3. System Calls

Outline
@ POSIX Standard
@ Essentials

© Implementation

POSIX Standard

Portable Operating System Interface
o |EEE POSIX 1003.1 and ISO/IEC 9945 (latest standard: 2004)
@ Many subcommittees

Portability Issues
@ POSIX is portable and does not evolve much,
@ ... but it is still too high level for many OS interactions
E.g., it does not specify file systems, network interfaces or power management
@ UNIX applications deal with portability with

» C-preprocessor conditional compilation

» Conditional and multi-target Makefile rules

» GNU configure scripts to generate Makefiles

> Shell environment variables (LD_LIBRARY PATH, LD_PRELOAD)

System Calls Essentials

Return Values and Errors

@ All system calls return an int (very rarely a long)

> 0 if execution proceeded normally
—1 if an error occurred

@ When an error occurs, errno is set to the error code

» Global scope, thread-local, int variable
> |t carries semantical information not available by any other mean
> |t is not reset to 0 before a system call

@ #include <errno.h>

System Calls Essentials

Error Messages

@ Print error message: perror () (see also strerror())

Sample Error Codes

EPERM:
ENOENT:
ESRCH:
EINTR:
1208
ECHILD:
EACCESS:

Operation not permitted
No such file or directory
No such process
Interrupted system call
I/O error

No child process

Access permission denied

EAGAIN/EWOULDBLOCK: Resource temporarily unavailable

System Calls Essentials

Standard Types
@ #include <sys/types.h>

@ Integral or pointer types in general, but portable

Examples
clock t: clock ticks since last boot
dev_t: major and minor
uid t/gid t: user and group identifier
pid_t: process identifier
ino_t: inode
mode t: access permissions
off_t: file offset)
sigset_t: set of signal masks

size t/ssize_t: unsigned/signed size, signed allows to multiplex size and error
condition in a return value

time_t: seconds since 01/01/1970

System Calls Essentials

Interrupted System Calls
@ Deliverling a signal interrupts system calls

o Hardware interrupts do not interrupt system calls (the kernel supports nesting
of control paths)

@ Rule 1: fail if the call did not have time to produce any effect
Typically, return EINTR
@ Rule 2: in case of partial execution (for a call where it means something), do

not fail but return information allowing to determine the actual amount of
partial progress

See e.g., read () and write()

System Call Implementation

C Library Wrapper

@ All system calls defined in OS-specific header file
Linux: /usr/include/sys/syscall.h (which includes
/usr/include/bits/syscall.h)

@ System call handlers are numbered

@ C library wraps processor-specific parts into a plain function

System Call Implementation

C Library Wrapper

@ All system calls defined in OS-specific header file
Linux: /usr/include/sys/syscall.h (which includes
/usr/include/bits/syscall.h)

@ System call handlers are numbered

o C library wraps processor-specific parts into a plain function

USER MODE KERNEL MODE
/\/ /\/
system_call:
| 1000 | | sys_foo() {
foo() SYSCALL c ..
~_| ~| (sys_call_table[SYS_F00]) ()
SYSEXIT
/\/ /\/
System call Wrapper routine System call handler System call

invocation in standard service routine

C library

System Call Implementation

Wrapper’s Tasks

© Move parameters from the user stack to processor registers
Passing arguments through registers is easier than playing with both user and
kernel stacks at the same time

@ Switch to kernel mode and jump to the system call handler
Call processor-specific instruction (trap, sysenter, ...)

© Post-process the return value and compute errno
Linux: typically negate the value returned by the service function

Handler’s Tasks
© Save processor registers into the kernel mode stack

© Call the service function in the kernel
Linux: array of function pointers indexed by system call number

© Restore processor registers

© Switch back to user mode
Call processor-specific instruction (rti, sysexit, ...)

System Call Implementation

Verifying the Parameters

@ Can be call-specific
E.g., checking a file descriptor corresponds to an open file

@ General (coarse) check that the address is outside kernel pages
Linux: less than PAGE OFFSET

@ Delay more complex page fault checks to address translation time
© Access to non-existent page of the process
— no error but need to allocate (and maybe copy) a page on demand
@ Access to a page outside the process space
— issue a segmentation/page fault
© The kernel function itself is buggy and accesses and illegal address
— call cops() (possibly leading to “kernel panic”)

