
6. Process Synchronization and Event Flow

Outline

Motivating example

Process synchronization
I Monitoring process state change (termination)
I Delivering and catching signals

Programmer interface
I Main system calls
I Examples



Motivating Example

Shell Job Control

Monitoring stop/resume cycles of a child process

$ sleep 60
Ctrl-Z // Deliver SIGTSTP

[1]+ Stopped sleep // Recieved terminal stop signal
$ kill -CONT %1 // Equivalent to fg
sleep // Resume process
Ctrl-C // Deliver SIGINT

// Terminate process calling exit(0)
$

How does this work?



Monitoring Processes

parent child
return

child

PID

return
0

return
status

fork()

wait()

exit(code)



System Call: wait() and waitpid()

Wait For Child Process to Change State

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *status_pointer);
pid_t waitpid(pid_t pid, int *status_pointer, int options);

Description

Monitor state changes and return PID of
I Terminated child
I Child stopped by a signal
I Child resumed by a signal

If a child terminates, it remains in a zombie state until wait() is performed
to retrieve its state (and free the associated process descriptor)

I Zombie processes do not have children: they are adopted upon termination by
init process (1)

I The init process always waits for its children
I Hence, a zombie is removed when its parent terminates



System Call: wait() and waitpid()

Wait For Child Process to Change State

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *status_pointer);
pid_t waitpid(pid_t pid, int *status_pointer, int options);

Whom to Wait For

pid > 0 : waitpid() suspends process execution until child specified by pid
changes state, or returns immediately if it already did

pid = 0 : wait for any child in the same process group

pid < −1: wait for any child in process group -pid

pid = −1: wait for any child process

Short Cut

wait(&status) is equivalent to waitpid(-1, &status, 0)



System Call: wait() and waitpid()

Wait For Child Process to Change State

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *status_pointer);
pid_t waitpid(pid_t pid, int *status_pointer, int options);

How to Wait

Option WNOHANG: do not block if no child changed state
Return 0 in this case

Option WUNTRACED: report stopped child
(due to SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU signals)

Option WCONTINUED: report resumed child
(due to SIGCONT signal)



System Call: wait() and waitpid()

Wait For Child Process to Change State

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *status_pointer);
pid_t waitpid(pid_t pid, int *status_pointer, int options);

State Change Status

If non-NULL status pointer, store information into the int it points to

WIFEXITED(status): true if child terminated normally (i.e., exit())
WEXITSTATUS(status): if the former is true, child exit status

(lower 8 bits of status)
WIFSIGNALED(status): true if child terminated by signal
WTERMSIG(status): if the former is true, signal that caused termination
WIFSTOPPED(status): true if child stopped by signal
WSTOPSIG(status): if the former is true, signal that caused it to stop
WIFCONTINUED(status): true if child was resumed by delivery of SIGCONT



System Call: wait() and waitpid()

Wait For Child Process to Change State

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *status_pointer);
pid_t waitpid(pid_t pid, int *status_pointer, int options);

Error Conditions

Return −1 if an error occurred

Typical error code

ECHILD, calling wait(): if all children were configured to be unattended
(a.k.a. un-waited for , i.e., not becoming zombie when
terminating, see sigaction())

ECHILD, calling waitpid(): pid is not a child or is unattended



Process State Changes and Signals

Process State Monitoring Example

int main(int argc, char *argv[])

{

int status;

cpid = fork();

if (cpid == -1) { perror("fork"); exit(1); }

if (cpid == 0) { // Code executed by child

printf("Child PID is %ld\n", (long)getpid());

pause(); // Wait for signals

} else { // Code executed by parent

do {

pid_t w = waitpid(cpid, &status, WUNTRACED | WCONTINUED);

if (w == -1) { perror("waitpid"); exit(1); }

if (WIFEXITED(status)) { // Control never reaches this point

printf("exited, status=%d\n", WEXITSTATUS(status));

} else if (WIFSIGNALED(status)) {

printf("killed by signal %d\n", WTERMSIG(status));

} else if (WIFSTOPPED(status)) {

printf("stopped by signal %d\n", WSTOPSIG(status));

} else if (WIFCONTINUED(status)) { printf("continued\n"); }

} while (!WIFEXITED(status) && !WIFSIGNALED(status));

}

exit(0);

}



Process State Changes and Signals

Running the Process State Monitoring Example

$ ./a.out &
Child PID is 32360
[1] 32359

$ kill -STOP 32360
stopped by signal 19
$ kill -CONT 32360
continued
$ kill -TERM 32360
killed by signal 15
[1]+ Done ./a.out

$



Process Synchronization With Signals

Principles

Signal delivery is asynchronous
I Both sending and recieving are asynchronous
I Sending may occur during the signaled process execution or not
I Recieving a signal may interrupt process execution at an arbitrary point

A signal handler may be called upon signal delivery
I It runs in user mode (sharing the user mode stack)
I It is called “catching the signal”

A signal is pending if it has been delivered but not yet handled, because it is
currently blocked
(or because the kernel did not yet check for its delivery status)

