ Possible deadlock
→ Hard to fix the bug

Solution: atomic (un)masking (a.k.a. (un)blocking) and suspension

Lessons learned
I Difficult to tame low-level concurrency mechanisms
I Look for deterministic synchronization/communication primitives

(enforce functional semantics)
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System Call: sigaction()

POSIX Signal Handling

#include <signal.h>

int sigaction(int signum, const struct sigaction *act,
struct sigaction *oldact);

Description

Examine and change the action taken by a process on signal delivery

If act is not NULL, it is the new action for signal signum

If oldact is not NULL, store the current action into the struct sigaction
pointed to by oldact

Return 0 on success, −1 on error



System Call: sigaction()

POSIX Signal Handling

#include <signal.h>

int sigaction(int signum, const struct sigaction *act,
struct sigaction *oldact);

Error Conditions

Typical error code

EINVAL: an invalid signal was specified, or attempting to change the
action for SIGKILL or SIGSTOP
Calling sigaction() with NULL second and third arguments
and checking for the EINVAL error allows to check whether a
given signal is supported on a given platform



System Call: sigaction()

POSIX Signal Action Structure

struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t*, void*);
sigset_t sa_mask;
int sa_flags;

}

Description

sa handler: same function pointer as the argument of signal()
(it may also be set to SIG DFL or SIG IGN)

sa sigaction: handler with information about the context of signal delivery
(excusive with sa handler)

sa mask: mask of blocked signals when executing the signal handler

sa flags: bitwise or of handler behavior options



System Call: sigaction()

POSIX Signal Action Structure

struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t*, void*);
sigset_t sa_mask;
int sa_flags;

}

SA NOCLDSTOP: if signum is SIGCHLD, no notification when child processes stop
(SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU) or resume (SIGCONT)

SA NOCLDWAIT: if signum is SIGCHLD, “leave children unattended”, i.e., do not
transform terminating children processes into zombies

SA SIGINFO: use sa sigaction field instead of sa handler

siginfo t parameter carries signal delivery context
$ man 2 sigaction for (lengthy) details

A few others: reset handler after action, restart interrupted system calls,
authorize nesting of identical signals, etc.



The sigsetops Family of Signal-Set Operations

$ man 3 sigsetops

#include <signal.h>

int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);
int sigaddset(sigset_t *set, int signum);
int sigdelset(sigset_t *set, int signum);
int sigismember(const sigset_t *set, int signum);

Description

Respectively empty all signals, fill with all signals, add a signal, remove a
signal, and test whether a signal belong to the POSIX sigset t pointed to
by set

The first four return 0 on success and −1 on error

sigismember() returns 1 if signum is a member of the set, 0 if it is not,
and −1 on error

See also the non-portable sigisemptyset(), sigorset(), sigandset()



Simple sigaction Example

int count_signal = 0;

void count(int signum) {

count_signal++;

}

// ...

{

struct sigaction sa;

sa.sa_handler = count; // Signal handler

sigemptyset(&sa.sa_mask); // Pass field address directly

sa.sa_flags = 0;

sigaction(SIGUSR1, &sa, NULL);

while (true) {

printf("count_signal = %d\n", count_signal);

pause();

}

}



System Call: sigprocmask()

Examine and Change Blocked Signals

#include <signal.h>

int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);

Semantics

If set is not NULL, how describes the behavior of the call

SIG BLOCK: blocked← blocked ∪ *set
SIG UNBLOCK: blocked← blocked− *set
SIG SETMASK: blocked← *set

If oldset is not NULL, store the current mask of blocked signals into the
sigset t pointed to by oldset

Return 0 on success, −1 on error



System Call: sigprocmask()

Examine and Change Blocked Signals

#include <signal.h>

int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);

Remarks

Unblockable signals: SIGKILL, SIGSTOP
(attempts to mask them are silently ignored)

Use sigsuspend() to unmask signals before suspending execution



System Call: sigpending()

Examine Pending Signals

#include <signal.h>

int sigpending(sigset_t *set);

Semantics

A signal is pending if it has been delivered but not yet handled, because it is
currently blocked
(or because the kernel did not yet check for its delivery status)

Stores the set of pending signals into the sigset t pointed to by set

Return 0 on success, −1 on error



System Call: sigsuspend()

Wait For a Signal

#include <signal.h>

int sigsuspend(const sigset_t *mask);

