Réseaux, Protocoles et applications de l'Internet

INF 586

Walid Dabbous INRIA Sophia Antipolis

Contenu du cours

- Introduction: le téléphone et l'Internet.
- Les liens de communication et l'accès multiple
- Adressage et routage point à point dans l'Internet
- Contrôle de transmission
- Architecture de protocoles
- Communication de groupe
- Support de la qualité de service dans l'Internet

Références

- Cours inspiré (surtout) du livre de S. Keshav
- An Engineering Approach to Computer Networking, S. Keshav, Addison-Wesley, May 1997, 688 pages, ISBN 0-201-63442-2
- Plusieurs autres livres de référence
- Routing in the Internet, C. Huitema, Prentice-Hall, 1995, 319 pages, ISBN 0-13-132192-7
- Data and Computer Communications, W. Stallings, Prentice Hall International Editions, 6th edition, 2000, 810 pages, ISBN 0-13-086388-2
- Computer Networking, A Top-Down Approach Featuring the Internet, J. Kurose, K. Ross, Pearson Education, 2001, 712 pages, ISBN 0-201-47711-4
- Computer Networks: A Systems Approach, Larry L. Peterson, Bruce S. Davie, Morgan Kaufmann, April 1996, 500 pages, ISBN 1-55-860368-9
- Computer Networks, Andrew S. Tanenbaum, Prentice Hall International Editions, 3rd edition, March 1996, 814 pages, ISBN 0-13-394248-1
- Data Networks, Dimitri P. Bertsekas, Robert Gallager, Prentice Hall, 2nd edition, December 1991, 556 pages, ISBN 0-13-200916-1
- Internetworking with TCP/IP Volume 1: Principles, Protocols, and Architecture, D. E. Comer, Prentice-Hall, 3rd edition, 1995, 613 pages, ISBN 0-13-216987-8

Références (suite)

- Computer Networks and Internets, D. E. Comer, Prentice-Hall, 3rd edition, 2001, 703 pages, ISBN 0-13-091449-5
- Systèmes multimédias communicants, W. Dabbous éditeur, Hermès Science Publications, 2001, 320 pages, ISBN 2-7462-0251-4
- Interconnections: Bridges and Routers, Radia Perlman, Addison-Wesley, May 1992, 400 pages, ISBN 0201563320
- Multicast Networking And Applications, Kenneth C. Miller, Addison-Wesley, 1999, 282 pages, ISBN 0-201-30979-3
- MobileIP: Design Principles and Practices, C. E. Perkins, Addison-Wesley, 1997, 275 pages, ISBN 0-201-63469-4
- TCP/IP Illustrated, Volume 1: The Protocols, W. Richard Stevens, Addison-Wesley, Published January 1994, 600 pages, ISBN 0201633469
- TCP/IP Illustrated, Volume 2: The Implementation W. Richard Stevens, Wright, Gary R., Addison-Wesley, Published January 1995, 832 pages, ISBN 020163354X
- TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the Unix Domain Protocols, W. Richard Stevens, Gary R. Wright, Addison-Wesley, Hardcover, Published January 1996, 325 pages, ISBN 0201634953
- Advanced programming in the UNIX environment, Richard Stevens, Addison-Wesley, 1992, 768 pages, ISBN 0-201-56317-7
- UNIX network programming, W Richard Stevens, Prentice Hall, 1998, 1240 pages, ISBN 0-13-490012-X

Plan du cours d'aujourd'hui - bloc 1 Le téléphone et l'Internet

Les réseaux commutés

- Le réseau téléphonique
 - commutation de circuits
- Le réseau ATM
 - commutation de cellules circuits virtuels
- L'Internet
 - commutation de paquets datagrammes

Les réseaux commutés

Beyond local area networks

- End systems (stations) send data through a network of intermediate switching nodes
- Some nodes connect only to other nodes (routers, switches)
- usually the network is not fully connected
 - but more that one path from source to destination

Le réseau téléphonique

Is it a computer network?

