
Categorical Semantics of Linear Logic: A Survey

Paul-Andŕe Melliès

Equipe Preuves, Programmes et Systèmes
CNRS and Universit́e Paris 7

January 23, 2006

Proof Theory is the result of a tumultuous history, developed in the periphery of main-
stream mathematics. Hence, its language is often idiosyncratic: sequent calculus, cut-
elimination, subformula property, etc. This survey is designed to guide the novice
reader and the itinerant mathematician on a smooth and engaging path through the
subject, focussed on the symbolic mechanisms of cut-elimination, and their transcrip-
tion as coherence diagrams in categories with structure. This spiritual journey at the
meeting point of linguistic and algebra is demanding at times, but unusually reward-
ing: at this date, no language (formal or informal) has been studied as thoroughly and
as deeply in mathematics as the language of proofs.

We start the survey by a short introduction to Proof Theory (Chapter 1) followed
by an informal explanation of the principles of Denotational Semantics (Chapter 2)
analogous to a Representation Theory for proofs, generating invariants modulo cut-
elimination. After describing in full detail the cut-elimination procedure of linear logic
(Chapter 3), we explain how to transcribe it in the language of categories with struc-
ture. We review two alternative constructions of a∗-autonomous category, or monoidal
category with duality (Chapter 4). After giving a 2-categorical account of lax and co-
lax monoidal adjunctions (Chapter 5) and recalling the notions of monoids and monads
(Chapter 6) we relate four different categorical axiomatizations of propositional linear
logic appearing in the litterature (Chapter 7).

Keywords: Proof Theory, Linear Logic, Cut-Elimination Theorem, Categorical Se-
mantics, Monoidal Categories, Linearly Distributive Categories,∗-autonomous Cate-
gories, Monoidal Adjunctions.

Contents

1 Proof theory: a short introduction 5

2 Semantics: proof invariants and categories 20
2.1 Proof invariants organize themselves as categories 20
2.2 A tensor product in linear logic . 22
2.3 Proof invariants organize themselves as monoidal categories (1) . . . 24
2.4 Proof invariants organize themselves as monoidal categories (2) . . . 26
2.5 Proof invariants organize themselves as monoidal categories (3) . . . 27
2.6 Conversely, what is a categorical model of linear logic? 29
2.7 Proof invariants as free categories 35
2.8 Notes and references . 35

1

3 Linear logic and its cut-elimination procedure 36
3.1 Classical linear logic . 36
3.2 Intuitionistic linear logic . 37
3.3 Cut-elimination in intuitionistic linear logic 38
3.4 Cut-elimination: commuting conversion cut vs. cut 38
3.5 Cut-elimination: theη-expansion steps 39

3.5.1 The tensor product . 39
3.5.2 The linear implication . 40
3.5.3 The tensor unit . 40
3.5.4 The exponential modality 40

3.6 Cut-elimination: the axiom steps . 41
3.6.1 Axiom steps . 41
3.6.2 Conclusion vs. axiom . 41

3.7 Cut-elimination: the exchange steps 41
3.7.1 Conclusion vs. exchange (the first case) 41
3.7.2 Conclusion vs. exchange (the second case) 42

3.8 Cut-elimination: principal formula vs. principal formula 42
3.8.1 The tensor product . 43
3.8.2 The linear implication . 43
3.8.3 The tensor unit . 43

3.9 Cut-elimination: promotion vs. dereliction and structural rules 44
3.9.1 Promotion vs. dereliction . 44
3.9.2 Promotion vs. weakening . 44
3.9.3 Promotion vs. contraction 45

3.10 Cut-elimination: secondary conclusion 45
3.10.1 Left introduction of the linear implication 46
3.10.2 A generic description of the structural rules: dereliction, weak-

ening, contraction, exchange 46
3.10.3 Left introduction of the tensor (with low priority) 47
3.10.4 Left introduction of the tensor unit (with low priority) 48

3.11 Cut-elimination: secondary hypothesis 48
3.11.1 Right introduction of the tensor (first case) 49
3.11.2 Right introduction of the tensor (second case) 49
3.11.3 Left introduction of the linear implication (first case) 49
3.11.4 Left introduction of the linear implication (second case) . . . 50
3.11.5 Left introduction of the linear implication (third case) 50
3.11.6 A generic description of the structural rules: dereliction, weak-

ening, contraction, exchange 50
3.11.7 Left introduction of the tensor (first case) (with low priority) . 52
3.11.8 Left introduction of the tensor (second case) (with low priority) 53
3.11.9 Left introduction of the tensor unit (with low priority) 53
3.11.10 Right introduction of the linear implication (with low priority) 53

2

4 Monoidal categories and duality 54
4.1 Monoidal categories . 54
4.2 Braided monoidal categories . 57
4.3 Symmetric monoidal categories . 59
4.4 Monoidal closed categories . 59
4.5 Monoidal biclosed categories . 60
4.6 Symmetric monoidal closed categories 61
4.7 ∗-autonomous categories . 62
4.8 Linearly distributive categories . 63
4.9 Duality in linearly distributive categories 65
4.10 Symmetric linearly distributive categories 66
4.11 ∗-autonomous categories as linearly distributive categories 67
4.12 Notes and references . 67

5 Adjunctions between monoidal categories 68
5.1 Lax monoidal functors . 69
5.2 Colax monoidal functors . 70
5.3 Natural transformations . 71
5.4 Monoidal natural transformations (between lax functors) 71
5.5 Monoidal natural transformations (between colax functors) 72
5.6 Symmetric monoidal functors (lax and colax) 72
5.7 The language of 2-categories . 73
5.8 The 2-category of monoidal categories and lax functors 75
5.9 Adjunctions between functors . 77
5.10 Adjunctions in the language of 2-categories 78
5.11 Another formulation: the triangular identities 80
5.12 A dual definition of adjunction . 82
5.13 Monoidal adjunctions . 84
5.14 A duality between lax and colax monoidal functors 84
5.15 A characterization of monoidal adjunctions 86
5.16 A characterization of symmetric monoidal adjunctions 87
5.17 Notes and references . 88

6 Monoids and monads 89
6.1 Monoids . 89
6.2 The category of monoids . 90
6.3 Comonoids . 92
6.4 Cartesian categories among monoidal categories 93
6.5 The category of commutative comonoids 97
6.6 Monads and comonads . 99
6.7 Monads and adjunctions . 101
6.8 Comonads and adjunctions . 104
6.9 Symmetric monoidal comonads (lax and colax) 105

3

7 Categorical models of linear logic 109
7.1 The transmutation principle of linear logic 110
7.2 Lafont categories . 112
7.3 Seely categories . 113
7.4 Linear categories . 116
7.5 Lafont-Seely categories . 124
7.6 Notes and references . 126

4

1 Proof theory: a short introduction

From vernacular proofs to formal proofs: Gottlob Frege

By nature and taste, the mathematician studies properties of specific mathematical ob-
jects, like rings, topological spaces,C∗-algebras, etc. This practice involves a high
familiarity with proofs, and with their elaboration. Hence, building a proof is fre-
quently seen as an art, or at least as a craft, among mathematicians. Any chair is fine
to sit down, but some chairs are more elegant than others. Similarly, the same theorem
may be established by beautiful or by ugly means ; and the experienced mathematician
will always look for an elegant proof.

In his daily work, the mathematician thinks of a proof as a rational argument ex-
changed on a blackboard, or exposed in a book — without further inquiry: the proof
is a vehicle of thought, not an object of formal investigation. In that respect, the logi-
cian interested in Proof Theory is a peculiar kind of mathematician, who investigates
inside mathematicsthe linguistic event of convincing someone else, or oneself, by a
mathematical argument.

Proof Theory has a short and turbulent history, which starts in 1879 with a booklet
of eighty-eight pages, published by Gottlob Frege at the age of 31. In this short mono-
graph, Gottlob Frege describes the first formal notation ever imagined for proofs —
which he callsBegrifftschrift in German, a neologism translated asideography. Gott-
lob Frege compares his ideography to a microscope which translatesvernacular proofs
exchanged between mathematicians intoformal proofswhich may be studied like any
other mathematical object.

In this formal language, proofs are written in two stages. First, a formula is repre-
sented as 2-dimensional graphical structures: for instance, the syntactic tree

F a F(a)

F(a)

is a graphical notation for the first-order and second-order formula written

∀F. ∀a. F(a)⇒ F(a)

in our contemporary notation. Then, a proof is represented as a sequence of such
formulas, constructed incrementally according to a series ofderivation rules, or logical
principles.

Looking for Foundations: David Hilbert

Gottlob Frege had terrible difficulties to convince the mathematical community of his
time. Most of his articles were rejected by mainstream mathematical journals, and Got-
tlob Frege often ended up publishing them in a condensed and non technical form in
slightly obscure philosophical journals. The ideography was saved from oblivion two
decades later by Bertrand Russell whose curiosity in this quite extraordinary work was
aroused by Giuseppe Peano. Quite at the same time, the great mathematician David
Hilbert got interested in logic, and more specifically, in Gottlob Frege’s ideography. It

5

is significant that David Hilbert raises as early as 1900 a purely proof-theoretic prob-
lem in his famous communication of twenty-three open problems at the International
Congress of Mathematicians in Paris. The second open problem of the list consists
indeed in showing that arithmetics is consistent, that is, without contradiction.

David Hilbert develops further the idea in his monograph of 1925 on the Infi-
nite [25]. He explains there that he hopes to establish by purelyfinite combinatorial
arguments on formal proofs that there exists no contradiction in mathematics — in
particular no contradiction in arguments involvinginfinite objects in arithmetic and
analysis. This finitary program was certainly influenced by David Hilbert’s successful
work in Algebraic Geometry, which is also based on the finitary principle of reducing
the infinite to the finite. Kurt G̈odel established three decades later in his Incomplete-
ness Theorem (1931) that Hilbert’s program was a hopeless dream: consistency of
arithmetics cannot be established by purely arithmetical arguments.

Consistency of Arithmetics: Gerhard Gentzen

Hilbert’s dream was fruitful nonetheless. Hermann Weyl’s student Gerhard Gentzen
established in 1936 the consistency of arithmetics, by a purely combinatorial argument.
Of course, we have just mentioned Gödel’s incompleteness theorem, which says that
this proof of consistency cannot be performed inside arithmetics. Accordingly, Gerhard
Gentzen uses in his argument a transfinite induction up to Cantor’s ordinalε0. And this
part of the reasoning lies outside arithmetics. We should recall here that the ordinalε0
is the first ordinal in Cantor’s epsilon hierarchy: it is defined as the smallest ordinal
which cannot be described starting from zero, and using addition, multiplication and
exponentiation of ordinals to the baseω.

Like many mathematicians and philosophers of his time, Gerhard Gentzen was fas-
cinated by the idea of providing safefoundations, or Grunlagenin German, to science
and knowledge. By proving consistency of arithmetics, Gerhard Gentzen hoped to
secure this part of mathematics from the kind of antinomies or paradoxes discovered
around 1900 in Set Theory by Cesare Burali-Forti, Georg Cantor, and David Russell.
Today, this foundational motivation does not seem as relevant as it was in the early
1930s. Most mathematicians believe that reasoning by finite induction on natural num-
bers is fine, and does not lead to contradictions in arithmetics. And it seems hopeless to
convince anyone that finite induction is safe, by exhibiting Gentzen’s argument based
on transfinite induction!

The sequent calculus

However, despite its inactuality, Gerhard Gentzen’s work is not reduced today to a
useless bibelot hanging in a Cabinet of Curiosity. On the contrary, it is regarded by
our contemporaries as one of the most important and influential works ever produced
in Logic and Proof Theory. But the traditional perspective is reversed: what matters is
not the consistency result in itself, but rather the method invented by Gerhard Gentzen
in order to establish the result.

This methodology is based on a formal innovation: thesequent calculus; and a
discovery: thecut-elimination theorem.They offer together an elegant and flexible

6

framework to formalize proofs — either in classical or in intuitionistic logic. This
framework improves in many ways the formal proof systems designed previously by
Gottlob Frege, Bertrand Russell, and David Hilbert. We find useful to explain here the
fundamental principles underlying this calculus and this procedure, since this survey
on categorical semantics is based on them.

Formulas

For simplicity, we restrict ourselves to propositional logic without quantifiers, either
on first-order entities (elements) or second-order entities (propositions or sets). We
also do not consider first-order variables. In this very elementary logic, a formulaA is
simply defined as a binary rooted tree

• with nodes labelled by a conjunction (noted∧), a disjunction (noted∨), or an
implication (noted⇒),

• with leaves labelled by the constant true (notedT), the constant false (notedF)
or a propositional variable (ranging overA, B or C).

A typical formula is the so-called Charles Peirce’s law:

((A⇒ B)⇒ A)⇒ A

which cannot be proved in intuitionistic logic, but can be proved in classical logic, as
we shall see later in this introductory chapter.

Sequents

A sequentis defined as a pair of sequences of formulasA1, ...,Am andB1, ..., Bn sepa-
rated by a symbol̀ in the following way:

A1, . . . ,Am ` B1, . . . , Bn. (1)

The sequent (1) should be understood as the stating that the conjunction of all the
formulasA1, . . . ,Am implies the disjunction of all the formulasB1, . . . , Bn, what may
be written as follows:

A1 ∧ . . . ∧ Am ⇒ B1 ∨ . . . ∨ Bn.

Three easy sequents

The simplest example of sequent is the following one:

A ` A (2)

which states that the formulaA implies the formulaA. Another very simple sequent is

A, B ` A (3)

which states that the conjunction of the formulasA andB implies the formulaA. Yet
another typical sequent is

A ` A, B (4)

which states that the formulaA implies the disjunction of the formulasA andB.

7

Philosophical interlude: truth values and tautologies

The specialists in Proof Theory are generally reluctant to justify the definition of their
sequent calculus by the external notion of “truth value” of a formula in a model. How-
ever, the notion of “truth value” has been so much emphasized by Alfred Tarski after
Gottlob Frege, and is so much spread today, that it may serve as a guideline for the
novice reader who discovers Gerhard Gentzen’s sequent calculus for the first time. It
will always be possible to explain later the conceptual deficiencies of the notion, and
the necessity to reconstruct it from inside Proof-Theory.

