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In an ideal world

While sending and receiving messages, one can compute.

The computational power is not at all affected by the commu-
nications.

Communications are realized using non blocking primitives.



Experimental scheme
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Two processes (on two different processors): the first one sends
a message to the second one.

The two processes execute “at the same time” their asyn-
chronous send and receive commands.

After a (long) computational time, the two processes put them-
selves in wait of the termination of the communications.



Actual behavior: 1 kilobyte message

Expected behavior: the apparent behavior of the primitives is
non-blocking.
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Actual behavior: 60 kilobyte message (2)

60 kilobyte message with a non-blocking test of communication com-
pletion in the middle of the computational phase of the receiving
process.

The sending is blocked until the receiver posts the termination test.
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Actual behavior: other results

The symptoms are the same, when one is sending one 60 kilo-
byte message or three 20 kilobyte messages.

When one is enlarging the size of the TCP/IP socket buffer to
64 kilobytes, the sending has a non-blocking behavior.



Interpretation

Once we have reached a certain (accumulated) size of mes-
sages, the system buffers do not allow anymore to copy locally
the messages. MPI moves then to a rendezvous protocol which
needs a synchronization of the two processes which are sup-
posed to communicate.

This behavior is not a bug. It is inherently linked to the limits
of the architectures used.



Outline

1 Overlapping computations and communications

2 Interferences between computations and communications

3 Modeling distributed platforms

4 Allocating bandwidths



Classical hypotheses

One can compute and communicate simultaneously (using threads
and/or asynchronous communications).

Computations and communications do not interfere which each
other.

What happens in practice ?

Are the existing influences significant ?
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Experimental setup

Program written in Java using native threads.

Processor architecture: Intel.

Operating systems: FreeBSD, Linux 2.4 (Debian, RedHat), and
Solaris (SunOS).

Computers in the laboratory (Grail/UCSD), on the campus
(UCSD), at UCSB, and on remote sites (Tennessee, Brésil,
France).



Simultaneous computations and sends (1)

A processor simultaneously sends messages and computes
(constant throughput).



Simultaneous computations and sends (2)

A processor simultaneously sends messages and computes
(varying throughput).

(the throughput is defined by introducing some contention on the receiver)
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A processor simultaneously sends messages and computes: averages.

Linear regression with least squares:
Compute rate ≈ -0.037 × Communication rate + 0.96.
IR = 0.037 is the Interference Rate
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Influence of receiving on the computations

Average Interference rate: 0.052.
On average, when the node receives messages at 10 MB/s, its
computational power decreases by 52%.

When a single reception takes place, the maximal through-
put achieved is roughly 85%-95% of the maximal through-
put achievable (when one receives simultaneously from several
senders).

Once the maximal throughput is reached, the impact on the
available computational power is maximized, whatever the num-
ber of receiver threads.

Estimating the impact of a set of receptions:

1−
∑

i

IR(i)× TR(i) where TR is the transfer rate
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Influence of sending on the computations

Average interference rate: 0.034.
On average, when the node sends messages at 10 MB/s, its
computational power decreases by 34%.

Receiving messages has more influence on the computational
power than sending messages.

Estimating the impact of a set of message sendings:
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Receptions have more influence than sendings



Simultaneous sends and receives

The estimate: 1− IRs × TRs − IRr × TRr

gives (s denoting the sends and r the receives):

IRr = 0.0427 instead of 0.0502, IRs = 0.0265 instead of 0.0327

There is a synergistic influence between sends and receives.
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Other observations

The less the memory used by the application, the less impor-
tant the interferences: the interference rates are application
dependent !

The size of messages has no influence.

Remote processors have significantly higher interference rates
(more than 0.070 for receives), but the achievable bandwidths
are far less important.



Conclusion

To compute and communicate simultaneously can make one
“lose” more than half of the computational power.

Once the interference rates are measured, for a given applica-
tion, between each pair of processors, one can deduce a good
approximation of the available computational powers.

What about other platforms ? languages ? (same thing for the
C language)

Does this change anything in practice ?
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The studied problem

Application: n identical, independent, tasks.

Considered platform : a tree of heterogeneous computational
resources (processors, clusters, etc.), interconnected by com-
munications links of different characteristics.

All the input data files are initially located at the root of the
tree.

The root processor decides which task it executes itself and
which tasks it delegates to its sons. Each internal node do the
same.

A node sends work to one of its sons only when the son requests
some. When there are simultaneous requests, a scheduling pol-
icy solves the conflicts.
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Known results

Hypothesis : 1) no interferences bewteen computations and
communications or 2) communications and computations are
mutually exclusive.