- Specialized to carry voice (more than a billion telephones worldwide)
- But also carries
 - fax
 - modem calls
 - video
- Internally, uses digital samples
- Standard end-system/network interface
- Switches and switch controllers are special purpose computers
- Principles in its design apply to more general computer networks

Concepts

- Single basic service: two-way voice
 - Iow end-to-end delay
 - guarantee that an accepted call will run to completion
- Endpoints connected by a *circuit*
 - like an electrical circuit
 - signals flow both ways (*full duplex*)
 - associated with bandwidth and buffer resources

The big picture

- (nearly) Fully connected core
 - simple routing
 - hierarchically allocated telephone number space
 - telephone number is a hint about how to route a call
 - but not for 800/888 (toll-free) / 700 (AT&T Incoming call forwarding) / 900 (pay-per-call) numbers

The components of a telephone network

- 1. End systems
- 2. Transmission
- 3. Switching
- 4. Signaling

1. End-systems

- Transducers
 - key to carrying voice on wires
- Dialer
- Ringer
- Switchhook at central office interprets tones or pulses
 - place a call
 - or do call forwarding
 - sends ring signal
 - + power for ringing provided by central office

Sidetone & Echo

- Transmission circuit needs two wires
- And so does reception circuit
- => 4 wires from every central office to home
- Can we do better?
- Use same pair of wires for both transmission and reception
- Two problems: sidetone and echo
 - Sidetone attenuation: balance circuit is required
 - (expensive) Echo cancellation for *long-distance* calls
- Lesson
 - keep end-to-end delays as short as possible

2. Transmission

- Link characteristics
 - information carrying capacity (bandwidth)
 - + information sent as *symbols*
 - + 1 symbol >= 1 bit (see next course)
 - propagation delay
 - + time for electromagnetic signal to reach other end
 - + light travels at 0.7c in fiber ~ 5 μ s/km
 - Nice to Paris => 5 ms; London to NY => 27 ms; ~250 ms for earth-sat-earth on GEO satellites
 - attenuation
 - degradation in signal quality with distance
 - + long lines need regenerators
 - but recent links need regeneration each 5000 Km and optical amplifiers exist

Transmission: Multiplexing

- *Trunks* between central offices carry hundreds of conversations
- Can't run thick bundles!
- Instead, send many calls on the same wire
 - multiplexing
- Analog multiplexing (FDM)
 - bandlimit call to 3.4 KHz and frequency shift onto higher bandwidth trunk
 - obsolete, the telephone network is becoming all-digital
- Digital multiplexing
 - first convert voice to samples
 - 1 sample = 8 bits of voice
 - 8000 samples/sec => call = 64 Kbps

Transmission: Digital multiplexing

- How to choose a sample?
 - 256 quantization levels
 - + logarithmically spaced (better resolution at low signal levels)
 - + sample value = amplitude of nearest quantization level
 - two choices of quantization levels (μ law (Japan and USA) and A law)
- Time division multiplexing (TDM)
 - (output) trunk carries bits at a faster bit rate than inputs
 - *n* input streams, each with a 1-byte buffer
 - output interleaves samples
 - need to serve all inputs in the time it takes one sample to arrive
 - => output runs n times faster than input
 - overhead bits mark end of frame (synchronize to frame boudary)

Multiplexors and demultiplexors

- Most trunks time division multiplex voice samples
- At a central office, trunk is demultiplexed and distributed to active circuits
- Synchronous multiplexor
 - N input lines (associated with a buffer to store at least one sample)
 - Output runs N times as fast as input

More on multiplexing

- Demultiplexor
 - one input line and N outputs that run N times slower
 - samples are placed in output buffer in round robin order
- Neither multiplexor nor demultiplexor needs addressing information (why?)
 - requires however accurate timing information
- Can cascade multiplexors
 - need a standard
 - example: DS hierarchy in the US and Japan

Digital Signaling hierarchy

Digital Signal	Number of	Number of voice	Bandwidth
Number	previous level	circuits	
	circuits		
DS0		1	64 Kbps
DS1 - T1	24	24	1.544Mbps
DS2	4	96	6.312 Mbps
DS3 - T3	7	672 = 28 T1	44.736 Mbps

Inverse multiplexing : scatter/gather

- Takes a high bit-rate stream and scatters it across multiple trunks
- At the other end, combines multiple streams
 - resequencing to accommodate variation in delays
- Allows high-speed virtual links using existing technology
 - aggregate telephone channels to connect IP routers

3. Switching

Problem:

- each user can potentially call any other user
- can't have direct lines!
- Switches establish temporary *circuits*
- Switching systems come in two parts: switch and switch controller

Switching: what does a switch do?