No queueing of pending signals



Process Synchronization With Signals

Catching Signals

Signal caught when the process switches from kernel to user mode
I Upon context switch
I Upon return from system call

Process 2Process 1 Process 2

USER MODE

KERNEL MODE

Timer interrupt

Time

Time quota

Preemption
System call

Signal actionSignal action



System Call: kill()

Send a Signal to a Process or Probe for a Process

#include <sys/types.h>
#include <signal.h>

int kill(pid_t pid, int sig);

Whom to Deliver the Signal

pid > 0 : to pid

pid = 0 : to all processes in the group of the current process

pid < −1: to all processes in group −pid
pid = −1: to all processes the current process has permitssion to send signals

to, except himself and init (1)



System Call: kill()

Send a Signal to a Process or Probe for a Process

#include <sys/types.h>
#include <signal.h>

int kill(pid_t pid, int sig);

Existence and Permission

No signal sent if sig is 0, but error checks are performed

The real or (saved) effective UID of the sender must match the real or
(saved) effective UID of the reciever

Error Conditions

Return 0 on success, −1 on error

Possible errno codes

EINVAL: an invalid signal was specified
EPERM: no permission to send signal to any of the target processes
ESRCH: the process or process group does not exist



List of The Main Signals

SIGHUP0: terminal hang up

SIGINT0: keyboard interrupt (Ctrl-C)

SIGQUIT0,1: keyboard quit (Ctrl-\)

SIGKILL0,3: unblockable kill signal, terminate the process

SIGBUS/SIGSEGV0,1: memory bus error / segmentation violation

SIGSYS0: bad system call or argument

SIGPIPE0: broken pipe (writing to a pipe with no reader)

SIGALRM0: alarm signal

SIGTERM0: termination signal (kill command default)

SIGSTOP3,4: suspend process execution,

SIGTSTP4: terminal suspend (Ctrl-Z)

SIGTTIN/SIGTTOU4: terminal input/output for background process

SIGCONT2: resume after (any) suspend 0 terminate process

SIGCHLD2: child stopped or terminated 1 dump a core

SIGUSR10: user defined signal 1 2 ignored by default

SIGUSR20: user defined signal 2 3 non-maskable, non-catchable

More signals: $ man 7 signal 4 suspend process



System Call: signal()

ISO C Signal Handling (pseudo UNIX V7

#include <signal.h>

typedef void (*sighandler_t)(int);
sighandler_t signal(int signum, sighandler_t handler);

// Alternate, "all-in-one" prototype
void (*signal(int signum, void (*handler)(int)))(int);

Description

Install a new handler for signal signum
I SIG DFL: default action
I SIG IGN: signal is ignored
I Custom handler: function pointer of type sighandler t

Return the previous handler or SIG ERR

Warning: unsupported in multi-threaded or real-time code (linked with -lrt)
The Forum application used in labs is threaded and linked with the real-time
library



System Call: signal()

ISO C Signal Handling (pseudo UNIX V7

#include <signal.h>

typedef void (*sighandler_t)(int);
sighandler_t signal(int signum, sighandler_t handler);

// Alternate, "all-in-one" prototype
void (*signal(int signum, void (*handler)(int)))(int);

When Executing the Signal Handler

The signum argument is the caught signal number

Blocks (defers) nested delivery of the signal being caught

On UNIX V7, it used to reinstall the default handler instead

Asynchronous execution w.r.t. the process’s main program flow
I Careful access to global variables (much like threads)
I Limited opportunities for system calls

Explicit list of “safe” functions: $ man 2 signal



System Call: pause()

Wait For Signal

#include <unistd.h>

int pause();

Description

Suspends the process until it is delivered a signal
I That terminate the process (pause() does not return...)
I That causes a signal handler to be called

Ignored signals (SIG IGN) do not resume execution
In fact, they never interrupt any system call

Always return −1 with error code EINTR



System Call: alarm()

Set an Alarm Clock for Delivery of a SIGALRM

#include <unistd.h>

int alarm(unsigned int seconds);

Description

Deliver SIGALRM to the calling process after a delay (non-guaranteed to react
immediately)

Warning: the default action is to terminate the process



System Call: alarm()

C library function: sleep

unsigned int sleep(unsigned int seconds)

Combines signal(), alarm() and pause()

Uses the same timer as alarm() (hence, do not mix)

See also setitimer()

Putting the Process to Sleep

void do_nothing(int signum)

{

return;

}

void my_sleep(unsigned int seconds)

{

signal(SIGALRM, do_nothing); // Note: SIG_IGN would block for ever!

alarm(seconds);

pause();

signal(SIGALRM, SIG_DFL); // Restore default action

}



More Complex Event Flow Example

Shell Job Control

Monitoring stop/resume cycles of a child process

$ top
Ctrl-Z // Deliver SIGTSTP

[1]+ Stopped top // Stop process
$ kill -CONT %1 // Resume (equivalent to fg)

// Recieve SIGTTOU and stop
[1]+ Stopped top // Because of background terminal I/O
$ kill -INT %1

// SIGINT is pending, i.e.
[1]+ Stopped top // did not trigger an action yet
$ fg
top

// Terminate process calling exit(0)
$


