
Operating Systems Principles and Programming
Principes et programmation des systèmes d’exploitation

Albert Cohen
Albert.Cohen@inria.fr

Fabrice Le Fessant
Fabrice.Le Fessant@inria.fr

École Polytechnique — Majeure 2 d’Informatique — INF552

2006–2007



About the Course

About Us

Albert Cohen: researcher at INRIA Futurs Saclay (Orsay)

Alchemy group: architecture and compilation for
high-performance and embedded computing

Fabrice Le Fessant: researcher at INRIA Futurs Saclay (Orsay)

Asap group: foundations of large-scale dynamic distributed
systems

Goals

Understand how the operating system works

Learn to program applications which interact with the operating system

Expose (some) design goals and principles

Abstract and simplify when necessary

Show practical examples

http://www.enseignement.polytechnique.fr/profs/informatique/Albert.Cohen/os



Organization

Practical Information

9 lectures and 9 labs

Questions (during or after the course) are welcome

If you are lost, do not wait for getting help (after the course or during labs)

One term exam (principles, algorithms and programmer interface)

One project: extended labs (pick one among all courses of the Majeure)

Prerequisites

C programming language and standard library

Attending courses and labs

Programming or reading code after lab hours

http://www.enseignement.polytechnique.fr/profs/informatique/Albert.Cohen/os



1. Why an Operating System?

Outline

1 Historical perspective
2 Technical survey

I Resource sharing and management (time and hardware)
I Abstraction (of the hardware, of low-level software layers)
I Naming framework
I Synchronization and communication services
I Enforcing security policies
I Virtualization (of the hardware, of specific software layers)

3 Design trends (research and industrial)



Historical Perspective
1964: IBM System/360
Integrated circuits, family of 6 compatible computers and 40 peripherals
OS: millions of line of assembly code

http://en.wikipedia.org/wiki/Operating system

http://www.computerhistory.org/timeline http://www.osdata.com/kind/history.htm



Historical Perspective

1969: UNIX — Ken Thompson and Dennis Ritchie
UNiplexed Information and Computing Service (economical redesign of MULTICS)
Rewritten in C with Brian Kernighan in 1973

http://en.wikipedia.org/wiki/Operating system

http://www.computerhistory.org/timeline http://www.osdata.com/kind/history.htm



Historical Perspective
1974: Xerox PARC — Alto
First interactive window system, menus, icons

http://en.wikipedia.org/wiki/Operating system

http://www.computerhistory.org/timeline http://www.osdata.com/kind/history.htm



Historical Perspective

1983: GNU
Free operating system (and free software in general)

http://en.wikipedia.org/wiki/Operating system

http://www.computerhistory.org/timeline http://www.osdata.com/kind/history.htm



Historical Perspective
1991: Linux
Free kernel, inspired by Minix, provides a complete OS with GNU
Now runs on mobile phones to 1024 processor NUMA

http://en.wikipedia.org/wiki/Operating system

http://www.computerhistory.org/timeline http://www.osdata.com/kind/history.htm



The UNIX Family

Multi-user, multi-tasking, general-purpose operating system

Sources available to a large public (but not free)

Partly compatible family
Standards: POSIX, X/Open, BSD, System V, SVr4, LSB...



The UNIX Family

Multi-user, multi-tasking, general-purpose operating system

Sources available to a large public (but not free)

Partly compatible family
Standards: POSIX, X/Open, BSD, System V, SVr4, LSB...



The UNIX Family



The UNIX Family

Multi-user, multi-tasking, general-purpose operating system

Sources available to a large public (but not free)

Partly compatible family
Standards: POSIX, X/Open, BSD, System V, SVr4, LSB...

GNU/Linux

Free software (open source)

Robust and modern flavor of UNIX

Most portable and largest range of supported devices

Highly compatible with other OSes

Modular and customizable, excellent code quality

Lightweight: can be downsized for embedded devices

Benefits from most OS innovations



The UNIX Family

Multi-user, multi-tasking, general-purpose operating system

Sources available to a large public (but not free)

Partly compatible family
Standards: POSIX, X/Open, BSD, System V, SVr4, LSB...

GNU/Linux

Free software (open source)

Robust and modern flavor of UNIX

Most portable and largest range of supported devices

Highly compatible with other OSes

Modular and customizable, excellent code quality

Lightweight: can be downsized for embedded devices

Benefits from most OS innovations



Technical Survey: Resource Management

Control

Bootstrap the whole machine
Firmware, BIOS, EFI, boot devices, initialization sequence

Configure I/O devices and service low-level programmable components
I/O ports and Memory-mapped I/O, interrupts

Isolate and report errors or improper use of protected resources
Kernel versus user mode, memory protection, exceptions (software-triggered
interrupts)

Allocate

Distribute processing, storage, communications, in time and space
Process/task, multiprocessing, preemption, virtual memory, file system,
socket (port)

Multi-user environment
Session, identification, authorization, spying prevention, fairness, terminal