- Transfers data from an input to an output
 - many ports (up to 200,000 simultaneous calls)
 - need high speeds
- Some ways to switch:
 - First way: space division (data paths are separated in space)
 - simplest space division switch is a "crossbar"
 - if inputs are multiplexed, need a *schedule* (to rearrange crosspoints at each time slot)

Time Division Switching

- Another way to switch
 - time division (time slot interchange or TSI)
 - also needs (only) a schedule (to write to outputs in correct order)

- Inefficient if long pauses in conversations (idle slots are wasted)
- To build (large) switches we combine space and time division switching larger elements

More details: A circuit switch

- A switch that can handle N calls has N logical inputs and N logical outputs
 - N up to 200,000
- In practice, input trunks are multiplexed
 - far fewer physical I/O lines
 - example: DS3 trunk carries 672 simultaneous calls
- Multiplexed trunks carry *frames* = set of samples
- Goal: extract samples from frame, and depending on position in frame, switch to output
 - each incoming sample has to get to the right output line and the right slot in the output frame
 - demultiplex, switch, multiplex

Call blocking

- Can't find a path from input to output (reject blocked calls)
- Internal blocking
 - slot in output frame exists, but no path through the switch
- Output blocking
 - no slot in output frame is available (compete for the same output)
- *Line* switch : connect a specific input to a specific output
- *Transit* switch: connect an input to one *several* outputs
- Internal and output blocking is reduced in transit switches
 - need to put a sample in one of several slots going to the desired next hop
 - a transit switch acheives same blocking probability as a line switch with less hardware

More on Time division switching

- Key idea: when demultiplexing, position in frame determines output trunk
- Time division switching interchanges sample position within a frame: time slot interchange (TSI)

How large a TSI can we build?

- Limit is time taken to read and write to memory
- For 120,000 circuits
 - need to read and write memory 120,000 times every 125 µs (slot duration)
 - each operation takes around 0.5 ns => impossible with current technology
 - with 40-ns memory => 1500 circuits!
- Need to look to other techniques

Space division switching

 Each sample takes a different path through the switch, depending on its destination

Crossbar

- Simplest possible space-division switch
- *Crosspoints* can be turned on or off
- For multiplexed inputs, need a switching *schedule*
 - as different samples may have different destinations
- Internally nonblocking
 - vulnerable to single faults (only one path between given input output pair)
 - time taken to set crosspoints grows quadratically with N
 - need N² crosspoints
- Small switches 8x8 or 64x64

Multistage crossbar

- In a crossbar during each switching time only one crosspoint per row or column is active
- Can save crosspoints if a crosspoint can attach to more than one input line
- This is done in a multistage crossbar

Multistage crossbar

- Can suffer internal blocking
 - unless sufficient number of second-level stages (k > 2n 2)
 - but requires rearranging existing connections as a new call arrives
 - Clos network: rearrangably nonblocking switch
- Number of crosspoints < N²
 - minimize crosspoints for n ~ SQRT(N)
- Finding a path from input to output requires a depth-first-search
 - path stored in switch schedule
- Scales better than crossbar, but still not too well
 - 120,000 call switch needs ~250 million crosspoints
- Unless we accept blocking
 - trade-off between blocking probability and switch cost

Time-space switching

- Precede each input trunk in a crossbar with a TSI
- "Delay" samples so that they arrive at the right time for the space division switch's schedule
- Allows to build non blocking SDS with fewer crosspoints than a Clos switch

Time-space-time (TST) switching

- Allowed to flip samples both on input and output trunk
- Gives more flexibility => lowers call blocking probability

4. Signaling

- Recall that a switching system has a switch and a switch controller
- Switch controller is in the *control* plane
 - does not touch voice samples
- Manages the network
 - call routing (collect *dialstring* and forward call)
 - alarms (ring bell at receiver)
 - billing
 - directory lookup (for 800/888 calls)

