
5. Processes and Memory Management

Outline

Introduction to memory management

Principles
I Logical separation
I Process states
I Scheduling

Programmer interface
I Main system calls
I Examples

Introduction to Memory Management

Paging Basics

Processes access memory through virtual addresses
I Simulates a large interval of memory addresses
I Simplifies memory management
I Automatic translation to physical addresses by the CPU (MMU/TLB circuits)

Paging mechanism
I Provide a protection mechanism for memory regions, called pages
I Fixed 2n page size(s), e.g., 4kB and 2MB on x86
I The kernel implements a mapping of physical pages to virtual ones, different

for every process

Key mechanism to ensure logical separation of processes
I Hides kernel and other processes’ memory
I Expressive and efficient address-space protection and separation

Introduction to Memory Management

Register

Page

Page Table

Page Directory

Control
Paging

OFFSETTABLEDIRECTORY

1121 031 1222

VIRTUAL ADDRESS

PHYSICAL ADDRESS

DATA

Introduction to Memory Management

Per-Process Virtual Memory Layout

Code (also called text) segment

Static Data segments
I Initialized global (and C static)

variables
I Uninitialized global variables

(zeroed when initializing the process,
also called bss)

Stack segment: function calls, local
variables (also called automatic in C)

Heap segment (malloc())

Stack

Heap

Static (initialized and bss)

Code (a.k.a. text)

0x00000000

0xbfffffff

Free space

System Call: brk()

Resize the Heap Segment

#include <unistd.h>

int brk(void *end_data_segment);

void *sbrk(intptr_t displacement);

Semantics

Sets the end of the data segment, which is also the end of the heap
I brk() sets the address directly and returns 0 on success
I sbrk() adds a displacement (possibly 0) and returns the starting address of

the new area (it is a C function, front-end to sbrk())

Both are deprecated as “programmer interface” functions, i.e., they are
meant for kernel development only

Memory Address Space Example

#include <stdlib.h>

#include <stdio.h>

double t[0x2000000];

void segments()

{

static int s = 42;

void *p = malloc(1024);

printf("stack\t%010p\nbrk\t%010p\nheap\t%010p\n"

"static\t%010p\nstatic\t%010p\ntext\t%010p\n",

&p, sbrk (0), p, t, &s, segments);

}

int main(int argc, char *argv[])

{

segments();

exit(0);

}

Sample Output
stack 0xbff86fe0
brk 0x1806b000
heap 0x1804a008
static (bss) 0x08049720
static (initialized) 0x080496e4
text 0x080483f4

Memory Address Space Example

#include <stdlib.h>

#include <stdio.h>

double t[0x2000000];

void segments()

{

static int s = 42;

void *p = malloc(1024);

printf("stack\t%010p\nbrk\t%010p\nheap\t%010p\n"

"static\t%010p\nstatic\t%010p\ntext\t%010p\n",

&p, sbrk (0), p, t, &s, segments);

}

int main(int argc, char *argv[])

{

segments();

exit(0);

}

Sample Output
stack 0xbff86fe0
brk 0x1806b000
heap 0x1804a008
static (bss) 0x08049720
static (initialized) 0x080496e4
text 0x080483f4

Introduction to Memory Management

Lazy Memory Management Principles

Motivation: high-performance memory allocation
I Demand-paging : delay the allocation of a memory page and its mapping to

the process’s virtual address space until the process accesses an address in the
range associated with this page

I Faster and more memory-economical (same principle as overbooking) than
eager page allocation when a process requests an interval of memory addresses
(malloc())

Motivation: high-performance process creation

I Copy-on-write: when cloning a process, do not replicate its memory, but mark
its pages as “needing to be copied on the next write access”

I Critical for UNIX, where cloning is the only way to create a new process,
knowing that child processes are often short-lived (they terminate or become
overlapped by the execution of another program through execve())

Introduction to Memory Management

Lazy Memory Management Principles

Motivation: high-performance memory allocation
I Demand-paging : delay the allocation of a memory page and its mapping to

the process’s virtual address space until the process accesses an address in the
range associated with this page

I Faster and more memory-economical (same principle as overbooking) than
eager page allocation when a process requests an interval of memory addresses
(malloc())

Motivation: high-performance process creation
I Copy-on-write: when cloning a process, do not replicate its memory, but mark

its pages as “needing to be copied on the next write access”
I Critical for UNIX, where cloning is the only way to create a new process,

knowing that child processes are often short-lived (they terminate or become
overlapped by the execution of another program through execve())

C Library Function: malloc()

Allocate Dynamic Memory

#include <stdlib.h>

void *malloc(size_t size);