In this perspective, the sequent (1) states that in any modelM in which the formu-
lasA1, ...,Am are all true, then at least one of the formulasB1, . . . , Bn is also true. One
remarkable point of course is that nobody knows which formula is satisfied amongB1, . . . , Bn.
This makes all the spice of sequent calculus! One may carry on in this line, and observe
that the three sequents (2), (3) and (4) are tautologies in the model-theoretic sense that
they happen to be true in any modelM. For instance, the tautology (2) states that a
formulaA is true inM whenever the formulaA is true; and the tautology (4) states that
the formulaA or the formulaB is true inM when the formulaA is true.

Proofs: from tautologies to tautologies

What is more interesting from the proof-theoretic point of view is that tautologies may
be deduced mechanically from tautologies, by applying well-chosen rules of logic. For
instance, the two tautologies (3) and (4) may be deduced from the tautology (2) in the
following way. Suppose that one has established that a given sequent

Γ1,Γ2 ` ∆

describes a tautology — whereΓ1 andΓ2 and∆ denote sequences of formulas. It is not
difficult to establish then that the sequent

Γ1, B,Γ2 ` ∆

is a tautology. The sequentΓ1, B,Γ2 ` ∆ states indeed that at least one of the formulas
in ∆ is true when all the formulas inΓ1 andΓ2 and moreover the formulaB are true.
But this statement follows immediately from the fact that the sequentΓ1,Γ2 ` ∆ is a
tautology. Similarly, we leave the reader establish that whenever a sequent

Γ ` ∆1,∆2

is a tautology, then the sequent
Γ ` ∆1, B,∆2

is also a tautology, for every formulaB and every pair of sequences of formulas∆1

and∆2.

The rules of logic: weakening and axiom

We have just identified two simple recipes to deduce a tautology from another tautol-
ogy. The two rules of logic are calledLeft WeakeningandRight Weakening. They re-
flect a fundamental principle of classical and intuitionistic logic, that a formulaA⇒ B

8

may be established just by proving the formulaB, without using the hypothesisA. Like
the other rules of logic, they are written down vertically in the sequent calculus, with
the starting sequent on top, and the resulting sequent at bottom, separated by a line, in
the following way:

Γ1,Γ2 ` ∆ Left Weakening
Γ1, B,Γ2 ` ∆

(5)

and
Γ ` ∆1,∆2 Right Weakening
Γ ` ∆1, B,∆2

(6)

Gerhard Gentzen’s sequent calculus is based on the principle thata proof describes a
series of rules of logic like (5) and (6) applied to an elementary tautology like (2). For
homogeneity, the sequent (2) itself is identified as the result of a specific logical rule,
called theAxiom, which deduces the sequent (2) from no sequent at all. The rule is thus
written as follows:

AxiomA ` A

Now, the sequent calculus takes advantage of the horizontal notation for sequents, and
of the vertical notation for rules, to write down proofs as 2-dimensional entities. For
instance, the informal proof of sequent (3) is written as follows in the sequent calculus:

AxiomA ` A Left Weakening
A, B ` A

(7)

The rules of logic: contraction and exchange

Another fundamental principle of classical and intuitionistic logic is that the formulaA⇒
B is proved when the formulaB is deduced from the hypothesis formulaA used sev-
eral times. This principle is reflected in the sequent calculus by two additional rules of
logic, calledLeft ContractionandRight Contraction, formulated as follows:

Γ1,A,A,Γ2 ` ∆ Left Contraction
Γ1,A,Γ2 ` ∆

(8)

and
Γ ` ∆1,A,A,∆2 Right Contraction
Γ ` ∆1,A,∆2

(9)

Another important principle of classical and intuitionistic logic is that the order of
hypothesis and conclusions does not really matter in a proof. This is reflected in the
sequent calculus by theLeft ExchangeandRight Exchangerules:

Γ1,A, B,Γ2 ` ∆ Left Exchange
Γ1, B,A,Γ2 ` ∆

and
Γ ` ∆1,A, B,∆2 Right Exchange
Γ ` ∆1, B,A,∆2

9

The rules of logic: structural rules vs. logical rules

According to Gerhard Gentzen, the rules of logic should be separated in three classes:

• the axiom rule,

• the structural rules: weakening, contraction, exchange, and cut,

• the logical rules.

We have already encountered all the structural rules, except for the cut rule, which de-
serves a special discussion, and will be introduced later for that reason. The structural
rules manipulate the formulas of the sequent, but do not alter them. In contrast, the task
of each logical rule is to introduce a new logical connective in a formula, either on the
lefthand side or righthand side of the sequent. Consequently, there exists two logical
rules for each connective of the logic. The left and right introduction rules associated
to conjunction are:

Γ,A, B ` ∆
Left ∧

Γ,A∧ B ` ∆

and

Γ1 ` A,∆1 Γ2 ` B,∆2 Right∧
Γ1,Γ2 ` A∧ B,∆1,∆2

The left and right introduction rules associated to disjunction are:

Γ1,A ` ∆1 Γ2, B ` ∆2 Left ∨
Γ1,Γ2,A∨ B ` ∆1,∆2

and

Γ ` A, B,∆
Right∨

Γ ` ∆1,A∨ B,∆2

The left and right introduction rules associated to implication are:

Γ1 ` A,∆1 Γ2, B ` ∆2 Left⇒
Γ1,Γ2,A⇒ B ` ∆1,∆2

and

Γ,A ` B,∆
Right⇒

Γ ` A⇒ B,∆

In each of these rules, the two sequences of formulasΓ and∆ are arbitrary.

Formal proofs as derivation trees

Since we have already constructed a few formal proofs in our sequent calculus for
classical logic, it may be the proper time to give a general definition. From now on,
a formalproof is defined as a derivation tree constructed according to the rules of the
sequent calculus. Byderivation tree, we mean a rooted tree in which:

10

• every leaf is labelled by an axiom rule,

• every node is labelled by a rule of the sequent calculus,

• every edge is labelled by a sequent.

A derivation tree should satisfy the expected consistency property relating the sequents
on the edges to the rules on the nodes. In particular, the arity of a node in the deriva-
tion tree follows from the number of sequents on top of the rule: for instance, a node
labelled with theLeft ∧ rule has arity one, whereas a node labelled with theRight∧
rule has arity two. Note that every derivation tree has a root, which is a node labelled
by a rule of the sequent calculus. Theconclusionof the proof is defined in the expected
way as the sequentΓ ` ∆ obtained by the rule.

Philosophical interlude: the anti-realist tradition in Proof Theory

Once the sequent calculus understood and accepted by the novice reader, the specialist
in Proof Theory will generally advise to forget any guideline related to model-theory,
like truth-values or tautologies. This is a pervasive dogma of Proof Theory, which
could simply follow from a naive application of Ockham’s razor: now that proofs can
be produced mechanically by a symbolic device (the sequent calculus) independently
of any notion of truth... why should we remember any of the “ancient” model-theoretic
explanations?

In fact, the philosophical position generally adopted in Proof Theory since Gerhard
Gentzen is far more radical, even if this remains generally implicit in the daily math-
ematical work. This position is calledanti-realist by the professional philosopher, in
order to stress the antagonism with the otherrealist position. We will only sketch the
debate in a few words here. For the realist, the world is constituted of a fixed set of
objects, independent of the mind and of its symbolic representations. Thus, “truth”
amounts to a proper correspondence between the words and symbols emanating from
the mind, and the objects and external things of the world. For the anti-realist, on the
other hand, the very question “what objects is the world made of?” requires already
a theory or a description. In that case, “truth” amounts rather to some kind of ideal
coherence between our various beliefs and experiences.

The anti-realist position in Proof Theory may be summarized in four technical
tropisms:

• The sequent calculus generates formal proofs, and these formal proofs should be
studied as autonomous entities, just like any other mathematical object.

• The notion of “logical truth” in model-theory is based on the realist idea of the
existence of an external world: the model. This is too redundant to be useful:
what information does provide the statement that the formulaA∧B is true if and
only if the formulaA is true and the formulaB is true ?

• So, the “meaning” of the connectives of logic arises from their introduction rules
in the sequent calculus, and not from an external and realist concept of truth-
value. These introduction rules are inherently justified by the structural proper-
ties of proofs, like cut-elimination, or the subformula property.

11

• Kurt Gödel’s completeness theorem may be reunderstood in this way: every
modelM plays the role of a potential non recursive refutator which may be
simulated by some kind of infinite non recursive proof — this leading to a purely
proof-theoretic exposition of the completeness theorem.

This position is advocated today by Jean-Yves Girard in a series of sharp comments
exposed in French [22] and later developed in his work on ludics [23].

Two exemplary proofs in classical logic

There is a famous principle in classical logic that the disjunction of a formulaA and
of its negation¬A is necessarily true. This principle, called the Tertium Non Datur in
Latin (“the third is not given”) is nicely formulated by the formula

(A⇒ B) ∨ A

which states that for every formulaB, either the formulaA holds, or the formulaA
implies the formulaB. This very formula is established by the following in our sequent
calculus for classical logic:

AxiomA ` A Right Weakening
A ` B,A

Right⇒
` A⇒ B,A

Right∨
` (A⇒ B) ∨ A

(10)

The proof works for every formulaB, and may be specialized to the falsity formula⊥.
From this follows a proof of the formula:

¬A ∨ A

where we identify the negation¬A of the formulaA to the formulaA⇒ ⊥ which states
that the formulaA implies falsity.

We have mentioned above the Charles Peirce’s formula below:

((A⇒ B)⇒ A)⇒ A

may be established in classical logic. Indeed, we write down below the proof of the
formula in the sequent calculus:

AxiomA ` A Right Weakening
A ` B,A

Right⇒
` A⇒ B,A AxiomA ` A

Left⇒
(A⇒ B)⇒ A ` A,A

Right Contraction
(A⇒ B)⇒ A ` A

Right⇒
` ((A⇒ B)⇒ A)⇒ A

Note that the main part of the proof of the Tertium Non Datur appears at the very top
left of that proof. In fact, it is possible to prove that the two formulas are equivalent
in intuitionistic logic: in fact, each of them may be taken as an additional axiom of
intuitionistic logic, in order to obtain classical logic.

12

Cut-elimination

At this point, all the rules of our sequent calculus for classical logic have been intro-
duced... except possibly the most fundamental one: thecut-rule, formulated as follows:

Γ1 ` A,∆1 A,Γ2 ` ∆2 Cut
Γ1,Γ2 ` ∆1,∆2

The cut-rule reflects the famous deduction principle of logic: the Modus Ponens (“af-
firmative mode” in Latin) which states that the formulaB may be deduced from the
two formulasA andA⇒ B taken together. Suppose given two proofsπ1 andπ2 of the
sequents̀ A andA ` B:

π1...

` A

π2...

A ` B

The cut-rule may be applied to the two derivation trees so as to obtain a proof

π3...

` B

=

π1...

` A

π2...

A ` B Cut
` B

(11)

of the sequent̀ B. This is the Modus Ponens translated in the sequent calculus.
Despite the fact that it captures Modus Ponens, the most fundamental principle,

Gerhard Gentzen made the extraordinary observation that the cut-rule may be forgotten
from the point of view of provability, or what can be proved in logic! In technical terms,
the cut-rule isadmissiblein classical logic, as well as in intuitionistic logic. This means
that every sequentΓ ` ∆ which may be proved by a proofπ may be also proved by a
proof π′ in which the cut-rule does not appear at any stage of the proof. Such a proof
is calledcut-free.

Gerhard Gentzen called this property thecut-elimination theorem, or Hauptsatzin
German. Applied to our previous example (11) the property states that there exists an
alternative cut-free proof

π4...

` B

(12)

of the sequent̀ B.

The subformula property and the consistency of logic

The cut-elimination theorem is the backbone of modern Proof Theory. It is remarkable
for instance that three fundamental properties of formal logic follow quite directly from
this single theorem:

• the subformula property,

• the consistency of the logic,

13

• the completeness theorem.

Let us discuss the subformula property first. A formulaD is called a subformula of a
formulaAcB in three cases only:

• when the formulaD is equal to the formulaAcB,

• when the formulaD is subformula of the formulaA,

• when the formulaD is subformula of the formulaB,

whereAcBmeans eitherA⇒ B, or A∧ B or A∨ B. And the constant formulaF (resp.
T) is the only subformula of the formulaF (resp.T).

The subformula property states that every provable formulaA may be established
by a proofπ in which only subformulas of the formulaA appear. This remarkable
property follows immediately from the cut-elimination theorem. Suppose indeed that
a formulaA is provable in the logic. This simply means that there exists a proof of the
sequent̀ A. By cut-elimination, there exists a cut-free proofπ of the sequent̀ A. A
simple inspection of the rules of our sequent calculus shows that this cut-free proofπ
contains only subformulas of the original formulaA.

Then, the consistency of the logic follows easily from the subformula property.
Suppose indeed that the constant formulaF is provable in the logic. Then, by the
subformula property, there exists a proofπ of the sequent̀ F which contains only
subformulas of the formulaF. Since the formulaF is the only subformula of itself,
every sequent appearing in the proofπ should be a sequence ofF:

F, . . . , F ` F, . . . , F.

Any logical rule in the proofπ would introduce a connective of logic⇒ or ∧ or ∨,
which is not possible. From this follows that besides some axiom rules, the proofπ is
made of structural rules only. From this follows easily that every sequent in the proofπ
is empty on the lefthand side:

` F, . . . , F.

Since no such sequent can be obtained as result of an Axiom rule, one concludes that
there exists no proofπ of the formulaF in our logic. This is precisely the statement of
consistency.

The completeness theorem is slightly more difficult to deduce from the cut-elimination
theorem. The interested reader will find a detailed proof of the theorem in the first
chapter of the Handbook of Proof Theory, exposed by Samuel Buss [14].

The cut-elimination procedure

In order to establish the cut-elimination theorem, Gerhard Gentzen introduces a series
of symbolic transformations on proofs. Each of these rules tranforms a proofπ con-
taining a cut-rule into a proofπ′ with the same conclusion. In practice, the resulting
proof π′ will involve several cut-rules; but the complexity of these cut-rules will be
strictly less than the complexity of the cut-rules in the original proofπ. Consequently,
the rewriting rules may be iterated until one reaches a cut-free proof. Termination of the

14

procedure is far from obvious: this is precisely to prove this termination that Gerhard
Gentzen uses a transfinite induction up to Cantor’s ordinalε0. This provides an effec-
tive cut-elimination procedurewhich transforms any proof of the sequentΓ ` ∆ into a
cut-free proof of the same sequent. The cut-elimination theorem follows immediately.