Challenges for the telephone network

Multimedia

- simultaneously transmit voice/data/video over the network
- people seem to want it
- existing telephone network can't handle it
 - + bandwidth requirements
 - + burstiness in traffic (TSI can't skip input)
 - either peak rate service or very large buffers
 - + change in statistical behavior with regard to voice
 - decades of experience for telephone engineers
- Backward compatibility of new services
 - huge existing infrastructure
 - "advantage" of developing countries
- Regulation
 - monopoly stifles innovation
Challenges

- Competition
 - future telephone networks will no longer be monopolies
 - + end to good times
 - how to manage the transition?
 - + be more responsive to technological innovations
 - + at the expense of long term thinking!
- Inefficiencies in the system
 - an accumulation of incompatible systems and formats
 - special-purpose systems of the past (assembly language parts)
 - 'legacy' systems
 - need to change them without breaking the network

Les réseaux ATM

Why ATM networks?

- Different information types require different qualities of service from the network
 - stock quotes vs. USENET
- Telephone networks support a single quality of service
 - and is expensive to boot
- ATM networks are meant to support a range of service qualities at a reasonable cost

Design goals

- Providing "end-to-end" quality of service
- High bandwidth
- Scalability
- Manageability
- Cost-effectiveness

How far along are we?

- Basic architecture has been defined
- But delays have resulted in ceding desktop to IP
- Also, little experience in traffic specification, multicast, and fault tolerance
- We will never see "end-to-end" ATM
 - but its ideas continue to influence design of next-generation Internet - see block 7 (Scheduling)
 - Internet technology + ATM philosophy -- will it work ?
- Note--two standardization bodies
 - ATM Forum
 - International Telecommunications Union-Telecommunications Standardization Sector (ITU-T)

Concepts

- 1. Virtual circuits
- 2. Fixed-size packets (cells)
- 3. Small packet size
- 4. Statistical multiplexing
- 5. Integrated services

Together

can carry *multiple* types of traffic with (ATM) end-to-end quality of service

1. Virtual circuits

- Some background first
- Telephone network operates in Synchronous Transfer Mode
 - the destination of a sample depends on where it comes from. Knowing when it came is sufficient, no need for a descriptive header
 - example--shared leased link to the same destination
- Problems with STM
 - idle users consume bandwidth
 - Arbitrary schedules result in complicated operation
 - links are shared with a fixed cyclical schedule => quantization of link capacity (corresponds to 64 Kbps circuits in telephone)
 - + can't 'dial' bandwidth e.g. 91 Kbps.
 - STM service is inflexible

Virtual circuits (contd.)

- STM is easy to overcome
 - use *packets* instead
 - meta-data (header) indicates src/dest
 - + allows to store packets at switches and forward them when convenient
 - no wasted bandwidth (identify cell by source address not only order in frame) more *efficient*
 - arbitrary schedule (cells of same source can occur more than once in frame) more *flexible*
- Two ways to use packets
 - carry entire destination address in header.
 - carry only an identifier

Sample

ATM cell

Datagram

Addr. Data

Virtual circuits (contd.)

- Identifiers save on header space
- But need to be pre-established
- We also need to switch Ids at intermediate points
 - VCIs are allocated locally
- Need translation table (for VCI swapping) and connection setup

Features of virtual circuits

- All packets must follow the same path
 - if any switch along the route fails -> the VC fails
- Switches store per-VC state (entry in translation table)
 - can also store QoS information (priority, reserved bandwidth)
- Call set-up (or signaling) => separation of data and control
 - control in software over slow time scale, data transfer in hardware
- Virtual circuits do not automatically guarantee reliability
 - possible packet loss
- Small Identifiers can be looked up quickly in hardware
 - harder to do this with IP addresses

More features

- Setup must precede data transfer
 - delays short messages
- Switched vs. Permanent virtual circuits
- Ways to reduce setup latency
 - preallocate a range of VCIs along a path
 - + Virtual Path
 - + reduces also the size of the translation table
 - dedicate a VCI to carry datagrams, reassembled at each hop