Semantics

Perform the two following operations atomically w.r.t. signal delivery
1 Set mask as the temporary set of masked signals
2 Suspend the process until delivery of an unmasked , non-ignored signal

When recieving a non-terminating, non-ignored signal, execute its handler
before restoring the previous set of masked signals and resuming execution

Always return −1, typically with error code EINTR



System Call: sigsuspend()

Wait For a Signal

#include <signal.h>

int sigsuspend(const sigset_t *mask);

Typical Usage

Prevent early signal delivery between unmasking and suspension
1 Call sigprocmask() to disable a set of signals
2 Perform some critical operation
3 Call sigsuspend() to atomically enable some of them and suspend execution

Without this atomic operation (i.e., with signal() and pause())
1 A signal may be delivered between the installation of the signal handler (the

call to signal()) and the suspension (the call to pause())
2 Its handler (installed by signal()) may be triggered before the suspension

(the call to pause())
3 Handler execution clears the signal from the process’s pending set
4 The suspended process deadlocks, waiting for an already-delivered signal

No (direct) way to avoid this dangerous “race” using ISO C signals



Example With Signals and Memory Management

#include <stdio.h>

#include <signal.h>

struct sigaction sa;

void *p;

void catch(int signum) { // Catch a segmentation violation

static int save_p == NULL;

if (save_p == NULL) {

save_p = p;

brk(p+1);

} else {

printf("Page size: %d\n", p - save_p);

exit(0);

}

}

int main(int argc, char *argv[]) {

sa.sa_handler = catch; sigemptyset(&sa.sa_mask); sa.sa_flags = 0;

sigaction(SIGSEGV, &sa, NULL);

p = sbrk(0);

while (1)

*p++ = 42;

}

$ page

Page size: 4096



IPC: Message Queues

Queueing Mechanism for Structured Messages

Signals
I Carry no information beyond their own delivery
I Cannot be queued

FIFOs (pipes)
I Unstructured stream of data
I No priority mechanism

Message queues offer a prioritized, loss-less, structured communication
channel between processes
$ man 7 mq overview

Implementation in Linux

Message queue files are single inodes located in a specific pseudo-file-system,
mounted under /dev/mqueue

Must link the program with -lrt (real-time library)



System Call: mq open()

Open and Possibly Create a POSIX Message Queue

#include <mqueue.h>

mqd_t mq_open(const char *name, int flags);
mqd_t mq_open(const char *name, int flags, mode_t mode,

struct mq_attr *attr);

Description

Analogous to open(), but not mapped to persistent storage

Argument name must begin with a “/” and may not contain any other “/”

Arguments flags and mode allow for a subset of their values for open()

flags: O RDONLY, O RDWR, O CREAT, O EXCL, O NONBLOCK, but not
O APPEND, O TRUNC, or any other flag
Note: FD CLOEXEC flag is set automatically

mode: S IRUSR, S IWUSR, S IXUSR, etc.
attr: attributes for the queue, see mq getattr()

Default set of attributes if NULL or not specified

Returns a message queue descriptor on success, −1 on error



System Call: mq getattr() and mq setattr()

Get/Set Attributes of a POSIX Message Queue

#include <mqueue.h>

int mq_getattr(mqd_t mqdes, struct mq_attr *mq_attr)
int mq_setattr(mqd_t mqdes, struct mq_attr *mq_newattr,

struct mq_attr *mq_oldattr)

Description

The mq attr structure is defined as

struct mq_attr {
long mq_flags; // Flags: 0 or O NONBLOCK
long mq_maxmsg; // Maximum # of messages in queue
long mq_msgsize; // Maximum message size (bytes)
long mq_curmsgs; // # of messages currently in queue

};

mq maxmsg and mq msgsize cannot be modified

Returns 0 on success, −1 on error



System Call: mq send()

Send a Message To a POSIX Message Queue

#include <mqueue.h>

int mq_send(mqd_t mqdes, char *msg_ptr,
size_t msg_len, unsigned int msg_prio)

Description

Enqueues the message pointed to by msg ptr of size msg len into mqdes

msg len must be less than or equal to the mq msgsize attribute of the
queue (see mq getattr())

msg prio is a non-negative integer specifying message priority
0 is the lowest priority, and 31 is the highest (portable) priority