This procedural aspect of cut-elimination is the starting point of denotational se-
mantics, whose task is precisely to provide mathematical invariants of proofs under
cut-elimination procedure. The exercice is far from obvious. One difficulty comes
from the symbolic intricacy of the cut-elimination procedure. We will see in Chapter 3
that describing in full details the cut-elimination procedure of a reasonable logic like
linear logic takes already a dozen of meticulous pages.

Intuitionistic logic

Intuitionistic logic has been introduced and developed by Luitzen Egbertus Jan Brouwer
at the beginning of the 20th century, in order to provide safer foundations to mathemat-
ics. Brouwer rejected the idea of formalizing mathematics, but left his student Arend
Heyting commit the outrage, and produce in 1930 a formal system for intuitionistic
logic, based on the idea that the Tertium Non Datur principle of classical logic should
be rejected.

A surprising and quite remarkable observation of Gerhard Gentzen an equivalent
formalization of intuitionistic logic is obtained simply by restricting the sequent calcu-
lus for classical logic to “intuitionistic” sequents:

Γ ` A

with exactly one formulaA on the righthand side. The reader will easily check for
illustration that the proof (10) of the sequent

` (A⇒ B) ∨ A

cannot be performed in the intuitionistic fragment of classical logic: one needs the
ability to contract on the righthand side of the sequent in order to perform the proof.

Linear logic

Gerhard Gentzen’s idea to describe intuitionistic logic by limiting classical logic to
particular sequents seems too simplistic and too arbitrary to work... But it works, and
deeper reasons must explain this unexpected success. This reflexion is precisely the
starting point of linear logic. It appears indeed that the key feature of intuitionistic
sequent calculus, compared to classical sequent calculus, is that the Weakening and
Contraction rules can be only applied on the lefthand side of the sequents (=the hy-
pothesis), and not on the righthand side (= the conclusion).

Precisely, linear logic is based on the idea that the Weakening and Contraction rules
do not apply toany formula, but only to very particular kind of modalized formulas.
Two modalities are involved: the modality ! (pronounce: of course) and the modality
? (pronounce: why not). Weakening and Contraction apply on formulas !A on the
lefthand side, and on formulas ?A on the righthand side.

15

Informally speaking, the intuitionistic sequent

A, B ` C

is translated as
!A, !B ` C

where the of course modality on the formulas !A and !B indicates that the two formulas
may be weakened and contracted at will.

First-order logic

In this short introduction to Proof Theory, we have chosen to limit ourselves to the
propositional fragment of classical logic: no variables, no quantification. This simpli-
fies matters, and captures the essence of Gerhard Gentzen’s ideas. Here, we would like
to indicate the logical principles underlying first-order classical logic, and illustrate the
logic at work on a remarkable formula, called the drinker formula.

In order to define first-order logic, one needs:

• an infinite setV of first-order variable symbols, ranging overx, y, z,

• a setF of symbols with a specified arity, ranging overf ,g,

• a setR of relation symbols with a specified arity, ranging overR,Q.

The termsof the logic are constructed from the function symbols and the first-order
variables. Hence, any first-order variablex is a term, andf (t1, ..., tk) is a term ift1,...,tk
are terms, andf has arityk. In particular, any function symbolf of arity 0 defines a
term. Theatomic formulasor the logic are defined as a relation symbol substituted by
terms. Hence,R(t1, ..., tk) is an atomic formula ift1,...,tk are terms, andRhas arityk.

The formulas of first-order logic are constructed as in the propositional case, except
that:

• propositional variablesA, B,C are replaced by atomic formulasR(t1, ..., tk),

• every node of the formula is either a propositional connective∧ or ∨ or⇒ as in
the propositional case, or a universal quantifier∀x, or an existential quantifier∃x.

So, a typical first-order formula looks like:

∀y.R(f (x), y).

One should be aware that this formula in which the quantifier∀x binds the first-order
variablex is treated as the same formula as:

∀z.R(f (x), z).

We will not discuss here the usual distinction between afreeand aboundoccurrence
of a variable in a first-order formula; nor describe how a free variablex of a first-order
formulaA(x) is substituted without capture of variable by a termt, in order to define a

16

formulaA(t). These definitions may be found in many textbooks. It should be enough
to illustrate the definition by mentioning that the formula

A(x) = ∀y.R(f (x), y)

applied to the termt = g(y) defines the formula

A(t) = ∀z.R(f (g(y)), z).

Except for those syntactic details, the sequent calculus works just as in the propo-
sitional case. The left introduction of the universal quantifier

Γ,A(t) ` ∆
Left ∀

Γ,∀x.A(x) ` ∆

and the right introduction of the existential quantifier

Γ ` A(t),∆
Right∃

Γ ` ∃x.A(x),∆

may be performed for any termt of the language, and without any restriction. On the
other hand, the right introduction of the universal quantifier

Γ ` A(x),∆
Right∀

Γ ` ∀x.A(x),∆

and the left introduction of the existential quantifier

Γ,A(x) ` ∆
Left ∃

Γ,∃x.A(x) ` ∆

may be applied only if the first-order variablex does not appear in any formula of the
contextsΓ and∆. Note that the formulaA(x) may contain other free variables thanx.

Let us illustrate these rules with the following first-order formula, called the drinker
formula:

∃y.{A(y)⇒ ∀x.A(x)} (13)

which states that for every formulaA(x) with first-order variablex, there exists an
elementy of the ontology such that ifA(y) holds, thenA(x) holds for every elementx
of the ontology. The elementy is thus the witness for the universal validity ofA(x). The
name of “drinker formula” comes from the following case study: suppose thatx ranges
over the customers of a pub, and thatA(x) means that the customerx is not drinking
beer; then, there exists a particularly addicted customery (the drinker) such that, if any
customerx in the pub is drinking beer, then the customery is also drinking beer. The
existence of such a customery in the pub is far from obvious, but it may be established
by purely logical means in classical logic.

The drinker formula has been thoroughly analyzed by Jean-Louis Krivine [28] who
generally replaces it with a formula expressed only with universal quantification, and
equivalent in classical logic:

∀y.{(A(y)⇒ ∀x.A(x))⇒ B} ⇒ B.

Here,Bstands for any formula of the logic. The original formulation (13) of the drinker
formula is then obtained by replacing the formulaB by the falsity formula⊥, and by
applying the series of equivalences in classical logic:

17

¬ ∀y.{¬(A(y)⇒ ∀x.A(x))}
≡ ∃y.{¬¬(A(y)⇒ ∀x.A(x))}
≡ ∃y.{A(y)⇒ ∀x.A(x)}

where, again, we write¬A for the formula (A⇒ ⊥). The shortest proof of the drinker
formula in classical logic is then:

Axiom
A(x0) ` A(x0) Right Weakening

A(x0) ` ∀x.A(x),A(x0) Right⇒
` A(x0)⇒ ∀x.A(x),A(x0)

Axiom
B ` B

Left⇒
(A(x0)⇒ ∀x.A(x))⇒ B ` A(x0), B

Left ∀
∀y.{(A(y)⇒ ∀x.A(x))⇒ B} ` A(x0), B Right∀
∀y.{(A(y)⇒ ∀x.A(x))⇒ B} ` ∀x.A(x), B

Left Weakening
∀y.{(A(y)⇒ ∀x.A(x))⇒ B},A(y)0 ` ∀x.A(x), B

Right⇒
∀y.{(A(y)⇒ ∀x.A(x))⇒ B} ` A(y)0 ⇒ ∀x.A(x), B

Axiom
B ` B

Left⇒
∀y.{(A(y)⇒ ∀x.A(x))⇒ B}, (A(y)0 ⇒ ∀x.A(x))⇒ B ` B, B

Left ∀
∀y.{(A(y)⇒ ∀x.A(x))⇒ B},∀y.{(A(y)⇒ ∀x.A(x))⇒ B} ` B, B

Contraction
∀y.{(A(y)⇒ ∀x.A(x))⇒ B} ` B, B

Contraction
∀y.{(A(y)⇒ ∀x.A(x))⇒ B} ` B

Right⇒
` ∀y.{(A(y)⇒ ∀x.A(x))⇒ B} ⇒ B

An historical remark on Gerhard Gentzen’s system LK

The reader already aware of Proof Theory will notice that our presentation of classical
logic departs in several ways from Gerhard Gentzen’s original presentation. One main
difference is that Gerhard Gentzen’s original sequent calculusLK containstwo right
introduction rules for disjunction:

Γ ` A,∆
Right∨1

Γ ` A∨ B,∆

Γ ` B,∆
Right∨2

Γ ` A∨ B,∆

whereas the sequent calculus presented here contains the introduction rule:

Γ ` A, B,∆
Right∨

Γ ` ∆1,A∨ B,∆2

We know since the discovery of linear logic, and the clarifications it offers, that the
two presentations of classical logic are very different in nature. The introduction rules
of the sequent calculusLK are calledadditivewhereas the presentation chosen here
aremultiplicative. However, it is possible to simulate the multiplicative rule inside the
original systemLK , in the following way:

Γ ` ∆1,A, B,∆2 Right∨1
Γ ` ∆1,A∨ B, B,∆

Right∨2
Γ ` ∆1,A∨ B,A∨ B,∆

Right Contraction
Γ ` ∆1,A∨ B,∆2

Conversely, the two additive introduction rules of the sequent calculusLK are simu-
lated in our sequent calculus, in the following way:

18

Γ ` ∆1,A,∆2 Right Weakening
Γ ` ∆1,A, B,∆2 Right∨1
Γ ` ∆1,A∨ B,∆2

Γ ` ∆1, B,∆2 Right Weakening
Γ ` ∆1,A, B,∆2 Right∨1
Γ ` ∆1,A∨ B,∆2

Note however that the Weakening and the Contraction rules play a key role in the
back and forth translations between the additive and the multiplicative sequent calculi.
Indeed, the two logical systems (additive and multiplicative) become different, but re-
markably complementary, in linear logic — where the Weakening and the Contraction
rules are limited to modalized formulas.

Notes and references

We advise the interested reader to look directly at the original papers by Gerhard
Gentzen, collected and edited by Manfred Szabo in [18]. More recent material will
be found in Jean-Yves Girard’s monographs on Proof Theory [19] and [20] as well as
in the Handbook of Proof Theory edited by Samuel Buss [14].

19

2 Semantics: proof invariants and categories

2.1 Proof invariants organize themselves as categories

In order to understand better linear logic, we are looking forinvariantsof proofs under
cut-elimination. Any such invariant is a function

π 7→ [π]

which associates to every proofπ of linear logic a mathematical entity [π] called
the denotationof the proof. Invariance under cut-elimination means that the deno-
tation [π] coincides with the denotation [π′] of any proofπ′ obtained by applying the
cut-elimination procedure to the proofπ. An analogy comes in mind with Knot The-
ory, and more specifically the induced Representation Theory: by definition, a knot
invariant is a function which associates to every knot an entity (typically, a number
or a polynomial) which remains unaltered under the action of the three Reidemeister
moves:

We are looking for similar invariants for proofs, this time with respect to the proof
transformations occurring in the course of cut-elimination. We will see that, just like in
Representation Theory, the construction of such invariants is achieved by constructing
the suitable kind of categories and functors.

Note that invariance is not enough: we are looking formodular invariants. What
does that mean? Suppose given three formulasA, B, C, together with a proofπ1 of the
sequentA ` B and a proofπ2 of the sequentB ` C. We have already described the
cut-rule in classical logic and in intuitionistic logic. The same cut-rule exists in linear
logic. When applied to the proofsπ1 andπ2, it leads to the following proofπ of the
sequentA ` C:

π1...

A ` B

π2...

B ` C
Cut

A ` C

20

Now, we declare an invariant modular when the denotation of the proofπ may be
deduced directly from the denotations [π1] and [π2] of the proofsπ1 andπ2. In that
case, there exists a binary operation◦ on denotations satisfying

[π] = [π2] ◦ [π1].

The very design of linear logic (and of its cut-elimination procedure) ensures that this
composition law is associative and has a left and a right identity. What do we mean?
This point deserves to be clarified. First, consider associativity. Suppose given a for-
mulaD and a proofπ3 of the sequentC ` D. By modularity, the two proofs

π1...

A ` B

π2...

B ` C
Cut

A ` C

π3...

C ` D
Cut

A ` D

and

π1...

A ` B

π2...

B ` C

π3...

C ` D
Cut

B ` D Cut
A ` D

have respective denotations

[π3] ◦ ([π2] ◦ [π1]) and ([π3] ◦ [π2]) ◦ [π1].

The two proofs are equivalent from the point of view of cut-elimination. Indeed, de-
pending on the situation, the procedure may transform the first proof into the second
proof, or conversely, the second proof into the first proof. This illustrates what lo-
gicians call acommutative conversion: in that case a conversion permuting the order
of the two cut rules. By invariance, the denotations of the two proofs coincide. This
establishes associativity of composition:

[π3] ◦ ([π2] ◦ [π1]) = ([π3] ◦ [π2]) ◦ [π1].

What about the left and right identities? There is an obvious candidate for the identity
on the formulaA, which is the denotationidA associated to the proof

AxiomA ` A

Given a proofπ of the sequentA ` B, the cut-elimination procedure transforms the two
proofs

AxiomA ` A

π
...

A ` B Cut
A ` B

21

and

π
...

A ` B AxiomB ` B Cut
A ` B

into the proof

π
...

A ` B

Modularity and invariance imply together that

[π] ◦ idA = idB ◦ [π] = [π].

From this, we deduce that every modular invariant of proofs gives rise to a category. In
this category, every formulaA defines an object [A], which may be rightly called the
denotationof the formula; and every proof

π
...

A ` B

denotes a morphism
[π] : [A] −→ [B]

which, by definition, is invariant under cut-elimination of the proofπ.

