
4. Files and File Systems

Outline

1 Principles
I Inode structure
I File system organization
I I/O kernel structures (file descriptors, open files)

2 Programmer interface
I The main system calls
I Device-specific operations (ioctl)
I Examples

Storage Structure: Inode

Index Node

UNIX distinguishes file data and information about a file (or meta-data)

File information is stored in a structure called inode

Attached to a particular device

Attributes

File Type
Number of hard links (they all share the same inode)
File length in bytes
Device identifier (DID)
User identifier (UID, file owner)
User group identifier (GID, user group of the file)
Timestamps: last status change (e.g., creation), modification, and access time
Access rights and file mode

Possibly more (non-POSIX) attributes, depending on the file system

Inode: Access Rights

Classes of file accesses

user: owner
group: users who belong to the file’s group, excluding the owner
others: all remaining users

Classes of access rights

read: directories: controls listing
write: directories: controls file status changes

execute: directories: controls searching (entering)

Additional file modes

suid: with execute, the process gets the file’s UID
directories: nothing

sgid: with execute, the process gets the file’s GID
directories: created files inherit the creator process’s GID

sticky: loosely specified semantics related to memory management
directories: files owned by others cannot be deleted or
renamed

File System Storage

General Structure

Boot block
I Bootstrap mode and “bootable” flag
I Link to data blocks holding boot code

Super block
I File system status (mount point)
I Number of allocated and free nodes
I Link to lists of allocated and free nodes

Inode table

Data blocks

Boot block

Super block

Inode table

Data blocks ...

...

Simplified file system layout

Inode: Data Block Addressing

Every Inode has a table of block addresses

Addressing: direct, one-level indirect, two-levels indirect, ...

Third-level

Second-level

Data blocks
First-level

...

...

...

...

...

...

...

...

Inode

Meta-data

Indirect block addressing

Direct block addressing

I/O Kernel Structures

One table of file descriptors per process
0 = stdin, 1 = stdout, 2 = stderr

Table of open files (status, including opening mode and offset)

Inode table (for all open files)

File locks (see chapter on advanced synchronization)
Linux: linked lists (one per file, for both mandatory and advisory locking)

...

...

...

... ...

opening mode lock pointerinode pointer

linked lists

File locking

...

Descriptor tables

offset # of openings# of descriptors

Open file table Inode table

I/O Kernel Structures

Example: file descriptor aliasing
E.g., obtained through the dup() or fork() system calls

...

...

...

... ...

opening mode lock pointerinode pointer

linked lists

File locking

...

Descriptor tables

offset # of openings# of descriptors

Open file table Inode table

I/O Kernel Structures

Example: open file aliasing

E.g., obtained through multiple calls to open() on the same file (possibly via
hard or soft links)

...

...

...

... ...

opening mode lock pointerinode pointer

linked lists

File locking

...

Descriptor tables

offset # of openings# of descriptors

Open file table Inode table

I/O System Calls

Inode Manipulation

stat() access(), link(), unlink(), chown(), chmod(), mknod(), ...

Note: many of these system calls have l-prefixed variants (e.g., lstat())
that do not follow soft links

Note: many of these system calls have f-prefixed variants (e.g., fstat())
operating on file descriptors
Warning: they are not to be confused with C library functions

File descriptor manipulation

open(), creat(), close(), read(), write(), lseek(), fcntl()...

We will describe dup() when studying redirections

Note: open() may also create a new file (hence a new inode)

Use fdopen() and fileno() to get a file C library FILE* from a file
descriptor and reciprocally, but do not mix-and-match C library and system
call I/O on the same file (because of C library internal buffers)

I/O System Calls

Inode Manipulation

stat() access(), link(), unlink(), chown(), chmod(), mknod(), ...

Note: many of these system calls have l-prefixed variants (e.g., lstat())
that do not follow soft links

Note: many of these system calls have f-prefixed variants (e.g., fstat())
operating on file descriptors
Warning: they are not to be confused with C library functions

File descriptor manipulation

open(), creat(), close(), read(), write(), lseek(), fcntl()...