Fair resource use
Scheduling, priority, resource limits



Technical Survey: Resource Management

Control

Bootstrap the whole machine
Firmware, BIOS, EFI, boot devices, initialization sequence

Configure I/O devices and service low-level programmable components
I/O ports and Memory-mapped I/O, interrupts

Isolate and report errors or improper use of protected resources
Kernel versus user mode, memory protection, exceptions (software-triggered
interrupts)

Allocate

Distribute processing, storage, communications, in time and space
Process/task, multiprocessing, preemption, virtual memory, file system,
socket (port)

Multi-user environment
Session, identification, authorization, spying prevention, fairness, terminal

Fair resource use
Scheduling, priority, resource limits



Technical Survey: the Kernel

The Kernel

The kernel is a process manager , not a process

Processors provide instructions to switch between user and kernel modes
I Kernel mode: no restriction
I User mode: restricted instructions and memory regions

User processes switch to kernel mode when requesting a service provided by
the kernel: system call

Process 1 Process 2 Process 2

Interrupt
handler

System call
handler

Scheduler

Process 1

USER MODE

KERNEL MODE

System call Timer interrupt Device interrupt

Time



Technical Survey: the Kernel

The Kernel

The kernel is a process manager , not a process

Processors provide instructions to switch between user and kernel modes
I Kernel mode: no restriction
I User mode: restricted instructions and memory regions

User processes switch to kernel mode when requesting a service provided by
the kernel: system call

Process 1 Process 2 Process 2

Interrupt
handler

System call
handler

Scheduler

Process 1

USER MODE

KERNEL MODE

System call Timer interrupt Device interrupt

Time



Technical Survey: Abstraction

Goal

Simplify, uniformize and standardize
I Kernel portability
I Facilitate device driver development
I Stable execution environment for the user programs

Main Abstractions

1 Process

2 File and file system

3 Device interface and device driver

4 Virtual memory



Process Abstraction

Overview

Process: execution context of a running program

Multiprocessing, private address space
I Segments: text (code), static data, dynamic data (stack and heap)
I Code may be shared: multiple instances of a program, e.g., dynamic libraries
I Data may be shared: IPC shared memory object

Multiple execution flows in the same address space: threads

There may also be kernel processes/threads (e.g., Solaris and Linux)

Process State

Internal descriptor designated by its identifier (PID)
I State with respect to the scheduler’s queue(s) (preemptive or not)
I File descriptors, IPC (shared memory, semaphores, message queues)
I Process and thread tree

Processor registers: program counter (PC), stack pointer (SP), processor
control, general-purpose, floating point

Memory map (private and shared pages)



Process Abstraction

Overview

Process: execution context of a running program

Multiprocessing, private address space
I Segments: text (code), static data, dynamic data (stack and heap)
I Code may be shared: multiple instances of a program, e.g., dynamic libraries
I Data may be shared: IPC shared memory object

Multiple execution flows in the same address space: threads

There may also be kernel processes/threads (e.g., Solaris and Linux)

Process State

Internal descriptor designated by its identifier (PID)
I State with respect to the scheduler’s queue(s) (preemptive or not)
I File descriptors, IPC (shared memory, semaphores, message queues)
I Process and thread tree

Processor registers: program counter (PC), stack pointer (SP), processor
control, general-purpose, floating point

Memory map (private and shared pages)



File and File System Abstractions

Overview

File: storage and naming in UNIX

Directory tree, absolute and relative pathnames
/ . .. /dev/hda1 /bin/ls /etc/passwd

File types
I Regular file or hard link (file name alias within a single file system)

$ ln pathname alias pathname
I Soft link: short file containing a pathname

$ ln -s pathname alias pathname
I Directory: list of file names (a.k.a. hard links)
I Block-oriented device: buffered, random access to data
I Character-oriented device: unbuffered stream of data
I Pipe (also called FIFO)
I Socket (UNIX and INET)

Assemble multiple file systems through mount points
Typical example: /home /usr/local /proc

Common set system calls, independent of the target file system



Device Abstraction

Device Files

Special files
I Block-oriented device

Disks, file systems: /dev/hda /dev/sdb2 /dev/md1
I Character -oriented device

Serial ports, console terminals, audio: /dev/tty0 /dev/pts/0

/dev/usb/hiddev0 /dev/mixer /dev/null
I Major and minor numbers to (logically) connect device files and drivers

Assigned dynamically (and/or at boot) in modern systems (e.g., Linux’s udev)

Device Drivers

Abstracted by system calls or kernel processes

Manage buffering between device and local buffer

Control devices through memory-mapped I/O or I/O ports

Devices trigger interrupts (end of request, buffer full, etc.)

Many concurrency challenges (precise synchronization required)

Multiple layers for portability and reactivity (low-overhead reactions)



Device Abstraction

Device Files

Special files
I Block-oriented device

Disks, file systems: /dev/hda /dev/sdb2 /dev/md1
I Character -oriented device

Serial ports, console terminals, audio: /dev/tty0 /dev/pts/0

/dev/usb/hiddev0 /dev/mixer /dev/null
I Major and minor numbers to (logically) connect device files and drivers

Assigned dynamically (and/or at boot) in modern systems (e.g., Linux’s udev)

Device Drivers

Abstracted by system calls or kernel processes

Manage buffering between device and local buffer

Control devices through memory-mapped I/O or I/O ports

Devices trigger interrupts (end of request, buffer full, etc.)