2.2 A tensor product in linear logic

The usual conjunction∧ of classical and intuitionistic logic is replaced in linear logic
by a conjunction akin to thetensor productof linear algebra, and thus noted⊗. We are
thus tempted to look for denotations satisfying not just invariance and modularity, but
alsotensoriality. By tensoriality, we mean two related things. First, the denotation [A⊗
B] of the formulaA ⊗ B should follow directly from the denotations of the formulaA
andB, by applying a binary operation (also noted⊗) on the denotations of formulas:

[A⊗ B] = [A] ⊗ [B].

Second, given two proofs

π1...

A1 ` A2

π2...

B1 ` B2

the denotation of the proofπ

22

π1...

A1 ` A2

π2...

B1 ` B2 Right⊗
A1, B1 ` A2 ⊗ B2 Left ⊗

A1 ⊗ B1 ` A2 ⊗ B2

should follow from the denotations of the proofsπ1 andπ2 by applying a binary oper-
ation (noted⊗ again) on the denotations of proofs:

[π] = [π1] ⊗ [π2].

These two requirements imply together that the linear conjunction⊗ of linear logic
defines abifunctor on the category of denotations. We check this claim as exercise.
Consider four proofs

π1...

A1 ` A2

π2...

B1 ` B2

π3...

A2 ` A3

π4...

B2 ` B3

with respective denotations

f1 = [π1], f2 = [π2], f3 = [π3], f4 = [π4].

The cut-elimination procedure transforms the proof

π1...

A1 ` A2

π2...

B1 ` B2Right⊗
A1, B1 ` A2 ⊗ B2Left ⊗

A1 ⊗ B1 ` A2 ⊗ B2

π3...

A2 ` A3

π4...

B2 ` B3 Right⊗
A2, B2 ` A3 ⊗ B3 Left ⊗

A2 ⊗ B2 ` A3 ⊗ B3 Cut
A1 ⊗ B1 ` A3 ⊗ B3

with denotation
(f3 ⊗ f4) ◦ (f1 ⊗ f2)

into the proof

π1...

A1 ` A2

π3...

A2 ` A3Cut A1 ` A3

π2...

B1 ` B2

π4...

B2 ` B3 Cut
B1 ` B3 Right⊗

A1, B1 ` A3 ⊗ B3 Left ⊗
A1 ⊗ B1 ` A3 ⊗ B3

with denotation
(f3 ◦ f1) ⊗ (f4 ◦ f2).

By invariance, the equality

(f3 ⊗ f4) ◦ (f1 ⊗ f2) = (f3 ◦ f1) ⊗ (f4 ◦ f2)

23

holds in the underlying category of denotations. This ensures that the first equation of
bifunctoriality is satisfied. One deduces in a similar way the other equation

id[A]⊗[B] = id[A] ⊗ id[B]

by noting that the cut-elimination procedure transforms the proof

AxiomA⊗ B ` A⊗ B

into the proof
Axiom A ` A AxiomB ` B Right⊗

A, B ` A⊗ B
Left ⊗

A⊗ B ` A⊗ B
by theη-expansionrule described in Chapter 3, Section 3.5.

2.3 Proof invariants organize themselves as monoidal categories (1)

We have just explained the reasons why the operation⊗ defines a bifunctor on the
category of denotations. We go further, and show now that this bifunctor defines a
monoidal category — not exactly in fact, but nearly so. The reader will find the notion
of monoidal category recalled in Chapter 4.

A preliminary step in order to define a monoidal category is to choose a unit objecte
in the category. The choice is nearly immediate in the case of linear logic. In classical
and intuitionistic logic, the truth valueT standing for “true” behaves as a kind ofunit
for conjunction, since the two sequents

A∧ T ` A and A ` A∧ T

are provable for every formulaA of the logic. In linear logic, the truth valueT is
replaced by a constant 1 which plays exactly the same role for the tensor product. In
particular, the two sequents

A⊗ 1 ` A and A ` A⊗ 1

are provable for every formulaA of linear logic. Theunit of the category is thus defined
as the denotatione= [1] of the formula 1.

Now, we construct three isomorphisms

αA,B,C : (A⊗ B) ⊗C −→ A⊗ (B⊗C),

λA : e⊗ A −→ A, ρA : A⊗ e−→ A

indexed on the objectsA, B,C of the category, which satisfy all the coherence and
naturality conditions of a monoidal category. The associativity morphismα is defined
as the denotation of the proofπA,B,C below:

Axiom A ` A

AxiomB ` B AxiomC ` C Right⊗
B,C ` B⊗C

Right⊗
A, B,C ` A⊗ (B⊗C)

Left ⊗
A⊗ B,C ` A⊗ (B⊗C)

Left ⊗
(A⊗ B) ⊗C ` A⊗ (B⊗C)

24

The two morphismsλ andρ are defined as the respective denotations of the two proofs
below:

AxiomA ` A Left 1
1,A ` A

Left ⊗
1⊗ A ` A

and
AxiomA ` A Left 1

A,1 ` A
Left ⊗

A⊗ 1 ` A
The naturality and coherence conditions onα, λ andρ are not particularly difficult to
establish. For instance, naturality ofα means that for every three proofs

π1...

A1 ` A2

π2...

B1 ` B2

π3...

C1 ` C2

with respective denotations:

f1 = [π1], f2 = [π2], f3 = [π3].

the following categorical diagram commutes:

(A1 ⊗ B1) ⊗C1
α //

(f1⊗ f2)⊗ f3
��

A1 ⊗ (B1 ⊗C1)

f1⊗(f2⊗ f3)

��
(A2 ⊗ B2) ⊗C2

α // A2 ⊗ (B2 ⊗C2)

(14)

where, for this time, and for clarity’s sake only, we do not distinguish between the
formula, say (A1⊗B1)⊗C1, and its denotation [(A1⊗B1)⊗C1]. We would like to prove
that this diagram commutes. Consider the two proofs:

π1...

A1 ` A2

π2...

B1 ` B2

A1, B1 ` A2 ⊗ B2

A1 ⊗ B1 ` A2 ⊗ B2

π3...

C1 ` C2

A1 ⊗ B1,C1 ` (A2 ⊗ B2) ⊗C2

(A1 ⊗ B1) ⊗C1 ` (A2 ⊗ B2) ⊗C2

A2 ` A2

B2 ` B2 C2 ` C2

B2,C2 ` B2 ⊗C2

A2, B2,C2 ` A2 ⊗ (B2 ⊗C2)
A2 ⊗ B2,C2 ` A2 ⊗ (B2 ⊗C2)

(A2 ⊗ B2) ⊗C2 ` A2 ⊗ (B2 ⊗C2)
Cut

(A1 ⊗ B1) ⊗C1 ` A2 ⊗ (B2 ⊗C2)

A1 ` A1

B1 ` B1 C1 ` C1

B1,C1 ` B1 ⊗C1

A1, B1,C1 ` A1 ⊗ (B1 ⊗C1)
A1 ⊗ B1,C1 ` A1 ⊗ (B1 ⊗C1)

(A1 ⊗ B1) ⊗C1 ` A1 ⊗ (B1 ⊗C1)

π1...

A1 ` A2

π2...

B1 ` B2

π3...

C1 ` C2

B1,C1 ` B2 ⊗C2

B1 ⊗C1 ` B2 ⊗C2

A1, B1 ⊗C1 ` A2 ⊗ (B2 ⊗C2)
A1 ⊗ (B1 ⊗C1) ` A2 ⊗ (B2 ⊗C2)

Cut
(A1 ⊗ B1) ⊗C1 ` A2 ⊗ (B2 ⊗C2)

25

By modularity, the two proofs have

α ◦ ((f1 ⊗ f2) ⊗ f3) and (f1 ⊗ (f2 ⊗ f3)) ◦ α.

as respective denotations. Now, the two proofs reduce by cut-elimination to the same
proof:

π1...

A1 ` A2

π2...

B1 ` B2 Right⊗
A1, B1 ` A2 ⊗ B2

π3...

C1 ` C2 Right⊗
A1, B1,C1 ` (A2 ⊗ B2) ⊗C2

Left ⊗
A1, B1 ⊗C1 ` (A2 ⊗ B2) ⊗C2

Left ⊗
A1 ⊗ (B1 ⊗C1) ` (A2 ⊗ B2) ⊗C2

which is simply the original proof of associativity in which every axiom step

A ` A B ` B C ` C

has been replaced by the respective proof

π1...

A1 ` A2

π2...

B1 ` B2

π3...

C1 ` C2

The very fact that the two proofs reduce to the same proof, and that denotation is
invariant under cut-elimination, ensures that the equality

α ◦ ((f1 ⊗ f2) ⊗ f3) = (f1 ⊗ (f2 ⊗ f3)) ◦ α.

holds. We conclude that the categorical diagram (14) commutes, and thus, that the
family α of associativity morphisms is natural. The other naturality and coherence
conditions required of a monoidal category are established in just the same way.

2.4 Proof invariants organize themselves as monoidal categories (2)

In order to conclude that the tensor product⊗ defines a monoidal category of deno-
tations, there only remains to check that the three morphismsα, λ andρ are isomor-
phisms. Interestingly, this is not necessarily the case! The expected inverse of the three
morphismsα, λ andρ are the denotationsα, λ andρ of the three proofs below:

Axiom A ` A AxiomB ` B Right⊗
A, B ` A⊗ B AxiomC ` C

Right⊗
A, B,C ` (A⊗ B) ⊗C

Left ⊗
A, B⊗C ` (A⊗ B) ⊗C

Left ⊗
A⊗ (B⊗C) ` (A⊗ B) ⊗C

and

26

Right 1
` 1 AxiomA ` A Right⊗

A ` 1⊗ A

and

Axiom A ` A
Right 1

` 1 Right⊗
A ` A⊗ 1

It is not difficult to deduce the following two equalities from invariance and modularity:

λ ◦ λ = idA, ρ ◦ ρ = idA.

On the other hand, and quite surprisingly, none of the four expected equalities

λ ◦ λ = ide⊗A, ρ ◦ ρ = idA⊗e,

α ◦ α = id(A⊗B)⊗C, α ◦ α = idA⊗(B⊗C),

is necessarily satisfied by the category of denotations. Typically, modularity ensures
that the morphismρ ◦ ρ denotes the proof

AxiomA ` A Left 1
A,1 ` A

Left ⊗
A⊗ 1 ` A

AxiomA ` A
Right 1

` 1 Right⊗
A ` A⊗ 1

Cut
A⊗ 1 ` A⊗ 1

which is transformed by cut-elimination into the proof

AxiomA ` A Left 1
A,1 ` A

Left ⊗
A⊗ 1 ` A

Right 1
` 1 Right⊗

A⊗ 1 ` A⊗ 1

(15)

Strictly speaking, invariance, modularity and tensoriality do not force that the proof (15)
has the same denotation as theη-expansion of the identity:

AxiomA ` A
Axiom

1 ` 1 Right⊗
A,1 ` A⊗ 1

Left ⊗
A⊗ 1 ` A⊗ 1

(16)

at least if we are careful to define the cut-elimination procedure of linear logic in the
slightly unconventional but right way exposed in Chapter 3.

2.5 Proof invariants organize themselves as monoidal categories (3)

However, we are not very far at this point from obtaining a monoidal category of deno-
tations. To that purpose, it is sufficient indeed to add a series of equalities to invariance,

27

modularity and tensoriality. For every two proofsπ1 andπ2, we require first that the
proof

π1...

Γ,C,D ` A
Left ⊗

Γ,C ⊗ D ` A

π2...

∆ ` B
Right⊗

Γ,C ⊗ D,∆ ` A⊗ B

(17)

has the same denotation as the proof

π1...

Γ,C,D ` A

π2...

∆ ` B
Right⊗

Γ,C,D,∆ ` A⊗ B
Left ⊗

Γ,C ⊗ D,∆ ` A⊗ B

(18)

obtained by “permuting” the left and right introduction of the tensor product. We re-
quire symmetrically that the proof

π1...

Γ ` A

π2...

∆,C,D ` B
Left ⊗

∆,C ⊗ D ` B
Right⊗

Γ,∆,C ⊗ D ` A⊗ B

(19)

has the same denotation as the proof

π1...

Γ ` A

π2...

∆,C,D ` B
Right⊗

∆,C ⊗ D ` B
Left ⊗

Γ,∆,C ⊗ D ` A⊗ B

(20)

obtained by “permuting” the left and right introduction of the tensor product. We also
require that the two proofs

π1...

Γ ` A Left 1
Γ,1 ` A

π2...

∆ ` B
Right⊗

Γ,1,∆ ` A⊗ B

(21)

and

π1...

Γ ` A

π2...

∆ ` B Left 1
1,∆ ` A

Right⊗
Γ,1,∆ ` A⊗ B

(22)

28

have the same denotation as the proof

π1...

Γ ` A

π2...

∆ ` B
∆ ` B Right⊗

Γ,∆ ` A⊗ B
Left 1

Γ,1,∆ ` A⊗ B

(23)

obtained by “relocating” the left introduction of the unit 1 from the sequentΓ ` A or
the sequent∆ ` B to the sequentΓ,∆ ` A⊗ B.

Once these four additional equalities satisfied, the original hypothesis of invariance,
modularity and tensoriality of denotations implies the desired equalities:

λ ◦ λ = ide⊗A, ρ ◦ ρ = idA⊗e,

α ◦ α = id(A⊗B)⊗C, α ◦ α = idA⊗(B⊗C).

Hence, the three morphismsα, λ andρ are isomorphisms in the category of denotations,
with respective inverseα, λ and ρ. We conclude in that case that the category of
denotations is monoidal.

Remark. The discussion above is mainly intended to the amaze the insider. The cut-
elimination procedure described in Chapter 3 is designed extremely carefully in order
to avoid unnecessary proof transformations. Once this strict cut-elimination policy
adopted, it appears that the equalities mentioned above are not necessarily satisfied:
consequently, the category of denotations is not necessarily monoidal. On the other
hand, all the existing cut-elimination procedures appearing in the litterature are strictly
more permissive than ours, in the sense that more proof transformations are accepted
and valid. We will see in Chapter 3 that when a permissive policy is adopted, the
three principles of invariance, modularity and tensoriality imply the equalities just men-
tioned: the category of denotations is monoidal in that case.