2. Fixed-size packets

- Pros
 - Simpler buffer hardware
 - packet arrival and departure requires us to manage fixed buffer sizes (easier, no memory fragmentation)
 - Simpler line scheduling
 - each cell takes a constant chunk of bandwidth to transmit -> harder to achieve simple ratios with variable size packets
 - Easier to build large *parallel* packet switches
 - input buffers, parallel switch fabrics, output buffers -> maximum parallelism if same packet size
- Cons
 - If the chosen size < ADU => overhead
 - segmentation and reassembly cost
 - last unfilled cell after segmentation wastes bandwidth

3. Small packet size

- At 8KHz, each byte is 125 microseconds
- The smaller the cell, the less an endpoint has to wait to fill it

packetization delay

- The smaller the packet, the larger the header overhead
- EU and Japan: reduce cell size (32 bytes cell, 4 ms packetization delay)
- US telcos: reduce header cost (existing echo cancellation equipment) (64 bytes cell, 8ms packetization delay)
- Standards body balanced the two to prescribe 48 bytes + 5 byte header = 53 bytes
 - ATM maximal efficiency of 90.57%

4. Statistical multiplexing

- output rate: 4cells/s. queuing delay <= 3/4s.</p>
- Suppose cells arrive in bursts
 - each burst has 10 cells evenly spaced 1 second apart
 - mean gap between bursts = 100 seconds (average rate = 0.0909 cell/s)
- What should be service rate of output line?
 - No single answer (4c/s? 0.36c/s? 1c/s?)

Statistical multiplexing

- We can trade off worst-case delay against speed of output trunk
- Statistical Multiplexing Gain = sum of peak input/output rate

A cell switch exploits SMG in the same way as a TD multiplexor.

Whenever long term average rate *differs* from peak, we can trade off service rate for delay (requires buffers for zero loss)

key to building packet-switched networks with QoS

Generalized SMG

- n bursty source that have p peak rate and a average rate
- Worst case: simultaneous arrivals -> conservatively serve at *n.p*
- To reduce cost, can serve at *r* with *n.a* < *r* < *n.g*
 - Requires buffering -> higher delays
- SMG = *n.p/r*
- general principle:
 - if long-term average rate < peak rate; trade-off service rate for mean delay
- ATM cells can be stored & long distance BW expensive
 - -> SMG applicable
- Not if average rate close to peak rate

5. Integrated service

- Traditionally, voice, video, and data traffic on separate networks
- Integration
 - easier to manage
 - innovative new services (Vconferencing, Venvironments)
- How do ATM networks allow for integrated service?
 - Iots of (switching) capacity: hardware-oriented switching
 - support for different traffic types
 - + signaling for call set-up
 - + admission control, Traffic descriptor, policing
 - resource reservation
 - requires intelligent link scheduling for voice/data integration (more flexible than telephone because of headers)

Challenges

- Quality of service
 - defined, but not used!
 - still needs research
- Scaling
 - little experience
- Competition from other LAN technologies
 - FDDI
 - 100Mbps Ethernet
- Standardization
 - Political (ATM forum is not the IETF)
 - slow

Challenges

IP

- a vast, fast-growing, non-ATM infrastructure
- interoperation is a pain in the neck, because of fundamentally different design philosophies
 - + connectionless vs. connection-oriented
 - + resource reservation vs. best-effort
 - + different ways of expressing QoS requirements
 - + routing protocols differ
- ATM serves as a "leased line" service between IP routers

L'Internet

My how you've grown!

- The Internet has doubled in size every year since 1969
- In 1996, 10 million computers joined the Internet
- By July 1997, 10 million more have joined
- By Jan 2001, 100 million hosts
- By March 2002, 400 million users
- By 2004, 700 to 900 million expected
- Soon, everyone who has a phone is likely to also have an email account

What does it look like?