By default, mq send() blocks when the queue is full (i.e., mq maxmsg
currently in queue)

Returns 0 on success, −1 on error



System Call: mq receive()

Receive a Message From a POSIX Message Queue

#include <mqueue.h>

ssize_t mq_receive(mqd_t mqdes, char *msg_ptr,
size_t msg_len, unsigned int *msg_prio)

Description

Removes the oldest message with the highest priority from mqdes

Stores it into the buffer pointed to by msg ptr of size msg len

msg len must be greater than or equal to the mq msgsize attribute of the
queue (see mq getattr())

If msg prio is not null, use it to store the priority of the received message

By default, mq receive() blocks when the queue is empty

Returns the number of bytes of the received message on success, −1 on error



System Call: mq close()

Close a POSIX Message Queue Descriptor

#include <mqueue.h>

int mq_close(mqd_t mqdes);

Description

Also removes any notification request attached by the calling process to this
message queue

Returns 0 on success, −1 on error



System Call: mq unlink()

Unlink a POSIX Message Queue File

#include <mqueue.h>

int mq_close(const char *name);

Description

Message queues have kernel persistence

Similar to unlink()

Other System Calls

mq notify(): notify a process with a signal everytime the specified queue
receives a message while originally empty

mq timedreceive() and mq timedsend(): receive and send with timeout



Memory and I/O Mapping

Virtual Memory Pages

Map virtual addresses to physical addresses
I Configure MMU for page translation
I Support growing/shrinking of virtual memory segments
I Provide a protection mechanism for memory pages

Implement copy-on-write mechanism (e.g., to support fork())

I/O to Memory

Map I/O operations to simple memory load/store accesses

Facilitate sharing of memory pages
I Use file naming scheme to identify memory regions
I Same system call to implement private and shared memory allocation
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Memory and I/O Mapping

PROCESS 2

PROCESS 1

FILE SYSTEM

Register

Page

Page Table

Page Directory

Control
Paging

PHYSICAL ADDRESS

OFFSETTABLEDIRECTORY

1121 031 1222

VIRTUAL ADDRESS

OFFSETTABLEDIRECTORY

1121 031 1222

VIRTUAL ADDRESS

Transparent

Synchronization

SHARED DATA

(OPTIONAL) I/O MAPPING



System Call: mmap()

Map Files or Devices Into Memory

#include <sys/mman.h>

void *mmap(void *start, size_t length, int prot, int flags,
int fd, off_t offset);

Semantics

Allocates length bytes from the process virtual memory, starting at the
start address or any fresh interval of memory if start is NULL

Maps to this memory interval the region of a file specified by fd and starting
at position offset

The start address must be a multiple of the virtual memory page size; it is
almost always NULL in practice (leaving the reponsibility of choosing an
address to the kernel)

Return value
I Start address of the mapped memory interval on success
I MAP FAILED on error (i.e., (void*)-1)



System Call: mmap()

Map Files or Devices Into Memory

#include <sys/mman.h>

void *mmap(void *start, size_t length, int prot, int flags,
int fd, off_t offset);

Memory Protection: the prot Argument

It may be PROT NONE: access forbiden

Or it may be built by or’ing the following flags

PROT EXEC: data in pages may be executed as code
PROT READ: pages are readable

PROT WRITE: pages are writable



System Call: mmap()

Map Files or Devices Into Memory

#include <sys/mman.h>

void *mmap(void *start, size_t length, int prot, int flags,
int fd, off_t offset);

Memory Protection: the flags Argument

Either

MAP PRIVATE: create a private, copy-on-write mapping; writes to the region
do not affect the mapped file

MAP SHARED: share this mapping with all other processes which map this
file; writes to the region affect the mapped file

MAP ANONYMOUS: mapping not associated to any file (fd and offset are
ignored); underlying mechanism for growing/shrinking virtual
memory segments (including stack management and
malloc())



System Call: mmap()

Map Files or Devices Into Memory

#include <sys/mman.h>

void *mmap(void *start, size_t length, int prot, int flags,
int fd, off_t offset);

Error Conditions

EACCESS: fd refers to non-regular file or prot incompatible with opening
mode or access rights
Note: modes O WRONLY, O APPEND are forbidden

ENOMEM: not enough memory

Error Signals

SIGSEGV: violation of memory protection rights

SIGBUS: access to memory region that does not correspond to a legal
position in the mapped file