Semantics

On success, returns a pointer to the allocated interval of size bytes of
memory

Returns NULL on error

Note: beyond demand-paging , many OSes overcommit memory by default
(e.g., Linux)

I Minimal memory availability check and optimistically return non-NULL
I Assume processes will not use all the memory they requested (overbooking)
I When the system really runs out of free physical pages (after all swap space

has been consumed), a kernel heuristic selects a non-root process and kills it
to free memory for the requester (quite unsatisfactory, but often sufficient)

See also calloc() and realloc()

C Library Function: malloc()

Allocate Dynamic Memory

#include <stdlib.h>

void *malloc(size_t size);

Semantics

On success, returns a pointer to the allocated interval of size bytes of
memory

Returns NULL on error

Note: beyond demand-paging , many OSes overcommit memory by default
(e.g., Linux)

I Minimal memory availability check and optimistically return non-NULL
I Assume processes will not use all the memory they requested (overbooking)
I When the system really runs out of free physical pages (after all swap space

has been consumed), a kernel heuristic selects a non-root process and kills it
to free memory for the requester (quite unsatisfactory, but often sufficient)

See also calloc() and realloc()

C Library Function: malloc()

Allocate Dynamic Memory

#include <stdlib.h>

void *malloc(size_t size);

Semantics

On success, returns a pointer to the allocated interval of size bytes of
memory

Returns NULL on error

Note: beyond demand-paging , many OSes overcommit memory by default
(e.g., Linux)

I Minimal memory availability check and optimistically return non-NULL
I Assume processes will not use all the memory they requested (overbooking)
I When the system really runs out of free physical pages (after all swap space

has been consumed), a kernel heuristic selects a non-root process and kills it
to free memory for the requester (quite unsatisfactory, but often sufficient)

See also calloc() and realloc()

System Call: free()

Free Dynamic Memory

#include <stdlib.h>

void free(void *ptr);

Semantics

Frees the memory interval pointed to by ptr, which must be the return value
of a previous malloc()

Undefined behaviour if it is not the case
(very nasty in general, because the bug may reveal much later)

No operation is performed if ptr is NULL

You may use the powerful valgrind tool to debug dynamic memory
management (memory leaks, corrupt calls to free())

Process Tree

init process (a.k.a. process 1)

Process uniquely identified with PID

Basic operations on processes
I Cloning

fork() system call, among others
I Joining (see next chapter)

wait() system call, among others
I Signaling events (see next chapter)

kill() system call, signal handlers

Process Tree

init process (a.k.a. process 1)

Process uniquely identified with PID

Simplified Tree From $ pstree | more

init-cron

|-dhclient3

|-gdm---gdm-+-Xorg

| ‘-x-session-manag---ssh-agent

|-5*[getty]

|-gnome-terminal-+-bash-+-more

| | ‘-pstree

| |-gnome-pty-helper

| ‘-{gnome-terminal}

|-klogd

|-ksoftirqd

|-kthread-+-ata

| |-2*[kjournald]

| ‘-kswapd

|-syslogd

‘-udevd

Logical Separation: User Address Space

User address space for the process
I Code (also called text) segment
I Static Data segments

I Initialized global variables
I Uninitialized global variables

(zeroed when initializing the process)

I Stack segment: function calls, local
variables (also called automatic in C)

I Heap segment (malloc())

Code and data segments are extracted
from the executed program

I ELF format for object (.o and
executable) files

I Through the execve() system call

Stack

Heap

Static (initialized and bss)

Code (a.k.a. text)

0x00000000

0xbfffffff

Free space

Logical Separation: Kernel Address Space

Kernel address space for the process
I Process descriptor

I Repository for all process-related information
(memory mapping, open file descriptors, current directory, etc.)

I Link to kernel stack

I Kernel stack
(one memory page in general, may grow in extreme cases of nested
interrupts/exceptions)

Process table
I Hash table of PID-indexed process descriptors
I Doubly-linked tree (links to both children and parent)

Process Descriptor

Main Fields of the Descriptor

State ready/running, stopped, zombie...

Kernel stack typically one memory page

Flags e.g., FD CLOEXEC

Memory map pointer to table of memory page descriptors (maps)

Parent pointer to parent process (allow to obtain PPID)

TTY control terminal (if any)

Thread TID and control thread information

Files current directory and table of file descriptors

Limits resource limits, see getrlimit()

Signals signal handlers, masked and pending signals

Creating Processes

Process Duplication

Generate a clone of the parent process

The child is almost identical
I It executes the same program
I In a copy of its virtual memory space

parent child
return

child

PID

return
0

fork()

System Call: fork()

Create a Child Process

#include <sys/types.h>
#include <unistd.h>

pid_t fork();