- Loose collection of networks organized into a multilevel hierarchy
 - 10-100 machines connected to a hub or a router
 - + service providers also provide direct dialup access
 - + or over a wireless link
 - 10s of routers on a department backbone
 - 10s of department backbones connected to campus backbone
 - 10s of campus backbones connected to regional service providers
 - 100s of regional service providers connected by national backbone
 - 10s of national backbones connected by *international trunks*

Example of message routing

traceroute parmesan.cs.wisc.edu (three probes at each TTL value) traceroute to parmesan.cs.wisc.edu (128.105.167.16), 30 hops max, 38 byte packets 1 t4-qw.inria.fr (138.96.32.250) 0.314 ms 0.271 ms 0.332 ms 2 nice.cssi.renater.fr (195.220.98.117) 7.953 ms 10.770 ms 2.018 ms nio-nl.cssi.renater.fr (195.220.98.101) 17.489 ms 22.218 ms 14.136 ms 3 nio-i.cssi.renater.fr (193.51.206.14) 14.080 ms 23.882 ms 18.131 ms 4 opentransit-nio-i.cssi.renater.fr (193.51.206.42) 22.554 ms 15.353 ms 15.653 ms 5 P3-0.PASCR2.Pastourelle.opentransit.net (193.251.241.158) 25.020 ms 16.662 ms 20.514 ms 6 7 P11-0.PASCR1.Pastourelle.opentransit.net (193.251.241.97) 18.202 ms 15.704 ms 16.216 ms P12-0.NYKCR2.New-york.opentransit.net (193.251.241.134) 90.137 ms 90.190 ms 89.799 ms 8 P6-0.NYKBB3.New-york.opentransit.net (193.251.241.238) 96.411 ms 97.740 ms 96.006 ms 9 BBN.GW.opentransit.net (193.251.250.138) 112.554 ms 116.028 ms 110.994 ms 10 11 p3-0.nycmny1-nbr2.bbnplanet.net (4.24.10.69) 119.815 ms 113.583 ms 108.599 ms 12 * p15-0.nycmny1-nbr1.bbnplanet.net (4.24.10.209) 115.725 ms 115.237 ms 13 so-6-0-0.chcgil2-br2.bbnplanet.net (4.24.4.17) 115.999 ms 124.484 ms 119.278 ms so-7-0-0.chcgil2-br1.bbnplanet.net (4.24.5.217) 116.533 ms 120.644 ms 115.783 ms 14 15 p1-0.chcgil2-cr7.bbnplanet.net (4.24.8.106) 119.212 ms 117.684 ms 117.374 ms 16 a0.uwisc.bbnplanet.net (4.24.223.22) 123.337 ms 119.627 ms 126.541 ms 17 r-peer-WNMadison-gw.net.wisc.edu (216.56.1.18) 123.403 ms 127.295 ms 129.175 ms 18 144.92.128.226 (144.92.128.226) 124.777 ms 123.212 ms 131.111 ms 19 144.92.128.196 (144.92.128.196) 121.280 ms 126.488 ms 123.018 ms e1-2.foundry2.cs.wisc.edu (128.105.1.6) 132.539 ms 127.177 ms 122.419 ms 20 21 parmesan.cs.wisc.edu (128.105.167.16) 123.928 ms * 124.471 ms

A closer example

traceroute ultralix.polytechnique.fr traceroute to ultralix.polytechnique.fr (129.104.11.15), 30 hops max, 38 byte packets 1 t4-gw.inria.fr (138.96.32.250) 0.550 ms 0.270 ms 0.263 ms 2 nice.cssi.renater.fr (195.220.98.117) 8.779 ms 6.381 ms 2.391 ms 3 nio-nl.cssi.renater.fr (195.220.98.101) 19.744 ms 24.804 ms 17.490 ms 4 nio-nl.cssi.renater.fr (193.51.206.5) 21.975 ms 17.592 ms 13.758 ms 5 jussieu.cssi.renater.fr (194.214.109.6) 18.938 ms 21.357 ms 15.002 ms 6 epp-jussieu.cssi.renater.fr (193.51.12.82) 25.117 ms 29.762 ms 21.258 ms 7 129.104.63.1 (129.104.63.1) 23.580 ms 20.993 ms 25.804 ms 8 129.104.63.13 (129.104.63.13) 21.973 ms 16.783 ms 23.964 ms 9 ultralix.polytechnique.fr (129.104.11.15) 19.174 ms * 25.052 ms

What holds the Internet together?

