
10. Overview of Key Kernel Components

Outline

Low-level mechanisms
I Interrupts and exceptions
I Memory-mapped I/O
I Kernel locks, global and fine grain mechanisms

File systems, I/O and devices
I Devices and drivers
I The virtual file system
I Disk operation

Memory management
I Segmentation, paging, address translation
I Memory allocation

Processes
I Hardware context (registers) and support (interrupts)
I Lightweight processes (generic support for threads and processes)
I Scheduling



Interrupts

Typical case: electrical signal asserted by external device
I Filtered or issued by the chipset
I Lowest level hardware synchronization mechanism

Multiple priority levels: Interrupt ReQuests (IRQ)

Processor switches to kernel mode and calls a specific interrupt service
routine

Multiple drivers may share a single IRQ line
→ IRQ handler must identify the source of the interrupt to call the proper
service routine



Exceptions

Typical case: unexpected program behavior
I Filtered or issued by the chipset
I Lowest level of OS/application interaction

Processor switches to kernel mode and calls a specific exception service
routine

Typical mechanism to implement system calls



Memory-Mapped I/O

External Remapping of Memory Addresses

Builds on the chipset rather than on the MMU
Address translation + redirection to device memory or registers

Unified mechanism to
I Transfer data: just load/store values from/to a memory location
I Operate the device: reading/writing through specific memory addresses

actually sends a command to a device
Typical example: strobe registers (writing anything triggers an event)

Supports Direct Memory Access (DMA) block transfers
Operated by the DMA controller, not the processor

Old-Fashioned Alternative: I/O Ports

Old interface for x86 and IBM PC architecture

Rarely supported by modern processor instruction sets

Low-performance (ordered memory accesses, no DMA)



Kernel Locking Mechanisms

Low-Level Mutual Exclusion Variants

Very short critical sections
I Spin-lock

Fine grain
I Read/write lock: traditional read/write semaphore
I Seqlock: speculative readers
I Read-copy-update lock: concurrent writers in special cases

Coarse grain
I Disable preemption
I Disable interrupts
I The “big kernel lock”

I Non scalable on parallel architectures
I Only for very short periods of time
I Now mostly in legacy drivers and in the virtual file system



Kernel Locking Mechanisms

Spin Lock

Busy waiting

Acq: while (lock == 1) { pause_for_a_few_cycles; }
ATOMIC if (lock == 0) lock = 1;

else goto Acq ;
// Critical section
// ...
lock = 0;
// Non-critical section

Wait for short periods, typically less than 1 µs
I As a proxy for other locks
I As a polling mechanism
I Mutual exclusion in interrupts



I/O Implementation in Linux

Abstraction Levels: Low Level

Automatic configuration: plug’n’play
I Memory mapping
I Interrupts (IRQ)

Generic device abstraction (sysfs)
I Class
I Power management
I Resources: memory mapping, interrupts
I ...

Automatic configuration of device mappings
I Device numbers: kernel anchor for driver interaction
I Kernel level
I Automatic assignment of major and minor numbers
I Hot pluggable devices



I/O Implementation in Linux

Abstraction Levels: OS Interface

Automatic device node creation (udev)
I Device name: application anchor to interact with the driver
I User level
I Reconfigurable rules
I Hot pluggable devices

File system mounting and virtual file system (mount)
I Software layer below POSIX I/O system calls
I Superset API for the features found in UNIX file systems
I Also supports pseudo file systems (/proc, /sys, /dev, /dev/shm...)
I Also supports foreign and legacy file systems (FAT, NTFS, ISO9660)



I/O Concurrenty Challenges
Typical Kernel Control Path

1 Page fault of user application

2 Exception, switch to kernel mode

3 Lookup for cause of exception, detect access to swapped memory

4 Look for name of swap device (multiple swap devices possible)

5 Call non-blocking kernel I/O operation

6 Retrieve device major and minor numbers (no VFS in this special case)

7 Forward call to the driver

8 Retrieve page (possibly swapping another out)

9 Update the kernel and process’s page table

10 Switch back to user mode and proceed

Executing concurrently with...

Other processes

Other kernel control paths (interrupts, parallel or preemptive kernel)

Deferred interrupts (softirq/tasklet mechanism)

Real-time deadlines: timers, buffer overflows (e.g., CDROM)



Disk Operation

Disk Structure

Plates, tracks, cylinders, sectors

Multiple R/W heads

Quantitative analysis
I Moderate peak bandwidth in continuous data transfers

E.g., up to 160MB/s on a modern SATA, 320GB/s on a modern SCSI
Plus a read (and possibly write) cache in DRAM memory

I Very high latency when moving to another track/cylinder
Typically a few milliseconds on average, slightly faster on SCSI

Request Handling Algorithms

Idea: queue pending requests and select them in a way that minimizes head
movement and idle plate rotation

Multiple variants of the “elevator” algorithm

Heuristics dependent on block size, disk type (number of heads)

Strong influence on process scheduling: avoid disk thrashing



Memory Management

Segmentation

Old-fashioned hardware support to separate code from data, kernel from user
memory, etc.

... Supported by x86 but totally unused by Linux/UNIX

Paging

Hardware memory protection and address translation by the MMU

Implementation

Associated with specific processor control registers

The kernel reconfigures the page table at each context switch by assigning to
a control register

Note: this effectively flushes the TLB (cache for address translations),
resulting in a severe performance hit in case the physical memory pages are
scattered around



Memory Management

Memory Allocation

Often the most complex part of a kernel
I Appears in every aspect of the system
I Major performance impact → highly optimized

Buddy system to allocate contiguous pages of physical memory
I Coupled with free list for intra-page allocation
I Contiguous physical pages improve performance
I But not required except for kernel memory

Slab allocator (first implemented in Sun Solaris)
I Cache of special purpose, fixed size, pool of memory regions
I Learn from previous allocations/deallocations
I Anticipate future requests
I Well suited for short-lived memory needs

E.g., fork(); exec(); or kernel internal buffer management



Low-Level Process Implementation

Hardware Context

Saved and restored by the kernel upon context switches

Mapped to some hardware thread when running (with affinity policies when
caches are distributed among cores/processors)

Lightweight Processes

clone() system call

Supports both threads and processes, selecting which attributes are
shared/separate