Semantics

The child process is identical to its parent, except:
I Its PID and PPID (parent process ID)
I Zero resource utilization (initially, relying on copy-on-write)
I No pending signals, file locks, inter-process communication objects

On success, returns the child PID
I Simple way to detect “from the inside” which of the child or parent runs
I See also getpid(), getppid()

Returns −1 on error

More general (Linux-specific) system call: clone()
Primitive call for both process and thread creation

System Call: fork()

Create a Child Process

#include <sys/types.h>
#include <unistd.h>

pid_t fork();

Typical Usage

switch (cpid = fork())
{
case -1: // error

perror("‘my_function’: ‘fork()’ failed");
exit(1);

case 0: // the child executes
continue_child();
break;

default: // the parent executes
continue_parent(cpid); // pass child PID for future reference

}

System Call: execve() and variants

Execute a Program

#include <unistd.h>

int execve(const char *filename, char *const argv[],
char *const envp[]);

Semantics

Arguments: absolute path, argument array (a.k.a. vector), environment array
(shell environment variables)

On success, the call does not return!
I It overrites the text, data, bss and stack segments of the process with those of

the program loaded
I Preserve PID, PPID, open file descriptors

Except if maked FD CLOEXEC with fcntl()
I If the file has an SUID (resp. SGID) bit, set the effective UID (resp. GID) of

the process to the file’s owner (resp. group)
I Returns −1 on error

System Call: execve() and variants

Execute a Program

#include <unistd.h>

int execve(const char *filename, char *const argv[],
char *const envp[]);

Error Conditions

Typical errno codes

EACCES: execute permission denied (among other explanations)
ENOEXEC: non-executable format, or executable file for the wrong OS or

processor architecture

System Call: execve() and variants

Execute a Program: Variants

#include <unistd.h>

int execl(const char *path, const char *arg, ...);

int execv(const char *path, char *const argv[]);

int execlp(const char *file, const char *arg, ...);

int execvp(const char *file, char *const argv[]);

int execle(const char *path, const char *arg, ..., char *const envp[]);

int execve(const char *filename, char *const argv[], char *const envp[]);

Arguments

execl() operates on NULL-terminated argument list
Warning: arg, the first argument after the pathname/filename corresponds
to argv[0] (the program name)

execv() operates on argument array

execlp() and execvp() are $PATH-relative variants (if file does not
contain a ‘/’ character)

execle() also provides an environment

System Call: execve() and variants

Execute a Program: Variants

#include <unistd.h>

int execl(const char *path, const char *arg, ...);

int execv(const char *path, char *const argv[]);

int execlp(const char *file, const char *arg, ...);

int execvp(const char *file, char *const argv[]);

int execle(const char *path, const char *arg, ..., char *const envp[]);

int execve(const char *filename, char *const argv[], char *const envp[]);

Environment

Note about environment variables
I They may be manipulated through getenv() and setenv()
I To retrieve the whole array, declare the global variable

extern char **environ;

and use it as argument of execve() or execle()
I More information: man 7 environ

I/O System Call: fcntl()

Manipulate a File Descriptor

#include <unistd.h>
#include <fcntl.h>

int fcntl(int fd, int cmd);
int fcntl(int fd, int cmd, long arg);

Some More Commands

F GETFD/F SETFD: get and return / set the file descriptor flags to the value of
arg
Only FD CLOEXEC is defined: sets the file descriptor to be closed
upon calls to execve() (typically a security measure)

I/O System Call: fcntl()

Manipulate a File Descriptor

#include <unistd.h>
#include <fcntl.h>

int fcntl(int fd, int cmd);
int fcntl(int fd, int cmd, long arg);

Return Value

On success, fcntl() returns a (non-negative) value which depends on the
command

F GETFD: the descriptor’s flags
F GETFD: 0

Returns −1 on error

System Call: exit()

Terminate the Current Process

#include <unistd.h>

void _exit(int status);

Purpose

Terminates the calling process
I Closes any open file descriptor
I Frees all memory pages of the process address space (except shared ones)
I Any child processes are inherited by process 1 (init)
I The parent process is sent a SIGCHLD signal (ignored by default)
I If the process is a session leader and its controlling terminal also controls the

session, disassociate the terminal from the session and send a SIGHUP signal to
all processes in the foreground group (ignored by default)

The call never fails and does not return!

System Call: exit()

Terminate the Current Process

#include <unistd.h>

void _exit(int status);

Exit Code

The exit code is a signed byte defined as (status & 0xff)

0 means normal termination, non-zero indicates an error/warning

There is no standard list of exit codes

It is collected with one of the wait() system calls

System Call: exit()

C Library Front-End: exit()

#include <stdlib.h>

void exit(int status);

Calls any function registered through atexit()
(in reverse order of registration)

Use this function rather than the low-level exit() system call

Bootstrap and Processes Genealogy

Swapper Process

Process 0

One per CPU (if multiprocessor)

Built from scratch by the kernel and runs in kernel mode

Uses statically -allocated data

Constructs memory structures and initializes virtual memory

Initializes the main kernel data structures

Creates kernel threads (swap, kernel logging, etc.)