2.6 Conversely, what is a categorical model of linear logic?

We have recognized that every (invariant, modular, tensorial) denotation defines a
monoidal category of denotations, at least when the cut-elimination procedure is suf-
ficiently permissive. There remains to investigate the converse question: what axioms
should satisfy a given monoidal categoryC in order to define a modular and tensorial
invariant of proofs? The general principle of the interpretation is that every sequent

A1, . . . ,Am ` B

of linear logic will be interpreted as a morphism

[A1] ⊗ · · · ⊗ [Am] −→ [B]

29

in the categoryC, where we write [A] for the object which denotes the formulaA in the
category. This object [A] is computed by induction on the size of the formulaA in the
expected way. Typically,

[A⊗ B] = [A] ⊗ [B]

This explains why the categoryC should admit, at least, a tensor product. It is useful
to write

[Γ] = [A1] ⊗ · · · ⊗ [Am]

for the denotation of the context

Γ = A1, . . . ,Am

as an object of the categoryC. Every proof of the sequent

Γ ` B

is thus interpreted as a morphism

[Γ] −→ [B]

in the categoryC. A proof π is then interpreted by induction on the “depth” of its
derivation tree. Typically, the axiom rule

AxiomA ` A

is interpreted as the identity morphism on the interpretation of the formulaA.

id[A] : [A] −→ [A].

Also typically, given two proofs

π1...

Γ ` A

π2...

∆ ` B
interpreted as morphisms

f : [Γ] −→ [A] g : [∆] −→ [B]

in the categoryC, the proof

π1...

Γ ` A

π2...

∆ ` B Right⊗
Γ,∆ ` A ` B

is interpreted as the morphism

[Γ] ⊗ [∆]
f⊗g // [A] ⊗ [B]

in the monoidal categoryC.
Beyond these basic principles, the structures and properties required of a categoryC

in order to provide an invariant of proofs depends on the fragment (or variant) of linear
logic one has in mind: commutative or non commutative, classical or intuitionistic,
additive or non additive, etc. In each case, we sketch below what kind of axioms
should satisfy a monoidal categoryC in order to define an invariant of proofs.

30

Commutative vs. non commutative logic

Linear logic is generally understood as commutative logic, because there exists a canon-
ical proof of the sequentA ⊗ B ` B ⊗ A for every formulaA and B. The proof is
constructed as follows.

AxiomB ` B AxiomA ` A Right⊗
B,A ` B⊗ A

Exchange
A, B ` B⊗ A

Left ⊗
A⊗ B ` B⊗ A

For that reason, usual (commutative) linear logic is interpreted in monoidal categories
equipped with a symmetry, called for that reasonsymmetricmonoidal categories, see
Section 4.3 in Chapter 4 for a definition.

On the other hand, several non commutative variants of linear logic have been
introduced in the litterature, in which the exchange rule:

Γ,A, B,∆ ` C
Exchange

Γ, B,A,∆ ` C

has been removed, or has been replaced by a restricted exchange rule. These non
commutative variants of linear logic are interpreted in monoidal categories, possibly
equipped with a suitable notion of permutation, like a braiding, see Section 4.2 in
Chapter 4 for a definition.

Classical linear logic and duality

In his original article, Jean-Yves Girard introduced aclassicallinear logic, in which
sequents are monolateral:

` A1, · · · ,An.

The main feature of the logic is a duality principle, based on an involutive negation:

• every formulaA has a negationA⊥,

• the negation of the negationA⊥⊥ of a formulaA is the formulaA.

From this follows by duality a new connective
..

..................................... defined as follows:

(A
..

..................................... B) = (B⊥ ⊗ A⊥)⊥.

This leads to an alternative presentation of linear logic, based this time on bilateral
sequents:

A1, · · · ,Am ` B1, · · · , Bn (24)

We have seen in Chapter 1 that in classical logic, the bilateral sequent stands for the
formula

A1 ∧ · · · ∧ Am ⇒ B1 ∨ · · · ∨ Bn.

Similarly, in linear logic, the bilateral sequent stands for the formula

A1 ⊗ · · · ⊗ Am (B1
..

..................................... · · ·
..

..................................... Bn

31

where(is implication in linear logic. The notion of linearly distributive category
introduced by Robin Cockett and Robert Seely, and recalled in Chapter 4 of this survey,
is a category equipped withtwomonoidal structures⊗ and• precisely to interpret such
a bilateral sequent (24) as a morphism

[A1] ⊗ . . . ⊗ [Am] −→ [B1] • . . . • [Bn].

in the category.

Intuitionistic linear logic and linear implication (

Theintuitionistic fragment of linear logic was later extracted from classical linear logic
by restricting the bilateral sequents (24) to “intuitionistic” sequents

A1, · · · ,Am ` B1, · · · , Bn.

in which several formulas may appear on the lefthand side of the sequent, but only
one formula appears on the righthand side. We have seen in the introduction (Chap-
ter 1) that Arend Heyting applied the same trick to classical logic in order to formalize
intuitionistic logic. Hence the name of ”intuitionistic” linear logic.

Duality generally disappears in the usual formalizations of intuitionistic linear logic:
the original connectives of linear logic are limited to the tensor product⊗, the unit 1,
and the linear implication(. The right introduction of linear implication is performed
by the rule:

A,Γ ` B
Right(

Γ ` A(B

which may be interpreted in a monoidal closed category, see Chapter 4 of this survey
for a definition.

The additive conjunction & of linear logic

One important aspect of linear logic is the discovery that there existstwo different
conjunctions in logic:

• a “multiplicative” conjunction called “tensor” and noted⊗ because it behaves
like a tensor product in linear algebra,

• another “additive” conjunction called “with” and noted & which behaves like a
cartesian product in linear algebra.

In intuitionistic linear logic, the right introduction of the connective & is performed by
the rule:

Γ ` A Γ ` B
Γ ` A& B

(25)

The left introduction of the connective & is performed by two different rules:

Γ,A,∆ ` C

Γ,A& B,∆ ` C

Γ, B,∆ ` C

Γ,A& B,∆ ` C
(26)

32

The additive conjunction & is generally interpreted as a cartesian product in a monoidal
categoryC. Suppose indeed thatΓ = X1, ...,Xm and thatπA andπB are two proofs

πA...

Γ ` A

πB...

Γ ` B

of the sequents on top of the right introduction rule (25) are interpreted by the mor-
phisms:

f : [Γ] −→ [A] g : [Γ] −→ [B]

in the monoidal categoryC. In order to interpret the proof

πA...

Γ ` A

πB...

Γ ` B Right &
Γ ` A& B

(27)

we suppose from now on that every pair of objectsA and B in the categoryC has a
cartesian product notedA& B. Then, the two morphismsf andg give rise to a unique
morphism

〈 f ,g〉 : [Γ] −→ [A]&[B]

making the diagram

[A]

[Γ]
〈 f ,g〉 //

f

&&

g

88

[A]&[B]
π1

99tttttt

π2

%%JJ
JJJ

J

[B]

commute in the categoryC. In the diagram, the two morphismsπ1 andπ2 denote the
first and second projection of the cartesian product. Now, we define the interpretation
of the formulaA& B as expected:

[A& B] = [A]&[B]

and interpret the proof (27) as the morphism〈 f ,g〉.
The two left introduction rules (26) are interpreted by precomposing with the first

or second projection of the cartesian product [A]&[B]. Consider a proof

π
...

Γ, B,∆ ` C

interpreted as the morphism

f : [Γ] ⊗ [A] ⊗ [∆] −→ [C]

33

in the categoryC. Then, the proof

π
...

Γ, B,∆ ` C
Left &1

Γ,A& B,∆ ` C

is interpreted as the morphism:

[Γ] ⊗ [A& B] ⊗ [∆]
[Γ]⊗π1⊗[∆] // [Γ] ⊗ [A] ⊗ [∆]

f // [C].

Exponential modality

The main difficulty of the field is to understand the categorical properties of the expo-
nential modality ! of linear logic. This question has been much debated in the past,
sometimes with extreme vigour. It seems however that we have reached a state of
agreement, or at least relative equilibrium, in the last few years. People have realized
indeed that all the axiomatizations appearing in the litterature converge to a unique
notion: a well-behaved (that is: symmetric monoidal) adjunction

M

L

&&
⊥ L

M

ff

between:

• a symmetric monoidal closed categoryL,

• a cartesian categoryM.

By cartesian category, we mean a category with finite products: the category has a
terminal object, and every pair of objectsA andB has a cartesian product.

An adjunctionM a L satisfying these properties is called alinear-non-linear ad-
junction, see Definition 19 at the beginning of Chapter 7. It provides a categorical
model of intuitionistic linear logic, and a categorical model ofclassical linear logic
when the categoryC is not only symmetric monoidal closed, but also∗-autonomous.
In this model, the exponential modality ! is interpreted as the comonad

! = M ◦ L

induced on the categoryL by the linear-non-linear adjunction. We will come back to
this point in Chapter 7 of the survey, where we review four alternative definitions of a
categorical model of linear logic, and extract in each case a particular linear-non-linear
adjunction.

34

2.7 Proof invariants as free categories

It is worth explaining another time that Proof Theory is in many ways similar to Knot
Theory, as understood in Representation Theory. In Knot Theoty, every object in a
monoidal category equipped with abraiding and aleft dualitydefines an invariant of
knots under the Reidemeister moves. See Chapter 4 for a definition of braiding and
left duality. The invariant is then computed as follows. One defines a categoryT with
natural numbers as objects, and knots (or rathertangles) as morphisms. One shows
that:

• the categoryT is monoidal with braiding and left duality,

• there exists a unique structure preserving functorF from this categoryT to any
monoidal category with braiding and left duality.

The notions of braiding and duality are given in Chapter 4. By structure preserving, we
mean that the functor should transport the monoidal structure and the braiding of the
category of tangles to the categoryC.

By analogy, Denotational Semantics may be called the Representation Theory of
proofs. For instance, it is possible to construct a free symmetric monoidal closed cat-
egory over a categoryC. Then, an invariant of proofs in intuitionistic multiplicative
linear logic is the same thing as a structure preserving functor from this category to a
symmetric monoidal closed category.

2.8 Notes and references

Several variants of non commutative linear logic have been introduced in the litterature, starting
from the cyclic linear logic formulated by Jean-Yves Girard, and described by David Yetter
in [36]. The intuitionistic fragment of this cyclic linear logic happens to coincide with a sequent
calculus devised by Jim Lambek [30] as early as 1958 in order to parse sentences in English and
other vernacular languages.

One motivation for cyclic linear logic is topological: cyclic linear logic generates exactly
theplanar proofsof linear logic. By planar proof, one means a proof whose proof-net is planar,
see [21]. Cyclic linear logic was later extended in several ways: to a non commutative logic by
Paul Ruet [1], to a planar logic by Paul-André Melliès [32], and more recently to a permutative
logic by Jean-Marc Andreoli, Gabriele Pulcini and Paul Ruet [2]. Again, these logics are mainly
motivated by the topological properties of the proof they generate: planarity, etc. Another moti-
vation is provided by the Curry-Howard isomorphism relating Proof Theory to the Programming
Language Theory. Frank Pfenning and Jeff Polakow study in [33] a non commutative extension
of intuitionistic linear logic, in which non commutativity captures the stack discipline involved
in the standard continuation passing style translations.

There remains a lot to be understood and clarified on the various non commutative logics,
in particular on the semantic side. In that direction, one should mention the early work by Rick
Blute and Phil Scott on Hopf algebras and cyclic linear logic [10, 12]. In Chapter 4, we will
investigate two non-commutative variants of well-known categorical models of multiplicative
linear logic: the linearly distributive categories introduced by Robin Cockett and Robert Seely
in [15], and the non symmetric∗-autonomous categories formalized by Michael Barr in [4].

35

3 Linear logic and its cut-elimination procedure

In this chapter, we introduce propositional linear logic, understood now as a formal
proof system. First, we describe the sequent calculus of classical linear logic (LL) and
explain how to specialize to its intuitionistic fragment (ILL). Then, we expose in full
detail the cut-elimination procedure in the intuitionistic fragment. Finally, we return to
classical linear logic and describe briefly the cut-elimination procedure in the general
system.

3.1 Classical linear logic

The formulas

The formulas of propositional linear logic are constructed by an alphabet of four nullary
constructors calledunits:

0 1 ⊥ >

two unary constructors calledmodalities:

!A ?A

and four binary constructors calledconnectives:

A⊕ B A⊗ B A
..

..................................... B A& B

Each constructor receives a specific name in the folklore of linear logic. Each con-
structor is also classified in three classes:additive, multiplicative, andexponential,
depending on its nature and affinities with other constructors. This is recalled in the
table below.

⊕ plus
0 zero: the unit of⊕ The
& with additives
> top: the unit of &
⊗ tensor product
1 one: the unit of⊗ The

..
..................................... parallel product multiplicatives
⊥ bottom: the unit of

..
.....................................

! bang (or shriek) The exponential
? why not modalities

The sequents

The sequents aremonolateral
` A1, . . . ,An

understood assequencesof formulas, not sets. In particular, the same formulaA may
appear twice consecutively in the sequence: this is precisely what happens when the
contraction rule applies.

36

The sequent calculus

A proof of propositional linear logic is constructed according to a series of rules pre-
sented in Figure 1. Note that there is no distinction between “Left” and “Right” intro-
duction rules, since every sequent is monolateral.

Axiom
` A⊥,A

Cut
` Γ,A ` A⊥,∆

` Γ,∆

⊗
` Γ,A ` ∆, B

` Γ,∆,A⊗ B
..

..................................... ` Γ,A, B

` Γ,A
..

..................................... B

1
` 1

⊥
` Γ

` Γ,⊥

⊕1
` Γ,A

` Γ,A⊕ B
&

` Γ,A ` Γ, B

` Γ,A& B

⊕2
` Γ, B

` Γ,A⊕ B

0 no rule >
` Γ,>

Contraction
` Γ,?A,?A

` Γ,?A
Weakening

` Γ

` Γ,?A

Dereliction
` Γ,A

` Γ,?A
Promotion

`?Γ,A

`?Γ, !A

Figure 1: Sequent calculus of linear logic (LL)

3.2 Intuitionistic linear logic

The formulas

The formulas of propositional intuitionistic linear logic (with additives) are constructed
by an alphabet of twounits:

1 >

one modality:

!A

and three connectives:

A⊗ B A(B A& B

37

The connective(is called linear implication.