We will describe dup() when studying redirections

Note: open() may also create a new file (hence a new inode)

Use fdopen() and fileno() to get a file C library FILE* from a file
descriptor and reciprocally, but do not mix-and-match C library and system
call I/O on the same file (because of C library internal buffers)

I/O System Call: stat()

Return Inode Information About a File

#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int stat(const char *path, struct stat *buf);
int lstat(const char *path, struct stat *buf);
int fstat(int fd, struct stat *buf);

Error Conditions

The system call returns 0 on success, −1 on error

A few possible errno codes

EACCES: search (enter) permission is denied for one of the directories in
the path prefix of path

ENOENT: a component of path does not exist — file not found — or
the path is an empty string

EFAULT: bad address (page fault detected by kernel)
ELOOP: too many symbolic links encountered when traversing the path

I/O System Call: stat()

Inode Information Structure

struct stat {
dev_t st_dev; // ID of device containing file
ino_t st_ino; // inode number
mode_t st_mode; // protection
nlink_t st_nlink; // number of hard links
uid_t st_uid; // user ID of owner
gid_t st_gid; // group ID of owner
dev_t st_rdev; // device ID (if special file)
off_t st_size; // total size, in bytes
blksize_t st_blksize; // blocksize for filesystem I/O
blkcnt_t st_blocks; // number of blocks allocated
time_t st_atime; // time of last access
time_t st_mtime; // time of last modification
time_t st_ctime; // time of last status change

};

I/O System Call: stat()

Deciphering st mode

Macros to determine file type

S ISREG(m): is it a regular file?

S ISDIR(m): directory?

S ISCHR(m): character device?

S ISBLK(m): block device?

S ISFIFO(m): FIFO (named pipe)?

S ISLNK(m): symbolic link?

S ISSOCK(m): socket?

File type constants

S IFREG: regular file

S IFDIR: directory

S IFCHR: character device

S IFBLK: block device

S IFFIFO: FIFO (named pipe)

S IFLNK: symbolic link

S IFSOCK: socket

I/O System Call: stat()

Deciphering st mode

Macros to determine access permission and mode
Usage: flags and masks can be or’ed and and’ed together, and with st mode

Constant Octal value Comment

S ISUID 04000 SUID bit
S ISGID 02000 SGID bit
S ISVTX 01000 sticky bit
S IRWXU 00700 mask for file owner permissions
S IRUSR 00400 owner has read permission
S IWUSR 00200 owner has write permission
S IXUSR 00100 owner has execute permission
S IRWXG 00070 mask for group permissions
S IRGRP 00040 group has read permission
S IWGRP 00020 group has write permission
S IXGRP 00010 group has execute permission
S IRWXO 00007 mask for permissions for others
S IROTH 00004 others have read permission
S IWOTH 00002 others have write permission
S IXOTH 00001 others have execute permission

I/O System Call: access()

Check Whether the Process Is Able to Access a File

#include <unistd.h>

int access(const char *pathname, int mode);

Access Mode Requests

R OK: check for read permission

W OK: check for write permission

X OK: check for execute permission

F OK: check for the existence of the file

Error Conditions

The system call returns 0 on success, −1 on error

A few original errno codes

EROFS: write access request on a read-only filesystem
ETXTBSY: write access request to an executable which is being executed

I/O System Call: link()

Make a New Name (Hard Link) for a File

#include <unistd.h>

int link(const char *oldpath, const char *newpath);

See also: symlink()

Error Conditions

The system call returns 0 on success, −1 on error

A few original errno codes

EEXIST: newpath already exists (link() preserves existing files)
EXDEV: oldpath and newpath are not on the same file system

I/O System Call: unlink()

Delete a Name and Possibly the File it Refers To

#include <unistd.h>

int unlink(const char *pathname);

Error Conditions

The system call returns 0 on success, −1 on error

An original errno code

EISDIR: attempting to delete a directory (see rmdir())

I/O System Call: chown()

