
3. System Calls

Outline

1 POSIX Standard

2 Essentials

3 Implementation



POSIX Standard

Portable Operating System Interface

IEEE POSIX 1003.1 and ISO/IEC 9945 (latest standard: 2004)

Many subcommittees

Portability Issues

POSIX is portable and does not evolve much,

... but it is still too high level for many OS interactions
E.g., it does not specify file systems, network interfaces or power management

UNIX applications deal with portability with
I C-preprocessor conditional compilation
I Conditional and multi-target Makefile rules
I GNU configure scripts to generate Makefiles
I Shell environment variables (LD LIBRARY PATH, LD PRELOAD)



System Calls Essentials

Return Values and Errors

All system calls return an int (very rarely a long)

> 0 if execution proceeded normally
−1 if an error occurred

When an error occurs, errno is set to the error code
I Global scope, thread-local, int variable
I It carries semantical information not available by any other mean
I It is not reset to 0 before a system call

#include <errno.h>



System Calls Essentials

Error Messages

Print error message: perror() (see also strerror())

Sample Error Codes

EPERM: Operation not permitted

ENOENT: No such file or directory

ESRCH: No such process

EINTR: Interrupted system call

EIO: I/O error

ECHILD: No child process

EACCESS: Access permission denied

EAGAIN/EWOULDBLOCK: Resource temporarily unavailable



System Calls Essentials

Standard Types

#include <sys/types.h>

Integral or pointer types in general, but portable

Examples

clock t: clock ticks since last boot

dev t: major and minor

uid t/gid t: user and group identifier

pid t: process identifier

ino t: inode

mode t: access permissions

off t: file offset)

sigset t: set of signal masks

size t/ssize t: unsigned/signed size, signed allows to multiplex size and error
condition in a return value

time t: seconds since 01/01/1970



System Calls Essentials

Interrupted System Calls

Deliverling a signal interrupts system calls

Hardware interrupts do not interrupt system calls (the kernel supports nesting
of control paths)

Rule 1: fail if the call did not have time to produce any effect

Typically, return EINTR

Rule 2: in case of partial execution (for a call where it means something), do
not fail but return information allowing to determine the actual amount of
partial progress

See e.g., read() and write()



System Call Implementation

C Library Wrapper

All system calls defined in OS-specific header file
Linux: /usr/include/sys/syscall.h (which includes
/usr/include/bits/syscall.h)

System call handlers are numbered

C library wraps processor-specific parts into a plain function

Wrapper routine
in standard
C library

System call handler System call
service routine

USER MODE KERNEL MODE

System call
invocation

...

foo()

... }

SYSCALL

foo() {
system call:

...

(sys call table[SYS FOO])()

...

SYSEXIT

sys foo() {
...

}



System Call Implementation

C Library Wrapper

All system calls defined in OS-specific header file
Linux: /usr/include/sys/syscall.h (which includes
/usr/include/bits/syscall.h)

System call handlers are numbered

C library wraps processor-specific parts into a plain function

Wrapper routine
in standard
C library

System call handler System call
service routine

USER MODE KERNEL MODE

System call
invocation

...

foo()

... }

SYSCALL

foo() {
system call:

...

(sys call table[SYS FOO])()

...

SYSEXIT

sys foo() {
...

}



System Call Implementation

Wrapper’s Tasks

1 Move parameters from the user stack to processor registers
Passing arguments through registers is easier than playing with both user and
kernel stacks at the same time

2 Switch to kernel mode and jump to the system call handler
Call processor-specific instruction (trap, sysenter, ...)

3 Post-process the return value and compute errno
Linux: typically negate the value returned by the service function

Handler’s Tasks

1 Save processor registers into the kernel mode stack

2 Call the service function in the kernel
Linux: array of function pointers indexed by system call number

3 Restore processor registers

4 Switch back to user mode
Call processor-specific instruction (rti, sysexit, ...)



System Call Implementation

Verifying the Parameters

Can be call-specific
E.g., checking a file descriptor corresponds to an open file

General (coarse) check that the address is outside kernel pages
Linux: less than PAGE OFFSET

Delay more complex page fault checks to address translation time
1 Access to non-existent page of the process

→ no error but need to allocate (and maybe copy) a page on demand
2 Access to a page outside the process space

→ issue a segmentation/page fault
3 The kernel function itself is buggy and accesses and illegal address

→ call oops() (possibly leading to “kernel panic”)