System Call: munmap()

Delete a Memory Mapping for a File or Device

#include <sys/mman.h>

int munmap(void *start, size_t length);

Semantics

Deletes the mappings for the specified address and range

Further accesses will generate invalid memory references

Remarks
I start must be multiple of the page size (typically, an address returned by

mmap() in the first place)
Otherwise: generate SIGSEGV

I All pages containing part of the specified range are unmapped
I Any pending modification is synchronized to the file

See also msync()
I Closing a file descriptor does not unmap the region

Returns 0 on success, −1 on error



IPC: Shared Memory Segments

Naming Shared Memory Mappings

Question
How do multiple processes agree on a sharing a region of physical memory?

Sharing is easy: call mmap() with MAP SHARED flag

Agreeing is the problem
Solution: use a file name as a meeting point

Minor problem... one may not want to waste disk space for transient data
(not persistent accross system shutdown)
MAP ANONYMOUS solves this problem... but looses the association between the
file and memory region

Implementation in Linux

Shared memory files are single inodes located in a specific pseudo-file-system,
mounted under /dev/shm

Must link the program with -lrt (real-time library)
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System Call: shm open()

Open and Possibly Create a POSIX Shared Memory File

#include <sys/types.h>
#include <sys/mman.h>
#include <fcntl.h>

int shm_open(const char *name, int flags, mode_t mode);

Description

Analogous to open(), but for files specialized into “shared memory
rendez-vous”, and not mapped to persistent storage

Argument name must begin with a “/” and may not contain any other “/”

Arguments flags and mode allow for a subset of their values for open()

flags: O RDONLY, O RDWR, O CREAT, O TRUNC, O NONBLOCK, but not
O WRONLY, O APPEND, or any other flag
Note: FD CLOEXEC flag is set automatically

mode: S IRUSR, S IWUSR, S IXUSR, etc.



System Call: shm unlink()

Unlink a POSIX Shared Memory File

#include <sys/types.h>
#include <sys/mman.h>
#include <fcntl.h>

int shm_unlink(const char *name);

Description

Shared memory files have kernel persistence

Similar to unlink()

close() works as usual to close the file descriptor after the memory mapping
has been performed

Neither close() nor unlink() impact shared memory mapping themselves



About Pointers in Shared Memory

Caveat of Virtual Memory

1 Pointers are variables whose value is a virtual memory address

2 Virtual memory is mapped differently in every process

3 Consequence
In general, a pointer in a shared memory segment does not hold a valid
address for all processes mapping this segment

4 Big problem for linked data structures and function pointers

5 Mapping to a specified address (the start argument of mmap()) is a fragile
solution

6 Making pointers relative to the base address of the segment is another
solution (cumbersome: requires extra pointer arithmetic)

7 Note: the problem disappears when forking after mapping the shared
memory segment
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Concurrent Resource Management

Concurrency Issues

Multiple non-modifying accesses to shared resources may occur in parallel
without conflict

Problems arise when accessing a shared resource to modify its state
I Concurrent file update
I Concurrent shared memory update

General problem: enforcing mutual exclusion



Principles of Concurrent Resource Management

Critical Section

Program section accessing shared
resource(s)

Only one process can be in this section
at a time

Mutual Exclusion

Make sure at most one process may
enter a critical section

Typical cases
I Implementing file locks
I Concurrent accesses to shared

memory
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Principles of Concurrent Resource Management

Source of Major Headaches

Correctness: prove process alone in
critical section

Absence of dead-lock, or detection and
lock-breaking

Guaranteed progress: a process enters
critical section if it is the only one to
attempt to do it

Bounded waiting : a process waiting to
enter a critical section will eventually
(better sooner than later) be
authorized to do so

Performance: reduce overhead and
allow parallelism to scale
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critical section
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Mutual Exclusion in Shared Memory

Dekker’s Algorithm

int try0 = 0, try1 = 0;
int turn = 0; // Or 1

// Fork processes sharing variables try0, try1, turn
// Process 0 // Process 1
try0 = 1; try1 = 1;
while (try1) { while (try0) {

if (turn != 0) { if (turn != 1) {
try0 = 0; try1 = 0;
while (turn != 0) { } while (turn != 1) { }
try0 = 1; try1 = 1;