Change Ownership of a File

#include <sys/types.h>
#include <unistd.h>

int chown(const char *path, uid_t owner, gid_t group);
int lchown(const char *path, uid_t owner, gid_t group);
int fchown(int fd, uid_t owner, gid_t group);

Error Conditions

The system call returns 0 on success, −1 on error

An original errno code

EBADF: the descriptor is not valid

I/O System Call: chmod()

Change Access Permissions of a File

#include <sys/types.h>
#include <sys/stat.h>

int chmod(const char *path, mode_t mode);
int fchmod(int fildes, mode_t mode);

Access Permissions

Build mode argument by or’ing the access mode constants
E.g., mode = S IRUSR | S IRGRP | S IROTH; // 0444

Error Conditions

The system call returns 0 on success, −1 on error

I/O System Call: mknod()

Create any Kind of File (Inode)

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

int mknod(const char *pathname, mode_t mode, dev_t dev);

File Type

Set mode argument to one of the file type constants or’ed with any
combination of access permissions
E.g., mode = S IFREG | S IRUSR | S IXUSR; // regular file

If mode is set to S IFCHR or S IFBLK, dev specifies the major and minor
numbers of the newly created device special file

File is created with permissions (mode & ∼current umask) where
current umask is the process’s mask for file creation (see umask())

I/O System Call: mknod()

Create any Kind of File (Inode)

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

int mknod(const char *pathname, mode_t mode, dev_t dev);

Error Conditions

The system call returns 0 on success, −1 on error

A few original errno codes

EEXIST: newpath already exists (mknod() preserves existing files)
ENOSPC: device containing pathname has no space left for a new node

I/O System Call: open()/creat()

Open and Possibly Create a File

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open(const char *pathname, int flags);
int open(const char *pathname, int flags, mode_t mode);
int creat(const char *pathname, mode_t mode);

Return Value

On success, the system call returns a (non-negative) file descriptor
Note: it is the process’s lowest-numbered file descriptor not currently open

Returns −1 on error

I/O System Call: open()/creat()

Open and Possibly Create a File

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open(const char *pathname, int flags);
int open(const char *pathname, int flags, mode_t mode);
int creat(const char *pathname, mode_t mode);

Acces Permissions

File is created with permissions (mode & ∼current umask) where
current umask is the process’s mask for file creation (see umask())

I/O System Call: open()/creat()

Open and Possibly Create a File

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open(const char *pathname, int flags);
int open(const char *pathname, int flags, mode_t mode);
int creat(const char *pathname, mode_t mode);

Flags

Access mode set to one of O RDONLY, O WRONLY, O RDWR
Note: opening a file in read-write mode is very different from opening it twice
in read then write modes (see e.g. the behavior of lseek())

Possibly or’ed with O APPEND, O CREAT, O EXCL, O TRUNC, O NONBLOCK, ...

I/O System Call: close()

Close a File Descriptor

#include <unistd.h>

int close(int fd);

Remarks

To flush all accesses, use the system call fsync() before

When closing the last descriptor to a file that has been removed using
unlink(), the file is effectively deleted

Error Conditions

The system call returns 0 on success, −1 on error

It is important to check error conditions on close(), to avoid losing data

I/O System Call: read()

Read From a File Descriptor

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count);

Semantics

Attempts to read up to count bytes from file descriptor fd into the buffer
starting at buf

I Returns immediately if count is 0
I May read less than count bytes: it is not an error

E.g., close to end-of-file, interrupted by signal, reading from socket...

On success, returns the number of bytes effectively read

Returns 0 if at end-of-file

Returns −1 on error (hence the signed ssize t)

I/O System Call: read()

Read From a File Descriptor

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count);

Error Conditions

A few original errno codes

EINTR: call interrupted by a signal before anything was read
EAGAIN: non-blocking I/O is selected and no data was available

I/O System Call: write()

Write to File Descriptor

#include <unistd.h>

ssize_t write(int fd, const void *buf, size_t count);

Semantics

Attempts to write up to count bytes to the file file referenced by the file
descriptor fd from the buffer starting at buf

I Returns immediately if count is 0
I May write less than count bytes: it is not an error

E.g., close to end-of-file, interrupted by signal, writing to a full FIFO...