- Addressing
 - how to refer to a machine on the Internet
- Routing
 - how to get there
- Internet Protocol (IP)
 - what to speak to be understood at the "inter-network" level

More details : joining the Internet

- How can people talk to you?
 - get an IP address from your administrator
- How do you know where to send your data?
 - if you only have a single external connection, then no problem
 - otherwise, need to speak a routing protocol to decide next hop
- How to format data?
 - use the IP format so that intermediate routers can understand the destination address
- Decentralized and distributed
 - No single authority for addressing
 - No coordination for routing
 - Connectionless IP service
 - scales to millions of hosts

What lies at the heart?

- Two key technical concepts
 - packets
 - store and forward

Packets

- Self-descriptive data
 - packet = data + metadata (header)
- Packet vs. sample
 - samples are not self descriptive
 - to forward a sample, we have to know where it came from (in fact order in frame)
 - can't store it!
 - hard to handle bursts of data

Store and forward

- Metadata allows us to forward packets when we want
- E.g. letters at a post office headed for main post office
 - address labels allow us to forward them in batches
- Efficient use of critical resources
 - allows to share the cost of expensive transmission link
- Three problems
 - hard to control delay within network
 - switches need memory for buffers
 - convergence of flows can lead to congestion

Key features of the Internet

- Addressing
- Routing
- Endpoint control

Addressing

- Internet addresses are called IP addresses
- Refer to a *host interface*: need one IP address per interface
- Addresses are structured as a two-part hierarchy
 - network number
 - host number

An interesting problem

- How many bits to assign to host number and how many to network number?
- If many networks, each with a few hosts, then more bits to network number
- And vice versa
- But designer's couldn't predict the future
- Decided three sets of partitions of bits
 - class A: 8 bits network (in fact 7), 24 bits host
 - class B: 16 bits networks (in fact 14), 16 bits host
 - class C: 24 bits network (in fact 21), 8 bits host

Addressing (contd.)

- To distinguish among them
 - use leading bit
 - first bit = 0=> class A, range 1-126 (127 is loopback)
 - first bits 10 => class B, range128-191
 - first bits 110 => class C, range 192-223
- Problem
 - if you want more than 256 hosts in your network, need to get a class B, which allows 64K hosts => wasted address space
- Solution
 - associate every address with a mask that indicates partition point
 - CIDR (Classless InterDomain Routing)
- What about IPv6?

Routing

- How to get to a destination given its IP address?
- We need to know the next hop to reach a particular network number
 - this is called a *routing table*
 - computing routing tables is non-trivial (distributed routing protocol)
- Simplified example

Default routes

- Strictly speaking, need next hop information for every network in the Internet
 - > 80,000 now
- Instead, keep detailed routes only for local neighborhood
- For unknown destinations, use a *default* router
- Reduces size of routing tables at the expense of non-optimal paths

Endpoint control - the end2end argument

- Key design philosophy
 - do as much as possible at the endpoint
 - dumb network
 - exactly the opposite philosophy of telephone network
- Layer above IP compensates for network defects
 - Transmission Control Protocol (TCP)
- Can run over any available link technology
 - but no quality of service
 - modification to TCP requires a change at every endpoint
 - telephone network technology upgrade transparent to users
 - + cellular phone introduction does not require fixed telephones upgrade
Challenges

- IP address space shortage
 - because of free distribution of inefficient Class B addresses
 - decentralized control => hard to recover addresses, once handed out
- Decentralized control
 - allows scaling, but makes *reliability* next to impossible
 - cannot "guarantee" that a route exists
 - Corrupted routing messages can cause a major disaster
 - Non-optimal routing
 - + each administrative makes a locally optimal decision

Challenges (contd.)

- Decentralized control (contd.)
 - hard to guarantee security
 - + end-to-end encryption is a partial solution
 - + requires scalable and efficient key distribution scheme
 - no equivalent of white or yellow pages
 - + hard to reliably discover a user's email address
 - no uniform solution for accounting and billing
 - + can't even reliably identify individual users
 - + password based identification does not "scale"
 - -> flat rate billing

Challenges (contd).

Multimedia

- requires network to support quality of service of some sort
 - + hard to integrate into current architecture
 - store-and-forward => shared buffers => traffic interaction => hard to provide service quality
- requires endpoint to signal to the network what it wants
 - but Internet does not have a simple way to identify streams of packets
 - + nor are routers required to cooperate in providing quality
 - + and what about pricing!
- However, basic Internet multimedia applications exist today