Enables interrupts, and creates a kernel thread with PID = 1

Bootstrap and Processes Genealogy

Init Process

Process 1

One per machine (if multiprocessor)

Shares all its data with process 0

Completes the initalization of the kernel

Switch to user mode

Executes /sbin/init, becoming a regular process and burying the structures
and address space of process 0

Executing /sbin/init

Builds the OS environment
I From /etc/inittab: type of bootstrap sequence, control terminals
I From /etc/rc*.d: scripts to run system daemons

Adopts all orphaned processes, continuously, until the system halts

man init and man shutdown

Sessions and Process Groups

Process Sessions

Orthogonal to process hierarchy

Session ID = PID of the leader of the session

Typically associated to user login, interactive terminals, daemon processes

The session leader sends the SIGHUP (hang up) signal to every process
beloning to its session, and only if it belongs to the foreground group
associated to the controlling terminal of the session

Process Groups

Orthogonal to process hierarchy

Process Group ID = PID of the group leader

General mechanism
I To distribute signals among processes upon global events (like SIGHUP)
I To arbitrate read/write requests on terminals, e.g., stalling background

processes performing terminal I/O
I To implement job control in shells

$ program &, Ctrl-Z, fg, bg, jobs, %1, disown, etc.

System Call: setsid()

Creating a New Session and Process Group

#include <unistd.h>

pid_t setsid();

Description

If the calling process is not a process group leader
I The calling process is the leader of the new session and the process group

leader of the new process group
I The process group ID and session ID of the calling process are set to the PID

of the calling process
I The calling process will be the only process in this new process group and in

this new session
I It has no controlling tty
I Returns the session ID of the calling process (its PID)

If the calling process is a process group leader
I Returns -1 and sets errno to EPERM
I Rationale: a process group leader cannot “resign” its responsibilities

System Call: setsid()

Creating a New Session and Process Group

#include <unistd.h>

pid_t setsid();

Creating a Daemon Process

A daemon process (also called service process) is detached from any
terminal, session or process group

“Daemonization” procedure
1 Call fork() in a process P
2 Terminate parent P (calling exit())
3 Call setsid() in child C
4 Call fork() again in child C
5 Terminate process C
6 Continue execution in grandchild process

See, getsid(), tcgetsid(), setpgid(), etc.

Process States (Linux)

Delete

Create

Create

TASK_TRACED

TASK_STOPPED

EXIT_ZOMBIE EXIT_DEAD

TASK_INTERRUPTIBLE

TASK_UNINTERRUPTIBLE

TASK_RUNNING

Ready/Running

fork()

vfork()

exit()

SIGCONT

SIGSTOP

parent wait()

suspend (e.g., I/O)

suspend (critical)

ptrace()

clone()

clone()

Under Linux, context switch does not change process state

In other OSes, the TASK RUNNING state is usually split into

ready: runnable processes, i.e., waiting to be scheduled
running: making progress on a processor or hardware thread

Process Scheduling

Preemption

Default for multiprocessing environments

Fixed time quota (typically 1ms to 10ms)
Some processes, called real-time, may not be preempted

Process 2Process 1

SchedulerScheduler

Process 1

USER MODE

KERNEL MODE

Timer interrupt

Time

Yield

Time quota

Voluntary suspensionPreemption

Process Scheduling

Preemption

Default for multiprocessing environments

Fixed time quota (typically 1ms to 10ms)
Some processes, called real-time, may not be preempted

A Few Words About Real-Time OSes

Beyond preemption control, real-time OSes offer deadline and throughput
guarantees, reactivity, liveness, etc.

Real-time scheduling requires static information about processes (e.g.,
bounds on execution time) and may not be compatible with many services
provided by a general-purpose OSes

Modern OSes tend to include more and more real-time features, largely for
media-processing or high-throughput computing (network routing, data bases
and web services)

Process Scheduling

Distribute Computations Among Running Processes

Infamous optimization problem

Many heuristics... and objective functions
I Throughput?
I Reactivity?
I Deadline satisfaction?

General answer (or failure to answer): priorities
I nice() system call
I nice and renice commands

Anticipatory scheduler heuristic (prediction and adaptation)

Multiple scheduling queues
I Split processes according to scheduling semantics (e.g., preemptive or not)
I Performance: priority queues have high complexity