On success, returns the number of bytes effectively written

Returns −1 on error (hence the signed ssize t)

Error Conditions

An original errno code

ENOSPC: no space left on device containing the file

Example: Typical File Open/Read Skeleton

void my_read(char *pathname, int count, char *buf)

{

int fd;

if ((fd = open(pathname, O_RDONLY)) == -1)

{

perror("‘my_function’: ‘open()’ failed");

exit(1);

}

// Read count bytes

int progress, remaining = count;

while ((progress = read(fd, buf, remaining)) != 0)

{ // Iterate while progess or recoverable error

if (progress == -1)

{

if (errno == EINTR)

continue; // Interrupted by signal, retry

perror("‘my_function’: ‘read()’ failed");

exit(1);

}

buf += progress; // Pointer artithmetic

remaining -= progress;

}

}

I/O System Call: fcntl()

Manipulate a File Descriptor

#include <unistd.h>
#include <fcntl.h>

int fcntl(int fd, int cmd);
int fcntl(int fd, int cmd, long arg);

Some Commands

F GETFL/F SETFL: get and return / set the file status flags to the value of arg
Ignores access mode (e.g., O RDONLY) and creation flags (e.g.,
O CREAT), but accepts O APPEND, O NONBLOCK, O NOATIME, etc.

And many more: descriptor behavior options, duplication and locks, I/O-related
signals (terminals, sockets), etc.
see chapter on processes and on advanced synchronization

I/O System Call: fcntl()

Manipulate a File Descriptor

#include <unistd.h>
#include <fcntl.h>

int fcntl(int fd, int cmd);
int fcntl(int fd, int cmd, long arg);

Return Value

On success, fcntl() returns a (non-negative) value which depends on the
command

F GETFL/F SETFL: 0

Returns −1 on error

Device-Specific Operations

I/O “Catch-All” System Call: ioctl()

Implement operations that do not directly fit into the stream I/O model
(read and write)

Typical examples
I Block-oriented devices: CD/DVD eject operation
I Character-oriented devices: terminal control

Prototype

#include <sys/ioctl.h>

int ioctl(int fd, int request, char *argp);

fd: open file descriptor
request: device-dependent request code

argp: buffer to load or store data
(its size and structure is request-dependent)

Directory Traversal
Directory Manipulation (C Library)

#include <sys/types.h>
#include <dirent.h>

DIR *opendir(const char *name);
struct dirent *readdir(DIR *dir);
int closedir(DIR *dir);

$ man 3 opendir, $ man 3 readdir, etc.
More related functions in the SEE ALSO section of the man pages

Directory Entry Structure

struct dirent
{

long d_ino; // Inode number
off_t d_off; // Offset to this dirent
unsigned short d_reclen; // Length of this d_name
char d_name[NAME_MAX+1]; // File name (’\0’-terminated)

}

Forum Example: Directory Traversal

int last_num()
{

struct dirent *d;
DIR *dp;
int max;
dp = opendir(".");
if (dp == NULL)

exit_with_error(1, "‘last_num’: ‘opendir()’ failed");
max = -1;
while ((d = readdir(dp)) != NULL)

{
int m;
m = atoi(d->d_name); // parse string into ‘int’
max = MAX(max, m);

}
closedir(dp);
return max; // -1 or n >= 0

}

Forum Example: Directory Traversal

void remove_expired(char *directory, int delay, int last_num)

{

struct dirent *d;

time_t now;

struct stat stbuf;

DIR *dp = opendir(directory);

if (dp == NULL)

{

message(1, "‘remove_expired’: ’opendir()’ failed");

return;

}

time(&now);

while ((d = readdir(dp)) != NULL)

{

int m = atoi(d->d_name);

if (m >= 0 && m != last_num)

{

if (stat(d->d_name, &stbuf) != -1 &&

stbuf.st_mtime < now - delay)

unlink(d->d_name);

}

}

closedir(dp);

}

