Probabilités 2007–2008 Pas de malchance TD n° 4 — Master

1 Un peu de géométrie

▶ Question 1 Une feuille de TD contient 4 coquilles. À chaque relecture, une coquille non corrigée est corrigée avec probabilité 1/3. Les relectures sont indépendantes les unes des autres. Combien de relectures faut-il faire pour que la probabilité qu'il ne subsiste aucune coquille soit supérieure à 0,9 ?

2 Moi d'abord

- ▶ Question 2 Alan et Beth lancent une pièce à tour de rôle, le premier qui fait face a gagné. Quelle est la probabilité qu'Alan gagne ?
- ▷ Question 3 Peut-on truquer la pièce pour rendre le jeu équitable ?
- ▶ Question 4 Cette fois ils lancent deux dés. Alan gagne s'il obtient 7, Beth gagne si elle obtient 6. Elle s'est déjà fait avoir une fois et exige de commencer. Est-ce un jeu équitable ?
- ▶ Question 5 L'une de ces parties risque t-elle de se prolonger indéfiniment ?

3 Estimateurs

Soient $X_1, ..., X_n$ des variables aléatoires réelles indépendantes, de même espérance m et de même variance $\sigma^2 > 0$.

- ightharpoonup Question 6 On pose $\overline{X_n} := \frac{1}{n} \sum_{i=1}^n X_i$. Calculer l'espérance et la variance de $\overline{X_n}$. Pourquoi appelle-t-on $\overline{X_n}$ la moyenne empirique?
- ightharpoonup Question 7 On pose $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X_n})^2$. Calculer l'espérance de S_n^2 . Quel est l'intérêt de cette variable ?
- \triangleright Question 8 Quelle est la différence avec la variance emprique $V_n := \frac{1}{n} \sum_{i=1}^n (X_i \overline{X_n})^2$?
- \triangleright Question 9 Exprimer S_n^2 et V_n à l'aide de $\sum_{i=1}^n X_i$, $\sum_{i=1}^n X_i^2$ et n. Quel est l'intérêt?

On suppose de plus que pour tout i, X_i est une variable aléatoire uniformément distribuée dans $[0; \theta]$.

- \triangleright Question 10 Estimer θ à l'aide de $\overline{X_n}$.
- \triangleright Question 11 On pose $M := \max X_1, ..., X_n$. Estimer θ à l'aide de M. Indice : quelle est l'espérance de M?
- ▶ Question 12 Calculer la variance de ce nouvel estimateur.

4 Loi de succession de Laplace

▷ Question 14 On dispose de n+1 urnes numérotées de 0 à n. L'urne numéro k contient k boules rouges et n-k boules blanches. On choisit une urne au hasard. Sans connaître son numéro on en tire m fois une boule avec remise après chaque tirage. Calculer la probabilité que le $(m+1)^{\text{ème}}$ tirage donne encore une boule rouge sachant qu'au cours des m premiers tirages seules des boules rouges ont été tirées. Calculer la limite de cette probabilité quand $n \to +\infty$.