The sequents

The sequents areintuitionistic, that is, bilateral

A1, . . . ,Am ` B

with asequenceof formulasA1, ...,Am on the lefthand side, and auniqueformulaB on
the righthand side.

The sequent calculus

A proof of propositional intuitionistic linear logic is constructed according to a series of
rules presented in Figure 2. We follow the tradition, and call “intuitionistic linear logic”
the intuitionistic fragment without the connective & nor unit>. Then, “intuitionistic
linear logicwith finite products” is the logic extended with the four rules of Figure 3.

3.3 Cut-elimination in intuitionistic linear logic

The cut-elimination procedure is described comprehensively in Sections 3.5—3.4 as a
series of symbolic transformations on proofs.

3.4 Cut-elimination: commuting conversion cut vs. cut

The proof

π1...

Γ ` A

π2...

Υ2,A,Υ3 ` B

π3...

Υ1, B,Υ4 ` C
Cut

Υ1,Υ2,A,Υ3,Υ4 ` C
Cut

Υ1,Υ2,Γ,Υ3,Υ4 ` C

is transformed into the proof

π1...

Γ ` A

π2...

Υ2,A,Υ3 ` B
Cut

Υ2,Γ,Υ3 ` B

π3...

Υ1, B,Υ4 ` C
Cut

Υ1,Υ2,Γ,Υ3,Υ4 ` C

and conversely. In other words, the two proofs are equivalent from the point of view
of the cut-elimination procedure. This point is already mentioned in Section 2.1 of
Chapter 2: the commutative conversion ensures that composition is associative in the
category induced by any invariant and modular denotation of proofs.

38

Axiom
A ` A

Cut
Γ ` A Υ1,A,Υ2 ` B

Υ1,Γ,Υ2 ` B

Left ⊗
Υ1,A, B,Υ2 ` C

Υ1,A⊗ B,Υ2 ` C

Right⊗
Γ ` A ∆ ` B
Γ,∆ ` A⊗ B

Left(
Γ ` A Υ1, B,Υ2 ` C

Υ1,Γ,A(B,Υ2 ` C

Right(
A,Γ ` B

Γ ` A(B

Left 1
Υ1,Υ2 ` A

Υ1,1,Υ2 ` A

Right 1
` 1

Promotion
!Γ ` A
!Γ `!A

Dereliction
Υ1,A,Υ2 ` B

Υ1, !A,Υ2 ` B

Weakening
Υ1,Υ2 ` B

Υ1, !A,Υ2 ` B

Contraction
Υ1, !A, !A,Υ2 ` B

Υ1, !A,Υ2 ` B

Exchange
Υ1,A1,A2,Υ2 ` B

Υ1,A2,A1,Υ2 ` B

Figure 2: Sequent calculus of intuitionistic linear logic (ILL)

3.5 Cut-elimination: the η-expansion steps

3.5.1 The tensor product

The proof

AxiomA⊗ B ` A⊗ B

39

Left &1
Υ1,A,Υ2 ` C

Υ1,A& B,Υ2 ` C

Left &2
Υ1, B,Υ2 ` C

Υ1,A& B,Υ2 ` C

Right &
Γ ` A Γ ` B
Γ ` A& B

True
Γ ` >

Figure 3: Addendum to figure 2: ILL with finite products

is transformed into the proof

AxiomA ` A AxiomB ` B Right⊗
A, B ` A⊗ B

Left ⊗
A⊗ B ` A⊗ B

3.5.2 The linear implication

The proof

AxiomA(B ` A(B

is transformed into the proof

AxiomA ` A AxiomB ` B Left(A,A(B ` B
Right(

A(B ` A(B

3.5.3 The tensor unit

The proof

Axiom
1 ` 1

is transformed into the proof

Right 1
` 1 Left 1

1 ` 1

3.5.4 The exponential modality

The proof

Axiom
!A `!A

is transformed into the proof

40

AxiomA ` A Dereliction
!A ` A

Promotion
!A `!A

3.6 Cut-elimination: the axiom steps

3.6.1 Axiom steps

The proof

AxiomA ` A

π
...

Υ1,A,Υ2 ` B
Cut

Υ1,A,Υ2 ` B

is transformed into the proof

π
...

Υ1,A,Υ2 ` B

3.6.2 Conclusion vs. axiom

The proof

π
...

Γ ` A AxiomA ` A Cut
Γ ` A

is transformed into the proof

π
...

Γ ` A

3.7 Cut-elimination: the exchange steps

3.7.1 Conclusion vs. exchange (the first case)

The proof

π1...

Γ ` A

π2...

Υ1,A, B,Υ2 ` C
Exchange

Υ1, B,A,Υ2 ` C
Cut

Υ1, B,Γ,Υ2 ` C

is transformed into the proof

41

π1...

Γ ` A

π2...

Υ1,A, B,Υ2 ` C
Cut

Υ1,Γ, B,Υ2 ` C
Series of Exchanges

Υ1, B,Γ,Υ2 ` C

3.7.2 Conclusion vs. exchange (the second case)

The proof

π1...

Γ ` B

π2...

Υ1,A, B,Υ2 ` C
Exchange

Υ1, B,A,Υ2 ` C
Cut

Υ1,Γ,A,Υ2 ` C

is transformed into the proof

π1...

Γ ` B

π2...

Υ1,A, B,Υ2 ` C
Cut

Υ1,A,Γ,Υ2 ` C
Series of Exchanges

Υ1,Γ,A,Υ2 ` C

3.8 Cut-elimination: principal formula vs. principal formula

In this section and the next, we explain how the cut-elimination procedure transforms
a proof

π1...

Γ ` A

π2...

Υ1,A,Υ2 ` B
Cut

Υ1,Γ,Υ2 ` B

in which the conclusionA and the hypothesisA are bothprincipal in their respective
proofsπ1 andπ2. In this section, we treat the cases in which the last rules of the proofs
π1 andπ2 introduces:

• the tensor product (Section 3.8.1),

• the linear implication (Section 3.8.2),

• the tensor unit (Section 3.8.1).

For clarity’s sake, we treat separately in Section 3.9 the three cases where the last rule
of the proofπ1 is a promotion rule, and the last rule of the proofπ2 is a “structural
rule”: a dereliction, a weakening or a contraction.

42

3.8.1 The tensor product

The proof

π1...

Γ ` A

π2...

∆ ` B Right⊗
Γ,∆ ` A⊗ B

π3...

Υ1,A, B,Υ2 ` C
Left ⊗

Υ1,A⊗ B,Υ2 ` C
Cut

Υ1,Γ,∆,Υ2 ` C
is transformed into the proof

π1...

Γ ` A

π2...

∆ ` B

π3...

Υ1,A, B,Υ2 ` C
Cut

Υ1,A,∆,Υ2 ` C
Cut

Υ1,Γ,∆,Υ2 ` C

3.8.2 The linear implication

The proof

π1...

A,∆ ` B
Right(

∆ ` A(B

π2...

Γ ` A

π3...

Υ1, B,Υ2 ` C
Left(

Υ1,Γ,A(B,Υ2 ` C
Cut

Υ1,Γ,∆,Υ2 ` C
is transformed into the proof

π2...

Γ ` A

π1...

A,∆ ` B
Cut

Γ,∆ ` B

π3...

Υ1, B,Υ2 ` C
Cut

Υ1,Γ,∆,Υ2 ` C

3.8.3 The tensor unit

The proof

Right 1
` 1

π
...

Υ1,Υ2 ` A
Left 1

Υ1,1,Υ2 ` A
Cut

Υ1,Υ2 ` A
is transformed into the proof

π
...

Υ1,Υ2 ` A

43

3.9 Cut-elimination: promotion vs. dereliction and structural rules

In this section, we explain how the cut-elimination procedure transforms a proof

π1...

!Γ ` A
Promotion

!Γ `!A

π2...

Υ1, !A,Υ2 ` B
Cut

Υ1, !Γ,Υ2 ` B

in which the hypothesis !A is principal in the proofπ2. There are exactly three cases to
treat, depending on the last rule of the proofπ2:

• a dereliction (Section 3.9.1),

• a weakening (Section 3.9.2),

• a contraction (Section 3.9.3).

The interaction with an exchange step is already treated in Section 3.7.

3.9.1 Promotion vs. dereliction

The proof

π1...

!Γ ` A
Promotion

!Γ `!A

π2...

Υ1,A,Υ2 ` B
Dereliction

Υ1, !A,Υ2 ` B
Cut

Υ1, !Γ,Υ2 ` B

is transformed into the proof

π1...

!Γ ` A

π2...

Υ1,A,Υ2 ` B
Cut

Υ1, !Γ,Υ2 ` B

3.9.2 Promotion vs. weakening

The proof

π1...

!Γ ` A
Promotion

!Γ `!A

π2...

Υ1,Υ2 ` B
Weakening

Υ1, !A,Υ2 ` B
Cut

Υ1, !Γ,Υ2 ` B

is transformed into the proof

44

π2...

Υ1,Υ2 ` B
Series of Weakenings

Υ1, !Γ,Υ2 ` B

3.9.3 Promotion vs. contraction

The proof

π1...

!Γ ` A
Promotion

!Γ `!A

π2...

Υ1, !A, !A,Υ2 ` B
Contraction

Υ1, !A,Υ2 ` B
Cut

Υ1, !Γ,Υ2 ` B

is transformed into the proof

π1...

!Γ ` A
Promotion

!Γ `!A

π1...

!Γ ` A
Promotion

!Γ `!A

π2...

Υ1, !A, !A,Υ2 ` B
Cut

Υ1, !A, !Γ,Υ2 ` B
Cut

Υ1, !Γ, !Γ,Υ2 ` B
Series of Contractions and Exchanges

Υ1, !Γ,Υ2 ` B

3.10 Cut-elimination: secondary conclusion

In this section, we explain how the cut-elimination procedure transforms a proof

π1...

Γ ` A

π2...

Υ1,A,Υ2 ` B
Cut

Υ1,Γ,Υ2 ` B

in which the conclusionA is secondaryin the proofπ1. This leads us to a case analysis,
in which we describe how the proof evolves depending on the last rule of the proofπ1.
The six cases are treated in turn:

• a left introduction of the linear implication,

• a dereliction,

• a weakening,

• a contraction,

• an exchange,

• a left introduction of the tensor product (low priority)

45

• a left introduction of the tensor unit (low priority).

The last two cases are treated at the end of the section because they are given a lower
priority in the procedure.

3.10.1 Left introduction of the linear implication

The proof

π1...

Γ ` A

π2...

Υ2, B,Υ3 ` C
Left(

Υ2,Γ,A(B,Υ3 ` C

π3...

Υ1,C,Υ4 ` D
Cut

Υ1,Υ2,Γ,A(B,Υ3,Υ4 ` D

is transformed into the proof

π1...

Γ ` A

π2...

Υ2, B,Υ3 ` C

π3...

Υ1,C,Υ4 ` D
Cut

Υ1,Υ2, B,Υ3,Υ4 ` D
Left(

Υ1,Υ2,Γ,A(B,Υ3,Υ4 ` D

3.10.2 A generic description of the structural rules: dereliction, weakening, con-
traction, exchange

Four cases remain to be treated in order to describe entirely how the cut-elimination
procedure transforms a proof

π1...

Γ ` A

π2...

Υ1,A,Υ4 ` B
Cut

Υ1,Γ,Υ4 ` B

in which the conclusionA is secondaryin the proofπ1. Each case depends on the last
rule of the proofπ1, which may be:

• a dereliction,

• a weakening,

• a contraction,

• an exchange.

Each of the four rules is of the form

Υ2,Φ,Υ3 ` A
Υ2,Ψ,Υ3 ` A

46

where the contextΦ is transformed into the contextΨ in a way depending on the
specific rule:

• dereliction: the contextΦ consists of a formulaC, and the contextΨ consists of
the formula !C,

• weakening: the contextΦ is empty, and the contextΨ consists of a formula !C,

• contraction: the contextΦ consists of two formulas !C, !C and the contextΨ
consists of the formula !C,

• exchange: the contextΦ consists of two formulasC,D and the contextΨ consists
of the two formulasD,C.

By hypothesis, the proofπ1 decomposes in the following way:

π3...

Υ2,Φ,Υ3 ` A
the specific rule

Υ2,Ψ,Υ3 ` A

The proof

π3...

Υ2,Φ,Υ3 ` A
the specific rule

Υ2,Ψ,Υ3 ` A

π2...

Υ1,A,Υ4 ` B
Cut

Υ1,Υ2,Ψ,Υ3,Υ4 ` B

is then transformed into the proof

π3...

Υ2,Φ,Υ3 ` A

π2...

Υ1,A,Υ4 ` B
Cut

Υ1,Υ2,Φ,Υ3,Υ4 ` B
the specific rule

Υ1,Υ2,Ψ,Υ3,Υ4 ` B

3.10.3 Left introduction of the tensor (with low priority)

The proof

π1...

Υ2,A, B,Υ3 ` C
Left ⊗

Υ2,A⊗ B,Υ3 ` C

π2...

Υ1,C,Υ4 ` D
Cut

Υ1,Υ2,A⊗ B,Υ3,Υ4 ` D

is transformed into the proof

47

π1...

Υ2,A, B,Υ3 ` C

π2...

Υ1,C,Υ4 ` D
Cut

Υ1,Υ2,A, B,Υ3,Υ4 ` D
Left ⊗

Υ1,Υ2,A⊗ B,Υ3,Υ4 ` D

3.10.4 Left introduction of the tensor unit (with low priority)

The proof

π1...

Υ2,Υ3 ` A
Left 1

Υ2,1,Υ3 ` A

π2...

Υ1,A,Υ4 ` B
Cut

Υ1,Υ2,1,Υ3,Υ4 ` B

is transformed into the proof

π1...

Υ2,Υ3 ` A
Left 1

Υ2,1,Υ3 ` A

π2...

Υ1,A,Υ4 ` B
Cut

Υ1,Υ2,1,Υ3,Υ4 ` B

3.11 Cut-elimination: secondary hypothesis

In this section, we explain how the cut-elimination procedure transforms a proof

π1...

Γ ` A

π2...