} }
} }
// Critical section // Critical section
// ... // ...
turn = 0; turn = 1;
try0 = 0; try1 = 0;
// Non-critical section // Non-critical section



Mutual Exclusion in Shared Memory

Peterson’s Algorithm

int try0 = 0, try1 = 0;
int turn = 0; // Or 1

// Fork processes sharing variables try0, try1, turn
// Process 0 // Process 1
try0 = 1; try1 = 1;
turn = 0; turn = 1;
while (try1 && turn == 1) { } while (try0 && turn == 0) { }
// Critical section // Critical section
// ... // ...
try0 = 0; try1 = 0;
// Non-critical section // Non-critical section

Unlike Dekker’s algorithm, enforces fair turn alternation

Simpler and easily extensible to more than two processes



Memory Consistency Issues

Sequential Consistency

Semantical chacterization of “when the outcome of a shared memory access
is made visible to other processes”

The preceding algorithms require the strongest (practical) model of memory
consistency: sequential consistency

Definition of sequential consistency by Leslie Lamport:
“The results of any execution is the same as if the operations of all the processors

were executed in some sequential order, and the operations of each individual

processor appear in this sequence in the order specified by its program.”



Memory Consistency Issues

Sequential Consistency

Semantical chacterization of “when the outcome of a shared memory access
is made visible to other processes”

The preceding algorithms require the strongest (practical) model of memory
consistency: sequential consistency

Definition of sequential consistency by Leslie Lamport:
“The results of any execution is the same as if the operations of all the processors

were executed in some sequential order, and the operations of each individual

processor appear in this sequence in the order specified by its program.”

Process Process Process Process

CPU CPU CPU CPU

ARBITER

MEMORY



Memory Consistency Issues

Sequential Consistency

Semantical chacterization of “when the outcome of a shared memory access
is made visible to other processes”

The preceding algorithms require the strongest (practical) model of memory
consistency: sequential consistency

Definition of sequential consistency by Leslie Lamport:
“The results of any execution is the same as if the operations of all the processors

were executed in some sequential order, and the operations of each individual

processor appear in this sequence in the order specified by its program.”

Weak Consistency Models

Pracical hardware, run-time libraries and programming languages enforce
weaker consistency models

I Due to compiler optimizations
Loop-invariant code motion, instruction reordering, etc.

I Hardware support for out-of-order memory transactions
Superscalar execution (local), cache coherence (multi-processor)



Memory Consistency Issues

Sequential Consistency

Semantical chacterization of “when the outcome of a shared memory access
is made visible to other processes”

The preceding algorithms require the strongest (practical) model of memory
consistency: sequential consistency

Definition of sequential consistency by Leslie Lamport:
“The results of any execution is the same as if the operations of all the processors

were executed in some sequential order, and the operations of each individual

processor appear in this sequence in the order specified by its program.”

Critical Section Algotithms for Weak Memory Consistency

Other methods avoid (expensive) sequentially consistent reads to shared
variables
E.g., Lamport’s “bakery algorithm”



Memory Consistency Issues

Paradoxical Example

int f = 1;
int x = 0;

// Fork processes sharing variables f, x

// Process 0 // Process 1
while (f) { } x = 1;
printf("x = %d\n", x); f = 0;

Analysis

What is the value of x printed by Process 0?
(assuming no other process may access the shared variables)

I 1 with sequential consistency
I May be 0 with weaker models
I May even be 42!
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Solution: Hardware Support

Serializing Memory Accesses

Memory fences (for the hardware and compiler)
I Multiprocessor

→ Commit all pending memory and cache coherence transactions
I Uniprocessor (cheaper and weaker)

→ Commit all local memory accesses
I Can be limited to read or write accesses
I Forbids cross-fence code motion by the compiler

ISO C volatile attribute (for the compiler)
I volatile int x

Informs the compiler that asynchronous modifications of x may occur
I No compile-time reordering of accesses to volatile variables
I Never consider accesses to volatile variables as dead code

Combining fences and volatile variables fixes the problems of Dekker’s and
Peterson’s algorithms

Modern programming languages tend to merge both forms into more abstract
constructs (e.g., Java 5)



Solution: Hardware Support

Atomic Operations

Fences are expensive (especially on parallel architectures)

Finer grained atomic operations permit higher performance
I Exchange:

Atomically exchange the values of a register and a memory location
I Test-and-Set:

Atomically tests a memory location, set it to 1, and return whether the old
value was null or not
Can be implemented with atomic exchange

int test_and_set(int *lock_pointer) {

int old;

old = atomic_exchange(lock_pointer, 1);

return old != 0;

}

I Many others, often implementable with atomic exchange, but may involve
direct processor support for higher performance



Semaphore

Unified Structure and Primitives for Mutual Exclusion

Initialize the semaphore with v instances of the resource to manage

void init(semaphore s, int v) {
s.value = v;

}

Acquire a resource (entering a critical section)

void procure(semaphore s) {
wait until (s.value > 0);
s.value--; // Must be atomic with the previous test

}

Also called down() or wait()

Release a resource (leaving a critical section)

void vacate(semaphore s) {
s.value++; // Must be atomic

}

Also called up() or post()



Implementation of a Simple Lock

void procure(volatile int *lock_pointer) {
while (test_and_set(lock_pointer) == 1);

}
void vacate(volatile int *lock_pointer) {

*lock_pointer = 0 // Release lock
}

int lock_variable = 1; // Or any non-negative number
{

procure(&lock_variable);
// Critical section
// ...
vacate(&lock_variable);

}

Semaphores (Multiple Resource Instances)

Use atomic decrement and increment instructions

Or use simple lock to protect counter incrementations/decrementations



Heterogeneous Read-Write Mutual Exclusion

Read-Write Semaphores

Allowing multiple readers and a single writer

void init(rw_semaphore l) {

l.value = 0; // Number of readers (resp. writers)

// if positive (resp. negative)

}

void procure_read(rw_semaphore l) {

wait until (l.value >= 0);

l.value++; // Must be atomic with the previous test

}

void vacate_read(rw_semaphore l) {

l.value--; // Must be atomic

}

void procure_write(rw_semaphore l) {

wait until (l.value == 0);

l.value = -1; // Must be atomic with the previous test

}

void vacate_write(rw_semaphore l) {

l.value = 0;

}



Mutual Exclusion and Deadlocks

Dining Philosophers Problem

Due to Edsger Dijkstra and Tony
Hoare

I Eating requires two chopsticks (more
realistic than forks...)

I A philosopher may only use the
closest left and right chopsticks

Multiple processes acquiring multiple
resources

Typical case of deadlock: all
philosophers pick their left chopstick,
then attempt to pick their right one



Mutual Exclusion and Deadlocks

Avoiding Deadlocks

Avoid symmetric acquire/release patterns

Use higher-level mutual exclusion mechanisms
I Monitors
I Atomic transactions

Debugging non-reproducible dead-locks is difficult

Breaking Deadlocks

1 Timeout

2 Analyze the situation

3 Attempt to reacquire different resources or in a different order

Beyond Deadlocks

Livelocks (often occurs when attempting to break a deadlock)

Aim for fair scheduling: bounded waiting time

Stronger form of fairness: avoid priority inversion in process scheduling



IPC: Semaphores

POSIX Semaphores

Primitives: sem wait() (procure()) and sem post() (vacate())
I sem wait() blocks until the value of the semaphore is greater than 0, then

decrements it and returns
I sem post() increments the value of the semaphore and returns

They can be named (associated to a file) or not

$ man 7 sem overview

Implementation in Linux

Semaphore files are single inodes located in a specific pseudo-file-system,
mounted under /dev/shm

Must link the program with -lrt (real-time library)



System Call: sem open()

Open and Possibly Create a POSIX Semaphore

#include <semaphore.h>

sem_t *sem_open(const char *name, int flags);
sem_t *sem_open(const char *name, int flags,

mode_t mode, unsigned int value);

Description

Arguments flags and mode allow for a subset of their values for open()

flags: O CREAT, O EXCL, but not O RDONLY, O RDWR, O WRONLY,
O APPEND, O TRUNC, O NONBLOCK, or any other flag
Note: FD CLOEXEC flag is set automatically

mode: S IRUSR, S IWUSR, S IXUSR, etc.

value is used to initialize the semaphore
Defaults to 1 if not specified

Returns the address of the semaphore on success

Returns SEM FAILED on error (i.e., (sem t*)-1)



System Call: sem wait()

Lock a POSIX Semaphore

#include <semaphore.h>

int sem_wait(sem_t *sem);