Bandwidth centric solution: if there is enough available band-
width, all the sons work; otherwise, the tasks are sent to the
sons which have sufficiently fast communications, priority being
given to the son with the fastest communications.



The interference model to be instantiated

Normalized computation time:

1−
∑

i

IRs(i)× TRs(i)−
∑

i

IRr(i)× TRr(i)

To obtain a good approximation of the different interference
rate is complicated and costly: it requires the measure of com-
putational capabilities for different throughput of sends and
receives.



A more simply instantiated interference model (1)

For each node n,

measure Cn : number of tasks executed by unit of time;

measure the maximal bandwidth achieved when receiving MRn

messages and the corresponding computational power: Cn
r .

IRr =
Cn−Cn

r
Cn

MRn

For each son i simultaneously measure:

1 the bandwidth of n when sending to the son i : SR(i);
2 the computational power of node n: Cn

sr(i);
3 the bandwidth of n when receiving from its father : RR(i).

IRs(i) =

(
1− RR(i)

MRn
Cn−Cn

r
Cn − Cn

sr(i)
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A more simply instantiated interference model (2)

One measure for node n and one for each of its sons, instead
of a potentially exponential number of measures with a set of
different bandwidth values.

The global precision is of a lesser quality, but a better local
precision (inside the convex hull of the measured points).



Using the interference model

Multi-port sends: the throughput of each node is maximized
when priority is given to the sons with the smaller interference
rates.
One should not give a task to a son for which IRn

s (i)ZCn ≥ 1,
where Z is the size of a task (to send a task to a son is more
expensive in computational time than what it saves).

One-port sends: the throughput of each node is maximized
when priority is given to the sons with the highest value for:
Bi

r(1− IRn
s ZCn).



Experimental verification

Scheduling policy:

IA:single : interference aware, single port, ordering by increasing
IRs values.

IA:multi : interference aware, multiple ports, ordering by in-
creasing IRs values.

FCFS : first come, first serve.

CompRate : by decreasing computational power.

BWC : by decreasing bandwidth.

RootComputes : the root computes everything.



Impact of the policies on the order (1)

Order : interference rates.

Order : computational power.



Impact of the policies on the order (2)

Order : interference rates.

Order : bandwidth.



Results
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The problem

How can we model the network in order to predict the time needed
for messages to be sent ?



Network latencies (1)

Classical model of communication times: α +
x

β
where

x is the message size;
α is the latency;
β is the bandwidth.

Numerous works neglect α.
Justification: to ease or enable problem solving.

Problem: the solution obtained may be unrealistic has the send-
ing of an infinitely small message is not penalized.
(Ex.: distributing an infinite number of infinitely small rounds.)
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Network latencies (2)

Are latencies actually negligible ?

An example: TeraGrid between SDSC and NCSA (USA)

Latency: ≈ 100ms

Bandwidth: 40 Gb/s.

Sending a 1 gigabyte message: more than a third of the time
needed to send a message is due to the latency.

Conclusion ?



Computation latencies

Programs may have a non negligible initialization cost.

Launching a process may be long: on Globus Toolkit 2.0, launch-
ing a task doing no work (no-op job) may take 25 seconds
(authentication, resources acquisition, process creation, etc.).

It may be necessary to take into account computation latencies even
for programs whose execution time is linear in the size of input data.



Classical model of networks

Classical model

Processors are interconnected through point to point connec-
tions (no routers, no switch, etc.).

Multi port model: a processor can simultaneously send mes-
sages to several other processors.

One port model: a processor can, at one time, send at most
one message to one other processor.

Only one message can travel along a given link at a given time.

A complete graph can model a switch, but not an Ethernet
network.



First problem of the classical model of network

Different logical communication links can share physical communi-
cation links.

Simultaneous communications from A to B and from C to D. Logi-
cally: no interferences; In practice: one needs to know the network
topology to be able to predict what is going to happen.

Bad predictions of contentions.



Second problem of the classical model of network

It may be an advantage to share the use of the communication links.

Example (a caricature)

A server receives tasks and must spread them on some proces-
sors of same power, using a single communication link.

At time t arrives a task needing 10 minutes of communications
and 10 minutes of computations.

At time t+5 arrives a task needing 1 minute of communications
and 19 minutes of computations.

Objective: average stretch (ratio between the time the task
spent in the system and the time it would have spent if there
had been no other task in the system)

FIFO policy: 1
2(20

20 + 25
20) = 1.125.