Υ1,A,Υ2 ` B
Cut

Υ1,Γ,Υ2 ` B

in which the hypothesisA is secondaryin the proofπ2. This leads us to a long case
analysis, in which we describe how the proof evolves depending on the last rule of the
proofπ2. The nine cases are treated in turn in the section:

• the right introduction of the tensor,

• the left introduction of the linear implication,

• the four structural rules: dereliction, weakening, contraction, exchange,

• the left introduction of the tensor (low priority),

• the left introduction of the tensor unit (low priority),

• the right introduction of the linear implication (low priority).

The last three cases are treated at the end of the section, because they are given a low
priority in the procedure.

48

3.11.1 Right introduction of the tensor (first case)

The proof

π1...

Γ ` A

π2...

Υ1,A,Υ2 ` B

π3...

∆ ` C
Right⊗

Υ1,A,Υ2,∆ ` B⊗C
Cut

Υ1,Γ,Υ2,∆ ` B⊗C

is transformed into the proof

π1...

Γ ` A

π2...

Υ1,A,Υ2 ` B
Cut

Υ1,Γ,Υ2 ` B

π3...

∆ ` C
Right⊗

Υ1,Γ,Υ2,∆ ` B⊗C

3.11.2 Right introduction of the tensor (second case)

The proof

π1...

Γ ` A

π2...

∆ ` B

π3...

Υ1,A,Υ2 ` C
Right⊗

∆,Υ1,A,Υ2 ` B⊗C
Cut

∆,Υ1,Γ,Υ2 ` B⊗C

is transformed into the proof

π2...

∆ ` B

π1...

Γ ` A

π3...

Υ1,A,Υ2 ` C
Cut

Υ1,Γ,Υ2 ` C
Right⊗

∆,Υ1,Γ,Υ2 ` B⊗C

3.11.3 Left introduction of the linear implication (first case)

The proof

π1...

Γ ` A

π2...

Υ2,A,Υ3 ` B

π3...

Υ1,C,Υ4 ` D
Left(

Υ1,Υ2,A,Υ3, B(C,Υ4 ` D
Cut

Υ1,Υ2,Γ,Υ3, B(C,Υ4 ` D

is transformed into the proof

49

π1...

Γ ` A

π2...

Υ2,A,Υ3 ` B
Cut

Υ2,Γ,Υ3 ` B

π3...

Υ1,C,Υ4 ` D
Left(

Υ1,Υ2,Γ,Υ3, B(C,Υ4 ` D

3.11.4 Left introduction of the linear implication (second case)

The proof

π1...

Γ ` A

π2...

Υ3 ` B

π3...

Υ1,A,Υ2,C,Υ4 ` D
Left(

Υ1,A,Υ2,Υ3, B(C,Υ4 ` D
Cut

Υ1,Γ,Υ2,Υ3, B(C,Υ4 ` D

is transformed into the proof

π2...

Υ3 ` B

π1...

Γ ` A

π3...

Υ1,A,Υ2,C,Υ4 ` D
Cut

Υ1,Γ,Υ2,C,Υ4 ` D
Left(

Υ1,Γ,Υ2,Υ3, B(C,Υ4 ` D

3.11.5 Left introduction of the linear implication (third case)

The proof

π1...

Γ ` A

π2...

Υ2 ` B

π3...

Υ1,C,Υ3,A,Υ4 ` D
Left(

Υ1,Υ2, B(C,Υ3,A,Υ4 ` D
Cut

Υ1,Υ2, B(C,Υ3,Γ,Υ4 ` D

is transformed into the proof

π2...

Υ2 ` B

π1...

Γ ` A

π3...

Υ1,C,Υ3,A,Υ4 ` D
Cut

Υ1,C,Υ3,Γ,Υ4 ` D
Left(

Υ1,Υ2, B(C,Υ3,Γ,Υ4 ` D

3.11.6 A generic description of the structural rules: dereliction, weakening, con-
traction, exchange

Four cases remain to be treated in order to describe how the cut-elimination procedure
transforms a proof

50

π1...

Γ ` A

π2...

Υ1,A,Υ2 ` B
Cut

Υ1,Γ,Υ2 ` B

in which the hypothesisA is secondaryin the proofπ2. Each case depends on the last
rule of the proofπ2, which may be:

• a dereliction,

• a weakening,

• a contraction,

• an exchange.

Each of the four rules is of the form

Υ1,Φ,Υ2 ` B
Υ1,Ψ,Υ2 ` B

where the contextΦ is transformed into the contextΨ in a way depending on the
specific rule:

• dereliction: the contextΦ consists of a formulaC, and the contextΨ consists of
the formula !C,

• weakening: the contextΦ is empty, and the contextΨ consists of a formula !C,

• contraction: the contextΦ consists of two formulas !C, !C and the contextΨ
consists of the formula !C,

• exchange: the contextΦ consists of two formulasC,D and the contextΨ consists
of the two formulasD,C.

From this follows that the proofπ2 decomposes as a proof of the form

π3...

Υ1,A,Υ2,Φ,Υ3 ` C
the specific rule

Υ1,A,Υ2,Ψ,Υ3 ` C

or as a proof of the form

π3...

Υ1,Φ,Υ2,A,Υ3 ` C
the specific rule

Υ1,Ψ,Υ2,A,Υ3 ` C

depending on the relative position of the secondary hypothesisA and of the contextsΦ
andΨ among the hypothesis of the proofπ2. In the first case, the proof

51

π1...

Γ ` A

π3...

Υ1,A,Υ2,Φ,Υ3 ` B
the specific rule

Υ1,A,Υ2,Ψ,Υ3 ` B
Cut

Υ1,Γ,Υ2,Ψ,Υ3 ` B

is transformed into the proof

π1...

Γ ` A

π3...

Υ1,A,Υ2,Φ,Υ3 ` B
Cut

Υ1,Γ,Υ2,Φ,Υ3 ` B
the specific rule

Υ1,Γ,Υ2,Ψ,Υ3 ` B

In the second case, the proof

π1...

Γ ` A

π3...

Υ1,Φ,Υ2,A,Υ3 ` B
the specific rule

Υ1,Ψ,Υ2,A,Υ3 ` B
Cut

Υ1,Ψ,Υ2,Γ,Υ3 ` B

is transformed into the proof

π1...

Γ ` A

π3...

Υ1,Φ,Υ2,A,Υ3 ` B
Cut

Υ1,Φ,Υ2,Γ,Υ3 ` B
the specific rule

Υ1,Ψ,Υ2,Γ,Υ3 ` B

3.11.7 Left introduction of the tensor (first case) (with low priority)

The proof

π1...

Γ ` A

π2...

Υ1,A,Υ2, B,C,Υ3 ` B
Left ⊗

Υ1,A,Υ2, B⊗C,Υ3 ` B
Cut

Υ1,Γ,Υ2, B⊗C,Υ3 ` B

is transformed into the proof

π1...

Γ ` A

π2...

Υ1,A,Υ2, B,C,Υ3 ` B
Cut

Υ1,Γ,Υ3, B,C,Υ3 ` B
Left ⊗

Υ1,Γ,Υ3, B⊗C,Υ3 ` B

52

3.11.8 Left introduction of the tensor (second case) (with low priority)

The proof

π1...

Γ ` C

π2...

Υ1,A, B,Υ2,C,Υ3 ` B
Left ⊗

Υ1,A⊗ B,Υ2,C,Υ3 ` B
Cut

Υ1,A⊗ B,Υ2,Γ,Υ3 ` B

is transformed into the proof

π1...

Γ ` C

π2...

Υ1,A, B,Υ2,C,Υ3 ` B
Cut

Υ1,A, B,Υ2,Γ,Υ3 ` B
Left ⊗

Υ1,A⊗ B,Υ2,Γ,Υ3 ` B

3.11.9 Left introduction of the tensor unit (with low priority)

Just as in
Each of the five rules is of the form

Υ1,Φ,Υ2 ` B
Υ1,Ψ,Υ2 ` B

where the contextΦ is transformed into the contextΨ in a way depending on the
specific rule:

the contextΦ is empty, and the contextΨ consists of the formula 1,

3.11.10 Right introduction of the linear implication (with low priority)

The proof

π1...

Γ ` A

π2...

B,Υ1,A,Υ2 ` C
Right(

Υ1,A,Υ2 ` B(C
Cut

Υ1,Γ,Υ2 ` B(C

is transformed into the proof

π1...

Γ ` A

π2...

B,Υ1,A,Υ2 ` C
Cut

B,Υ1,Γ,Υ2 ` C
Right(

Υ1,Γ,Υ2 ` B(C

53

4 Monoidal categories and duality

After recalling the usual definition of a monoidal category, we describe two alterna-
tive ways to duality and the notion of∗-autonomous category (read star-autonomous).
On one hand, a∗-autonomous category may be seen as a symmetric monoidal closed
category equipped with a dualizing object. This is developed along Sections 4.1—4.7
according to the topography below.

Monoidal

uukkkk
kkkk

kkkk
k

))SSS
SSSS

SSSS
S

��
Left closed

))SSS
SSSS

SSSS
S Symmetric monoidal

��

Right closed

uukkkk
kkkk

kkkk

Symmetric monoidal closed

��
∗-autonomous

On the other hand, a∗-autonomous category may be seen as a symmetric linearly dis-
tributive category equipped with a duality. The notion of linearly distributive category
and its connection to∗-autonomous categories are developed in Sections 4.8—4.11
following the topography below.

Monoidal

��
Linearly distributive

))TTT
TTTT

TTTT
TT

uujjjj
jjjj

jjjj
j

��
Left duality

**TTT
TTTT

TTTT
TT

Symmetric linearly distributive

��

Right duality

ttjjjj
jjjj

jjjj
j

∗-autonomous

4.1 Monoidal categories

A monoidal categoryC is a category with a bifunctor⊗ : C × C −→ C associative up
to a natural isomorphism

αA,B,C : (A⊗ B) ⊗C −→ A⊗ (B⊗C)

and with an objecteunit of the bifunctor, up to natural isomorphisms

λA : e⊗ A −→ A, ρA : A⊗ e−→ A.

54

The structure mapsα, λ, ρ must satisfy two commutativity axioms. First, the pentago-
nal diagram

(A⊗ B) ⊗ (C ⊗ D)
α

++WWWWW
WWWWW

WWWW

((A⊗ B) ⊗C) ⊗ D

α
33gggggggggggggg

α⊗D
��

A⊗ (B⊗ (C ⊗ D))

(A⊗ (B⊗C)) ⊗ D
α // A⊗ ((B⊗C) ⊗ D)

A⊗α

OO

should commute for every objectsA, B,C,D of the category. Then, the triangular dia-
gram

(A⊗ e) ⊗ B
α //

ρ⊗B

��

A⊗ (e⊗ B)

A⊗λ

��
A⊗ B = A⊗ B

should commute for every objectsA andB of the category. Note that for clarity’s sake,
we generally drop the indices on the structure mapsα, λ, ρ in our diagrams, and write
A instead ofidA in compound morphisms likeA⊗ α = idA ⊗ α.

The pentagon and triangle axioms ensure that any such diagram made of structure
maps, does commute in the categoryC. This property is called thecoherence property
of monoidal categories. It implies among other things that the structure morphisms
λe : e⊗ e −→ e andρe : e⊗ e −→ e coincide. This point is worth stressing, since the
equality of the two maps is often given as a third axiom of monoidal categories. The
equality follows in fact from the pentagon and triangle axioms. We clarify this point in
Proposition 2, after the preliminary Proposition 1.

Proposition 1 The triangles

(e⊗ A) ⊗ B
α //

λ⊗B

��

e⊗ (A⊗ B)

λ

��
A⊗ B = A⊗ B

and
(A⊗ B) ⊗ e

α //

ρ

��

A⊗ (B⊗ e)

A⊗ρ

��
A⊗ B = A⊗ B

commute in any monoidal categoryC.

Proof. The proof is based on the observation that the functore⊗− : C −→ C is full and
faithful, becauseλ is a natural isomorphism from this functor to the identity functor. So,
two morphismsf ,g : A −→ B coincide iff the morphismse⊗ f ,e⊗ g : e⊗ A −→ e⊗ B

55

coincide as well. In particular, the first triangle of the proposition commutes iff the
triangle

e⊗ ((e⊗ A) ⊗ B)
e⊗α //

e⊗(λ⊗B)

��

e⊗ (e⊗ (A⊗ B))

e⊗λ

��
e⊗ (A⊗ B) = e⊗ (A⊗ B)

commutes. Now, this triangle commutes iff the triangle obtained by adjoining a pen-
tagon on top of it

((e⊗ e) ⊗ A) ⊗ B
α //

α⊗B

��

(e⊗ e) ⊗ (A⊗ B)

α

��

(e⊗ (e⊗ A)) ⊗ B

α

��
e⊗ ((e⊗ A) ⊗ B) e⊗α //

e⊗(λ⊗B)

��

e⊗ (e⊗ (A⊗ B))

e⊗λ

��
e⊗ (A⊗ B) = e⊗ (A⊗ B)

commutes as well — this comes from the fact thatα is an isomorphism. We leave as
exercise to the reader the elementary “diagram-chase” proving that this last triangle
commutes, with its two borders equal to:

((e⊗ e) ⊗ A) ⊗ B
(ρ⊗A)⊗B // (e⊗ A) ⊗ B

α // e⊗ (A⊗ B).

This establishes that the first triangle of the proposition is commutative. The second
triangle is proved commutative in a similar way.�

Proposition 2 The two morphismsλe andρe coincide in any monoidal categoryC.