Description

Blocks until the value of the semaphore is greater than 0, then decrements it
and returns

Returns 0 on success, −1 on error



System Call: sem post()

Unlock a POSIX Semaphore

#include <semaphore.h>

int sem_post(sem_t *sem);

Description

Increments the value of the semaphore pointed to by sem

Returns 0 on success, −1 on error



System Call: sem close()

Close a POSIX Semaphore Structure

#include <semaphore.h>

int sem_close(sem_t *sem);

Description

Similar to close() for semaphore pointers

Undefined behavior if closing a semaphore that other processes are currently
blocked on



System Call: sem unlink()

Unlink a POSIX Semaphore File

#include <semaphore.h>

int sem_unlink(const char *name);

Description

Semaphores files have kernel persistence

Similar to unlink()

Other System Calls

sem init and sem destroy: create unnamed semaphores and destroy them
(equivalent to combined sem close() and sem unlink())

sem getvalue: get the current value of a semaphore

sem trywait and sem timedwait: non-blocking and timed versions of
sem wait



Alternative: I/O Synchronization With Locks

Purpose

Serialize processes accessing the same region(s) in a file

When at least one process is writing

Two kinds of locks: read (a.k.a. shared and write (a.k.a. exclusive)

Two independent APIs supported by Linux
I POSIX with fcntl()
I BSD with flock()

Read (shared)
Write (exclusive)

File



I/O System Call: fcntl()

Manipulate a File Descriptor

#include <unistd.h>
#include <fcntl.h>

int fcntl(int fd, int cmd);
int fcntl(int fd, int cmd, struct flock *lock);

Main Commands

F DUPFD: implements dup()

F GETLK/F SETLK/F SETLKW: acquire, test or release file region (a.k.a. record)
lock, as described by third argument lock



I/O System Call: fcntl()

Manipulate a File Descriptor

#include <unistd.h>
#include <fcntl.h>

int fcntl(int fd, int cmd);
int fcntl(int fd, int cmd, struct flock *lock);

Return Value

On success, fcntl() returns a (non-negative) value which depends on the
command, e.g.,

F DUPFD: the new file descriptor
F GETLK/F SETLK/F SETLKW: 0

Returns −1 on error



I/O System Call: fcntl()

Manipulate a File Descriptor

#include <unistd.h>
#include <fcntl.h>

int fcntl(int fd, int cmd);
int fcntl(int fd, int cmd, struct flock *lock);

About File Locks

fcntl()-style locks are POSIX locks; they are not inherited upon fork

BSD locks, managed with the flock() system call, are inherited by fork()

Both kinds are advisory , preserved across execve(), fragile to close()
(releases locks), removed upon termination, and supported by Linux

$ man 2 fcntl and $ man 2 flock

Linux supports SVr3 mandatory fcntl()-style locks,
I Depending on file system mounting options (-o (no)mand)
I Disabled by default: very deadlock-prone (especially on NFS)
I Linux prefers leases (adds signaling and timeout)



More About File Locks

Implementation Issues

Locks are associated with open file entries:
→ They are lost when closing all descriptors related to a file

...

...

...

... ...

opening mode lock pointerinode pointer

linked lists

File locking

...

Descriptor tables

offset # of openings# of descriptors

Open file table Inode table

locked region interval and mode



More About File Locks

Implementation Issues

They are incompatible with C library I/O (advisory locking and buffering
issues)

...

...

...

... ...

opening mode lock pointerinode pointer

linked lists

File locking

...

Descriptor tables

offset # of openings# of descriptors

Open file table Inode table

locked region interval and mode



More About File Locks

Consequences for the System Programmer

File locks may be of some use for cooperating processes only

Then, why not use semaphores?

...

...

...

... ...

opening mode lock pointerinode pointer

linked lists

File locking

...

Descriptor tables

offset # of openings# of descriptors

Open file table Inode table

locked region interval and mode



System V IPC

Old IPC Interface

Shared motivation with POSIX IPC
I Shared memory segments, message queues and semaphore sets
I Well-defined semantics, widely used, but widely criticized API
I $ man 7 svipc

But poorly integrated into the file file system
I Uses (hash) keys computed from unrelated files

$ man 3 ftok
I Conflicting and non-standard naming
I Ad-hoc access modes and ownership rules

Eventually deprecated by POSIX IPC in 2001