Many concurrency challenges (precise synchronization required)

Multiple layers for portability and reactivity (low-overhead reactions)



Virtual Memory Abstraction

Purpose

Processes access memory through virtual addresses
I Simulates a large interval of memory addresses
I Expressive and efficient address-space protection and separation
I Hides kernel and other processes’ memory
I Automatic translation to physical addresses by the CPU (MMU/TLB circuits)

Paging mechanism
I Provide a protection mechanism for memory regions, called pages
I The kernel implements a mapping of physical pages to virtual ones, different

for every process

Swap memory and file system
I The ability to suspend a process and virtualize its memory allows to store its

pages to disk, saving (expensive) RAM for more urgent matters
I Some systems use swap files rather than partitions (slower but more flexible)
I Same mechanism to migrate processes on NUMA multi-processors



Technical Survey: Naming

Naming Resources and Abstractions

Hard problem in operating systems
I Processes are separated (logically and physically)
I Need to access persistent and/or foreign resources
I Resource identification determines large parts of the programming interface
I Hard to get it right, general and flexible enough

Good example: filenames and pathnames
Uniform across complex directory trees, across storage devices (mount
points), pipes, UNIX sockets, POSIX IPC

Could be better: INET addresses (e.g., 129.104.247.5), TCP/UDP ports

Bad examples: device numbers, System V IPC



Technical Survey: Synchronization

Kernel primitives
I Atomic instructions
I Critical sections
I Spin-lock and variants
I Semaphores
I Interrupt disabling
I Kernel preemption disabling

Interprocess (or threads) synchronization programming interface
I Waiting for a process status change
I Waiting for a signal
I IPC Semaphore
I Reading from or writing to a file (e.g., a pipe)



Technical Survey: Communication

Interprocess communication programming interface
I Synchronous or asynchronous signal notification
I IPC message queue
I IPC shared memory
I Pipe (or FIFO)
I UNIX Socket

OS interface to network communications
I INET Socket



Technical Survey: Security

Basic Mechanisms

Identification
/etc/passwd and /etc/shadow, sessions (login)
UID, GID, effective UID, effective GID

Encryption, signature and key management

Access control models
I Discretionary (DAC), it is the default
I Mandatory (MAC), systematic controls
I Role-based (RBAC) and Rule-Based (RB-RBAC)

I Linux has capabilities: e.g., a process not owned by root may be granted
permission to change ownership of an other user’s file (man 7 capabilities)

I Another example: network routing tables

Logging: /var/log and syslogd daemon

Enhanced Security

SELinux: http://www.nsa.gov/selinux/papers/policy-abs.cfm

Defining a security policy

Enforcing a security policy



Technical Survey: Virtualization

“Every problem can be solved with an additional level of indirection”

Standardization Purposes

Common, portable interface

Software engineering benefits (code reuse)

Example: Virtual File System in Linux
I Software layer below POSIX I/O system calls
I Superset API for the features found in UNIX file systems
I Also supports pseudo file systems (/proc, /sys, /dev, /dev/shm...)
I Also supports foreign and legacy file systems (FAT, NTFS, ISO9660)

Another example: drivers with SCSI emulation (USB mass storage)



Technical Survey: Virtualization

“Every problem can be solved with an additional level of indirection”

Compatibility Purposes

Binary-level compatibility
I Processor and full-system virtualization: emulation, binary translation

(subject of the last chapter)
I Protocol virtualization: IPv4 on top of IPv6

API-level compatibility
I POSIX (even Windows is more or less POSIX compliant)
I Relative binary compatibility across some UNIX flavors (e.g., FreeBSD)



Operating System Trends

Design

Modularity
I Linux kernel modules (/lib/modules/*.ko) and Windows kernel DLLs
I Run specific functions on behalf of the kernel or a process

Beyond modularity: microkernel
I Execute most of the OS code in user mode (debug, safety, adaptiveness)
I The kernel only implements synchronization, communication, scheduling and

low-level paging
I User mode system processes implement memory management, device drivers

and system call handlers (through specific access authorizations)
I Examples: MACH (MacOSX), Chorus
I Drawbacks

I Message passing overhead (across processes and layers)
I Most of the advantages can be achieved through modularization



Operating System Trends

Adaptation for Performance and Security

Better support for NUMA
I Affinity to a core/processor/node
I Paging and scheduling aware of physical distribution of memory
I Linux 2.6.18 is already quite sophisticated (thanks to the SGI Altix port)

Tuning of kernel policies
I Custom process and I/O scheduling, paging, migration...

E.g., IBM Research’s K42 linux-compatible kernel
I Access control policies

E.g., SELinux (sponsored by the NSA)


