6. Process Synchronization and Event Flow

Outline
@ Motivating example

@ Process synchronization

» Monitoring process state change (termination)
> Delivering and catching signals

@ Programmer interface

> Main system calls
> Examples




Motivating Example

Shell Job Control

Monitoring stop/resume cycles of a child process

$ sleep 60
Ctrl-Z

[1]+ Stopped
$ kill -CONT %1
sleep

Ctrl-C

$

How does this work?

sleep

// Deliver SIGTSTP

// Recieved terminal stop signal

// Equivalent to fg

// Resume process

// Deliver SIGINT

// Terminate process calling exit (0)




Monitoring Processes

)

fork()—MM
< parent < child
return return
child 0
PID
wait()

return (\B(wde)
status S



System Call: wait() and waitpid()

Wait For Child Process to Change State

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *status_pointer);
pid_t waitpid(pid_t pid, int *status_pointer, int optiomns);

Description

@ Monitor state changes and return PID of
» Terminated child
» Child stopped by a signal
> Child resumed by a signal

@ If a child terminates, it remains in a zombie state until wait () is performed
to retrieve its state (and free the associated process descriptor)
> Zombie processes do not have children: they are adopted upon termination by
init process (1)
> The init process always waits for its children
> Hence, a zombie is removed when its parent terminates




System Call: wait() and waitpid()

Wait For Child Process to Change State

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *status_pointer);
pid_t waitpid(pid_t pid, int *status_pointer, int optiomns);

Whom to Wait For

pid > 0 : waitpid() suspends process execution until child specified by pid
changes state, or returns immediately if it already did

pid = 0 : wait for any child in the same process group
pid < —1: wait for any child in process group -pid
pid = —1: wait for any child process

Short Cut

wait (&status) is equivalent to waitpid(-1, &status, 0)




System Call: wait() and waitpid()

Wait For Child Process to Change State

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *status_pointer);
pid_t waitpid(pid_t pid, int *status_pointer, int optiomns);

How to Wait

@ Option WNOHANG: do not block if no child changed state
Return 0 in this case

@ Option WUNTRACED: report stopped child
(due to SIGSTOP, SIGTSTP, SIGTTIN, SIGTTQOU Signals)

@ Option WCONTINUED: report resumed child
(due to SIGCONT signal)




System Call: wait() and waitpid()

Wait For Child Process to Change State

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *status_pointer);
pid_t waitpid(pid_t pid, int *status_pointer, int optiomns);

State Change Status

@ If non-NULL status pointer, store information into the int it points to
WIFEXITED (status): true if child terminated normally (i.e., exit())
WEXITSTATUS (status): if the former is true, child exit status

(lower 8 bits of status)
WIFSIGNALED (status): true if child terminated by signal
WTERMSIG (status): if the former is true, signal that caused termination
WIFSTOPPED (status): true if child stopped by signal
WSTOPSIG(status): if the former is true, signal that caused it to stop
WIFCONTINUED (status): true if child was resumed by delivery of STGCONT

V.




System Call: wait() and waitpid()

Wait For Child Process to Change State

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *status_pointer);
pid_t waitpid(pid_t pid, int *status_pointer, int optiomns);

Error Conditions
@ Return —1 if an error occurred
@ Typical error code

ECHILD, calling wait (): if all children were configured to be unattended
(a.k.a. un-waited for, i.e., not becoming zombie when
terminating, see sigaction())

ECHILD, calling waitpid(): pid is not a child or is unattended




Process State Changes and Signals

Process State Monitoring Example

int main(int argc, char *argv[])
{
int status;
cpid = fork();
if (cpid == -1) { perror("fork"); exit(1); }
if (cpid == 0) { // Code executed by child
printf("Child PID is %ld\n", (long)getpid());
pause() ; // Wait for signals
} else { // Code executed by parent
do {
pid_t w = waitpid(cpid, &status, WUNTRACED | WCONTINUED) ;
if (w == -1) { perror("waitpid"); exit(1); }
if (WIFEXITED(status)) { // Control never reaches this point
printf ("exited, status=/d\n", WEXITSTATUS(status));
} else if (WIFSIGNALED(status)) {
printf("killed by signal %d\n", WIERMSIG(status));
} else if (WIFSTOPPED(status)) {
printf ("stopped by signal %d\n", WSTOPSIG(status));
} else if (WIFCONTINUED(status)) { printf("continued\n"); }
} while (!WIFEXITED(status) && !'WIFSIGNALED(status));
}
exit (0);
}




Process State Changes and Signals

Running the Process State Monitoring Example

$ ./a.out &

Child PID is 32360
[1] 32359

$ kill -STOP 32360
stopped by signal 19
$ kill -CONT 32360
continued

$ kill -TERM 32360
killed by signal 15
[1]+ Done ./a.out
$




Process Synchronization With Signals

Principles
o Signal delivery is asynchronous
> Both sending and recieving are asynchronous
» Sending may occur during the signaled process execution or not
> Recieving a signal may interrupt process execution at an arbitrary point
@ A signal handler may be called upon signal delivery
> It runs in user mode (sharing the user mode stack)
> |t is called “catching the signal”
@ A signal is pending if it has been delivered but not yet handled, because it is
currently blocked
(or because the kernel did not yet check for its delivery status)

@ No queueing of pending signals




Process Synchronization With Signals

Catching Signals

@ Signal caught when the process switches from kernel to user mode

» Upon context switch
» Upon return from system call

Ge=t)| (o)
Signal acti@n Signal action
R | B ‘ ,,,,,,,,,,,,,,, ‘ ,,,,,,,,, ~ Time
KERNEL MODE
I |
I 1
Time quota |:I .

