MIM1 - Probabilités et applications- TD 8

Emmanuelle Lebhar elebhar@ens-lyon.fr

Séries génératrices 21 mars 2005

Exercice 1 (Rappels mathématiques)

Qu'est-ce qu'une série entière? Qu'est-ce que le rayon de convergence? Que peut-on dire de série sur la frontière du disque ouvert de convergence? Comment peut-on calculer le rayon de convergence? Quand et comment calculer la dérivée d'une série entière? Quel est son rayon de convergence?

Exercice 2 (Principale définition)

Soit X une variable aléatoire à valeurs dans N. La fonction génératrice de probabilité de X est la fonction G_X définie par $G_X(z) = E(z^X)$.

- 1. Calculer $G_X(1)$. Quel est le rayon de convergence de G_X ?
- 2. Comment calculer les moments d'ordre 1 et 2 de X s'ils existent?
- 3. Soient X et Y deux variables aléatoires indépendantes de fonctions génératrices G_X et G_Y . Calculer la fonction génératrice de X + Y. Quel est son rayon de convergence?

Exercice 3 (Loi géométrique)

1. Calculer la fonction génératrice de la loi géométrique de paramètre p. En déduire sa moyenne et sa variance.

Exercice 4 (Binomiale et Poisson)

Soit X_1 une v.a. de loi binomiale de paramètres $n \geq 2$ et $p \in [0, 1]$.

- 1. Calculer la fonction génératrice G_1 de X_1 . En déduire $E(X_1)$ et $Var(X_1)$.
- 2. Soit X_1 et Y_1 deux variables aléatoires indépendantes de lois respectives binomiales B(n,p) et B(m,p). Donner la loi de probabilité de $X_1 + Y_1$.
- 3. Soit X_2 une variable aléatoire de loi de Poisson de paramètre $\lambda > 0$. Calculer la fonction génératrice G_2 de X_2 . En déduire $E(X_2)$ et $Var(X_2)$.

- 4. Soit X_2 et Y_2 deux variables aléatoires indépendantes de lois respectives de Poisson $P(\lambda)$ et $P(\mu)$. Donner la loi de probabilité de $X_2 + Y_2$.
- 5. On suppose que $n \to \infty$ et $p \to 0$ de façon que $np \to \lambda$. Montrer que pour tout $s \in \mathbb{R}$, $G_1(s) \to G_2(s)$.
- 6. Supposons qu'à la sortie d'une usine de fabrication automobile chaque véhicule ait une chance sur 10000 de comporter un pare-brise défectueux, et ceci indépendemment de la fabrication des autres véhicules; quelle est la probabilité qu'un parc de 10000 voitures comprennent au moins une voiture au pare brise défectueux?

Exercice 5 (Dés truqués)

On jette deux dés indépendants non pipés.

- 1. En utilisant les fonctions génératrices, calculer la probabilité pour que la somme des points obtenue soit égale à un entier donné k. Représenter graphiquement (k, P(S=k)) et montrer que c'est sur un triangle
- 2. Peut-on truquer deux dés indépendemment de façon que la somme des points obtenue en les lançant soit équirépartie?