Second task first: 1
2(26

20 + 20
20) = 1.15.

Fair bandwidth sharing: 1
2(21

20 + 21
20) = 1.05.
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Bandwidth sharing: classical model

We have supposed that when x communications share a same
communication link of bandwidth B, each was receiving a band-
width of B

x .

This is the classical model.

This is (usually) true on a local network (LAN).



Bandwidth sharing: in practice (1)



Bandwidth sharing: in practice (2)

The classical model is invalid for long distance networks (WAN).

With very long distances, all connections receive the same band-
width than the first opened connection !

Through a backbone travel a very very large number of com-
munications: one more or one less communication does not
significantly change the bandwidth allocated to each of the
communications.

Whatever the bandwidth allocated on a backbone, the amount
a sender can effectively use is limited by its TCP congestion
window.

Generalizing the classical model:
B

α + xβ
.



Network model

Machines are not linked by backbones: the communication uses
a certain number of local links before reaching the backbone(s)
used for the long distance communication.

The bandwidth of a communication using several links is defined
by the “slowest” link.

The limiting factor may be the machine network card or the
local network.

It is necessary to consider the local topology if several machines
from a same site may communicate simultaneously.

TCP behavior: on a congested link, the different communi-
cations receive bandwidths which are inversely proportional to
their round-trip-times.
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from a same site may communicate simultaneously.
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The problem

A graph G = (S, A).
The edge a ∈ A has a maximal bandwidth b(a).

A set R of paths in the graph G.
Our problem is to allocate a bandwidth λr to each path r ∈ R

Respecting the available bandwidths:

∀a ∈ A,
∑

r∈R,a∈r

λr ≤ b(a),

where a ∈ r means that the path r uses the edge a.

How should we allocate the bandwidths ?
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Maximizing the total throughput

R0

R1 R2 RL

In an optimal solution: λ1 = λ2 = ... = λL = 1− λ0

The total throughput is equal to: L − (L − 1)λ0 and is maximal
when the route R0 is allocated a null bandwidth !
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Max-min fairness: definitions and properties

Definition: the smallest allocated bandwidth is maximal.

If no edge used by the path Ri is saturated

∀a ∈ Ri,
∑

r∈R,a∈r

λr < b(a)

one can strictly increase the bandwidth allocated to Ri.

Thus, there exists a path r such that λr = λmin and such that
there exists at least one edge a ∈ r which is saturated.

Let e be a saturated edge of r. If there exists a path r′, e ∈ r′, of
bandwidth λr′ > λr, then one can give some of r′’s bandwidth
to r while having λ′r′ > λ′r > λr.

Therefore, there exists a path r such that λr = λmin and such
that there exists an edge a ∈ r satisfying: ∀r′, a ∈ r′ ⇒ λr′ =
λmin.
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Max-min fairness: allocation

Minimal allocated bandwidth:

λmin = min
a∈A

b(a)
|{r ∈ R | a ∈ r}|

.

Is the solution unique ?

Obviously not:

R3

R2

R0

R1

If all edges are supposed to have a bandwidth of 1, λ0 = λ1 =
λ2 = 1

3 but λ3 can take any value in the interval [13 ; 2
3 ].
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Max-min fairness: the algorithm

Algorithm: we recursively apply the max-min fairness principle: we
determine the edges which define the minimal allocated bandwidth,
we allocate the corresponding bandwidth to all routes using these
edges and one call recursively the algorithm on the remaining paths
using the updated available bandwidths.



Back to the example

R0

R1 R2 RL

In an optimal solution: λ1 = λ2 = ... = λL = λ0 = 1
2

The total throughput is equal to: L+1
2 (which is far below the opti-

mal value of L).
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Proportional fairness

Definition: one want to maximize
∑
R

log λR.

Closer to TCP behavior.



Back on the example

R0

R1 R2 RL

In an optimal solution: λ1 = λ2 = ... = λL = 1− λ0.
One want to maximize: L log(1− λ0) + log(λ0).
One thus want to maximize: (1− λ0)Lλ0.
The maximum is reached when λ0 = 1

L+1 .

The total throughput is then equal to: L− L−1
L+1 (which is far closer

to the optimum L).
The proportional fairness penalizes the long distance route for the
benefit of the total throughput.
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Conclusion

A complicated reality.

Need to have a model which enables to predict the behavior of
applications.

Need to take into account the topology and, more generally,
the behavior of networks.

The solution needs to be adapted to the targeted platforms and
applications.
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