Timer interrupt System call
Preemption




System Call: kil11()

Send a Signal to a Process or Probe for a Process

#include <sys/types.h>
#include <signal.h>

int kill(pid_t pid, int sig);

Whom to Deliver the Signal
pid > 0 : topid
pid = 0 : to all processes in the group of the current process
pid < —1: to all processes in group —pid

pid = —1: to all processes the current process has permitssion to send signals
to, except himself and init (1)




System Call: kil11()
Send a Signal to a Process or Probe for a Process
#include <sys/types.h>

#include <signal.h>

int kill(pid_t pid, int sig);

Existence and Permission

@ No signal sent if sig is 0, but error checks are performed

@ The real or (saved) effective UID of the sender must match the real or
(saved) effective UID of the reciever

Error Conditions
@ Return 0 on success, —1 on error
@ Possible errno codes

EINVAL: an invalid signal was specified

EPERM: no permission to send signal to any of the target processes
ESRCH: the process or process group does not exist




List of The Main Signals

SIGHUPY: terminal hang up
S1GINT?: keyboard interrupt (Ctrl-C)
s1eQuITO!: keyboard quit (Ctrl-\)
STGKTLLY3: unblockable kill signal, terminate the process
STIGBUS/SIGSEGV®1: memory bus error / segmentation violation
s16SYS%: bad system call or argument
ST1GPTPEY: broken pipe (writing to a pipe with no reader)
SIGALRM?: alarm signal
STIGTERM?: termination signal (kill command default)
SIGSTOP3:4: suspend process execution,
SIGTSTP*: terminal suspend (Ctrl-Z)
SIGTTIN/SIGTTOU*: terminal input/output for background process
STIGCONT?: resume after (any) suspend
SIGCHLD?: child stopped or terminated
SIGUSR1%: user defined signal 1

SIGUSR2Y: user defined signal 2 3

More signals: $ man 7 signal

0 terminate process

L dump a core

2 ignored by default
non-maskable, non-catchable

4 suspend process
o




System Call: signal()

ISO C Signal Handling (pseudo UNIX V7
#include <signal.h>

typedef void (*sighandler_t) (int);
sighandler_t signal(int signum, sighandler_t handler);

// Alternate, "all-in-one" prototype
void (*signal(int signum, void (*handler) (int))) (int);

Description

@ Install a new handler for signal signum
» SIG.DFL: default action
> SIG_IGN: signal is ignored
» Custom handler: function pointer of type sighandler t

@ Return the previous handler or STG _ERR

@ Warning: unsupported in multi-threaded or real-time code (linked with -1rt)

The Forum application used in labs is threaded and linked with the real-time
library




System Call: signal()

ISO C Signal Handling (pseudo UNIX V7

#include <signal.h>

typedef void (*sighandler_t) (int);
sighandler_t signal(int signum, sighandler_t handler);

// Alternate, "all-in-one" prototype
void (*signal(int signum, void (*handler) (int))) (int);

When Executing the Signal Handler
@ The signum argument is the caught signal number
@ Blocks (defers) nested delivery of the signal being caught
@ On UNIX V7, it used to reinstall the default handler instead

@ Asynchronous execution w.r.t. the process's main program flow

» Careful access to global variables (much like threads)
> Limited opportunities for system calls
Explicit list of “safe” functions: $ man 2 signal




System Call: pause()

Wait For Signal
#include <unistd.h>

int pause();

Description

@ Suspends the process until it is delivered a signal

» That terminate the process (pause() does not return...)
> That causes a signal handler to be called

@ Ignored signals (SIG_IGN) do not resume execution
In fact, they never interrupt any system call

@ Always return —1 with error code EINTR




System Call: alarm()

Set an Alarm Clock for Delivery of a SIGALRM
#include <unistd.h>

int alarm(unsigned int seconds);

Description

@ Deliver SIGALRM to the calling process after a delay (non-guaranteed to react
immediately)

@ Warning: the default action is to terminate the process




System Call: alarm()

C library function: sleep

unsigned int sleep(unsigned int seconds)

@ Combines signal (), alarm() and pause()
@ Uses the same timer as alarm() (hence, do not mix)

@ See also setitimer()

Putting the Process to Sleep

void do_nothing(int signum)
{
return;

}

void my_sleep(unsigned int seconds)
{
signal (SIGALRM, do_nothing); // Note: SIG_IGN would block for ever!
alarm(seconds) ;
pause() ;
signal (SIGALRM, SIG_DFL); // Restore default action




More Complex Event Flow Example

Shell Job Control

Monitoring stop/resume cycles of a child process

$ top
Ctrl-Z // Deliver SIGTSTP
[1]+ Stopped top // Stop process
$ kill -CONT %1 // Resume (equivalent to fg)
// Recieve SIGTTOU and stop
[1]+ Stopped top // Because of background terminal I/0

$ kill -INT %1
// SIGINT is pending, i.e.
[1]+ Stopped top // did not trigger an action yet
$ fg
top
// Terminate process calling exit(0)

$