Proof. Naturality ofλ implies that the diagram

e⊗ (e⊗ B) λ //

e⊗λ

��

e⊗ B

λ

��
e⊗ B

λ // B

commutes. From this follows that the two structure morphisms

e⊗ (e⊗ B) λ // e⊗ B e⊗ (e⊗ B)
e⊗λ // e⊗ B

coincide — because the morphismλ : e⊗ B −→ B is an isomorphism. This is the crux
of the proof. Then, one instantiates the objectA by the unit objecte in the first triangle

56

of Proposition 1, and replaces the morphismλ by the morphisme⊗ λ, to obtain that
the triangle

(e⊗ e) ⊗ B
α //

λ⊗B

��

e⊗ (e⊗ B)

e⊗λ

��
e⊗ B = e⊗ B

commutes for every objectB of the categoryC. The triangular axiom of monoidal
categories indicates then that the two morphisms:

(e⊗ e) ⊗ B
λe⊗B // e⊗ B (e⊗ e) ⊗ B

ρe⊗B // e⊗ B

coincide for every objectB, and in particular for the objectB = e. This shows that the
two morphismsλe ⊗ e andρe ⊗ e coincide. Just as in the proof of Proposition 1, we
conclude from the fact that the functor− ⊗ e : C −→ C is full and faithful: the two
morphismsλe andρe coincide.�

One is generally interested in combining objectsA1, ...,An of a monoidal category
C using the “monoidal structure” or “tensor product” of the category, in order to obtain
an object like

⊗
i Ai . Unfortunately, the tensor product is only associative up to natural

isomorphism. Thus, there are generally several candidates for
⊗

i Ai . Typically, (A1 ⊗

A2) ⊗ A3 andA1 ⊗ (A2 ⊗ A3) are two isomorphic objects of the category, candidates
for the tensor product ofA1, A2, A3. This is the reason why the coherence property is
so useful: it enables to “identify” the various candidates for

⊗
i Ai in a coherentway.

One may thus proceed “as if” the isomorphismsα, λ, ρ were identities.
This aspect of coherence is important. It may be expressed in a quite elegant and

conceptual way. A monoidal category isstrict when its structure mapsα, λ andρ are
identities. So, in a strict monoidal category, there is onlyonecandidate for

⊗
i Ai .

The coherence theorem states that every monoidal category isequivalentto a strict
monoidal category. Equivalence of monoidal categories is expressed conveniently in
the 2-category of monoidal categories, monoidal functors, and monoidal natural trans-
formations. We come back to this point, and provide all definitions, in Chapter 5.

Exercise. Show that in every monoidal categoryC, the set of endomorphisms of the
unit objectedefines acommutativemonoid for the composition, in the sense thatf ◦g =
g ◦ f for every two morphismsf ,g : e −→ e. Show moreover that composition
coincides with tensor product up to the isomorphismρe = λe, in the sense thatf ⊗ g =
ρ−1

e ◦ (f ◦ g) ◦ ρe. �

4.2 Braided monoidal categories

A braided monoidal categoryC is a monoidal category equipped with a braiding. A
braiding is a natural isomorphism

γA,B : A⊗ B −→ B⊗ A

57

making the hexagonal diagrams

A⊗ (B⊗C)
γ // (B⊗C) ⊗ A α

��
(A⊗ B) ⊗C

α //

γ⊗C //

B⊗ (C ⊗ A)

(B⊗ A) ⊗C
α // B⊗ (A⊗C) B⊗γ

__

and

(A⊗ B) ⊗C
γ // C ⊗ (A⊗ B) α−1

��
A⊗ (B⊗C)

α−1 //

A⊗γ //

(C ⊗ A) ⊗ B

A⊗ (C ⊗ B) α−1 // (A⊗C) ⊗ B γ⊗B

__

commute. Note that the second hexagon is just the first one in which the morphismγ
has been replaced by its inverseγ−1.

The braiding and the unit of the monoidal category are related in the following way.

Proposition 3 The triangles

A⊗ e
γ //

ρ
""D

DD
DD

DD
D e⊗ A

λ||zz
zz
zz
zz

A

e⊗ A
γ //

λ ""D
DD

DD
DD

D A⊗ e

ρ
||zz
zz
zz
zz

A

commute in any braided monoidal categoryC.

Proof. The main idea is to fill the first commutative hexagon with five smaller com-
mutative diagrams:

A⊗ (e⊗C)
γ //

A⊗λ

��
(a) (b)

(e⊗C) ⊗ A
α

��

λ⊗A

��
(c)

(A⊗ e) ⊗C

α

33

γ⊗C
++

ρ⊗C // A⊗C γ // C ⊗ A

(d)

e⊗ (C ⊗ A)λoo

(e⊗ A) ⊗C
α //

λ⊗C

OO

(e)

(•)

e⊗ (A⊗C)
e⊗γ

DD

λLLLLLLLL

ffLLLLLLLL

In clockwise order, these diagrams commute (a) by the triangle axiom of monoidal
categories, (b) by naturality ofγ, (c) by Proposition 1, (d) by naturality ofλ, (e) by

58

Proposition 1. From this and the fact thatγ is an isomorphism, follows that diagram
(•) commutes.

Now, one instantiates diagram (•) with C = e. Just as in the proofs of Proposition 1
and 2, one takes advantage of the fact that the functor−⊗e : C −→ C is full and faithful,
to deduce that the first triangle of the proposition commutes. The second triangle of
the proposition is proved commutative in a similar way.�

4.3 Symmetric monoidal categories

A symmetric monoidal categoryC is a braided monoidal category whose braiding is a
symmetry. A symmetry is a braiding satisfyingγB,A = γ−1

A,B for every objectsA, B of
the category. Note that, in that case, the second hexagonal diagram may be dropped in
the definition of braiding, since this diagram commutes forγA,B iff the first hexagonal
diagram commutes forγB,A = γ

−1
A,B.

4.4 Monoidal closed categories

A left closed structurein a monoidal category (C,⊗,e) is the data of

• an objectA(B,

• a morphismevalA,B : A⊗ (A(B) −→ B,

for every two objectsA andB of the categoryC. The morphismevalA,B is called the
left evaluationmorphism. It must satisfy the following universal property. For every
morphism

f : A⊗ X −→ B

there exists a unique morphism

h : X −→ A(B

making the diagram
A⊗ X

f

((QQQ
QQQ

QQQ
QQQ

QQQ

A⊗h

��
A⊗ (A(B)

evalA,B
// B

(28)

commute.
A monoidal closed categoryC is a monoidal category equipped with a left closed

structure. There are several alternative definitions of a closed structure, which we re-
view here.

It follows from the universality property (28) that every objectA of the categoryC
defines an endofunctor

B 7→ (A(B) (29)

of the categoryC. Besides, for every objectA, this functor is right adjoint to the functor

B 7→ (A⊗ B). (30)

59

This means that there exists a bijection between the sets of morphisms

C(A⊗ B,C) � C(B,A(C) (31)

natural inB andC. This provides an alternative definition of a left closed structure: a
right adjoint to the functor (30), for every objectA. The reader interested in the notion
of adjunction will find a comprehensive study of the notion in Chapter 5.

The parameter theorem (see Theorem 3 in Chapter IV, Section 7 of MacLane’s
book [31]) enables then to structure the family of functors (29) indexed by objects of
A, as a bifunctor

(A, B) 7→ A(B : Cop × C −→ C. (32)

contravariant in its first argument, covariant in its second argument. This bifunctor is
defined as the unique bifunctor making the bijection (31) natural inA, B andC. This
provides yet another alternative definition of left closed structure: a bifunctor (32) and
a bijection (31) natural inA, B andC.

Exercise. Show that in a monoidal closed categoryC with monoidal unite, every
object A is isomorphic to the objecte (A. Show moreover that the isomorphism
betweenA ande(A is natural inA. �

4.5 Monoidal biclosed categories

A monoidal biclosed category is a monoidal category equipped with a left closed struc-
ture as well as a right closed structure. By definition, aright closed structurein a
monoidal category (C,⊗,e) is the data of

• an objectA� B,

• a morphismevarA,B : (B� A) ⊗ A −→ B,

for every two objectsA and B of the categoryC. The morphismevarA,B is called
the right evaluationmorphism. It must satisfy a similar universal property as the left
evaluation morphism in Section 4.4, that for every morphism

f : X ⊗ A −→ B

there exists a unique morphism

h : X −→ B� A

making the diagram below commute:

X ⊗ A
f

((QQQ
QQQ

QQQ
QQQ

QQQ

h⊗A

��
(B� A) ⊗ A evarA,B

// B

(33)

As for the left closed structure in Section 4.4, this is equivalent to the property that the
endofunctor

60

B 7→ (B⊗ A)

has a right adjoint

B 7→ (B� A)

for every objectA of the category. The parameter theorem ensures then that this family
of functors indexed by the objectA defines a bifunctor

� : Cop × C −→ C

and a family of bijections

C(B⊗ A,C) � C(B,C� A) (34)

natural in the objectsA, B andC.

4.6 Symmetric monoidal closed categories

A symmetric monoidal closed categoryC is a monoidal category equipped with a
symmetry and a left closed structure. It is not difficult to show that every symmet-
ric monoidal closed category is also equipped with a right closed structure, defined as
follows:

• the objectB� A is defined as the objectA(B,

• the right evaluation morphismevarA,B is defined as

(A(B) ⊗ A
γA(B,A // A⊗ (A(B)

evalA,B // B

Symmetric monoidal closed categories provide the necessary structure to interpret the
formulas and proofs of themultiplicativeand intuitionistic fragment of linear logic.
The symmetry interpretsexchange, the operation of permuting formulas in a sequent,
while the tensor product and closed structure interpret the multiplicative conjunction
and implication of the logic, respectively.

This logical perspective on categories with structure is often enlightening, both on
logic and on categories. By way of illustration, there is a famous principle in intuition-
istic logic that every formulaA implies its double negation¬¬A. This principle holds
also in intuitionisticlinear logic. In that case, the negation of a formulaA is given by
the formulaA(⊥, where⊥ stands for the multiplicative formulaFalse— or in fact,
when there exists no such formulaFalseavailable, for any formula of the logic. So,
there is a proofπ in intuitionistic linear logic that every formulaA implies its double
negation (A(⊥)(⊥.

Exactly the same phenomenon happens in any symmetric monoidal closed cate-
gory, and in fact in any monoidalbiclosedcategoryC. Like in linear logic, any object
of the category can play the role of⊥— understood intuitively as the formulaFalse.
One shows that there exists a morphism

∂A : A −→ ⊥� (A(⊥)

61

for every objectA of the monoidal biclosed categoryC, and that this morphism is nat-
ural in A. This does not come by chance: when the categoryC is symmetric monoidal
closed, the two objects⊥� (A(⊥) and (A(⊥)(⊥ coincide, and the map

∂A : A −→ (A(⊥)(⊥

is precisely the interpretation of the proofπ that every formulaA implies its double
negation (A(⊥)(⊥ in intuitionistic linear logic.

The morphism∂A is constructed by a series of manipulations on the identity mor-
phism:

idA(⊥ : (A(⊥) −→ (A(⊥).

First, one applies the bijection (31) associated to the left closed structure, from right to
left, in order to obtain the morphism:

A⊗ (A(⊥) −→ ⊥ (35)

Then, one applies the bijection (34) associated to the right closed structure, from left
to right, in order to obtain the morphism:

∂A : A −→ ⊥� (A(⊥).

When the categoryC is symmetric monoidal closed, the morphism∂A is alternatively
constructed by precomposing the morphism (35) with the symmetry

γA,A(⊥ : (A(⊥) ⊗ A −→ A⊗ (A(⊥)

so as to obtain the morphism

(A(⊥) ⊗ A −→ ⊥.

then the bijection (31) from left to right:

∂A : A −→ (A(⊥)(⊥.

Exercise. Show that the morphism∂A is natural inA. �

4.7 ∗-autonomous categories

A ∗-autonomous category is a symmetric monoidal closed category equipped with a
dualizing object. A dualizing object⊥ is an object of the categoryCmaking the natural
morphism constructed in Section 4.6:

∂A : A −→ (A(⊥)(⊥

an isomorphism, for every objectA of the categoryC.
The notion of dualizing object may be given a logical flavour. There is a governing

principle in classical logic that the disjunction of a formulaA and of its negation¬A is
necessarily true. This principle calledTertium non Daturis supported by the idea that

62

a formula is either true or false. This principle may be formulated in this other way:
every formulaA is equivalent to its double negation¬¬A. This principle does not hold
in intuitionistic logic: a formulaA implies its double negation¬¬A, but the converse
is not necessarily true. Indeed, the existence of a dualizing object⊥ in a symmetric
monoidal closed category enables to interpretclassicalmultiplicative linear logic and
its involutive negation, instead of justintuitionisticmultiplicative linear logic.

Exercise. Show that the object⊥ (⊥ is isomorphic to the unit objecte in any
∗-autonomous category.�

4.8 Linearly distributive categories

A linearly distributive categoryC is a monoidal category twice: once for the bifunctor
⊗ : C × C −→ C with unit eand natural isomorphisms

α⊗A,B,C : (A⊗ B) ⊗C −→ A⊗ (B⊗C),

λ⊗A : e⊗ A −→ A, ρ⊗A : A⊗ e−→ A,

another time for the bifunctor• : C × C −→ C with unit u and natural isomorphisms

α•A,B,C : (A • B) •C −→ A • (B •C),

λ•A : u • A −→ A, ρ•A : A • u −→ A.

In order to distinguish them, the operations⊗ and• are called “tensor product” and
“cotensor product” respectively. The tensor product is required to distribute over the
cotensor product by natural morphims

δL
A,B,C : A⊗ (B •C) −→ (A⊗ B) •C,

δR
A,B,C : (A • B) ⊗C −→ A • (B⊗C).

These structure maps must satisfy a series of commutativity axioms: six pentagons and
four triangles, which we review below.

The pentagons relate the distributionsδL andδR to the associativity laws, and to
themselves. We were careful to draw these pentagons in a uniform way. This presenta-
tion emphasizes the fact that the distributions are (lax)associativity lawsbetween the
tensor and the cotensor products. Consequently, each of the pentagonal diagram below
is a variant of the usual pentagonal diagram for monoidal categories. Note that there
are exactly 23 = 8 different ways to combine four objectsA, B,C,D by a tensor and a
cotensor product. The two extremal cases (only tensors, only cotensors) are treated by
the requirement that the tensor and cotensor products define monoidal categories. Each
of the six remaining cases is treated by one pentagon below.

(A • B) ⊗ (C ⊗ D)
δR

++VVVVV
VVVVV

VVVV

((A • B) ⊗C) ⊗ D

α⊗
33hhhhhhhhhhhhhh

δR⊗D ��

A • (B⊗ (C ⊗ D))

(A • (B⊗C)) ⊗ D
δR // A • ((B⊗C) ⊗ D)

A•α⊗
OO

63

(A • B) • (C ⊗ D)
α•

++VVVV
VVVVV

VVVV

((A • B) •C) ⊗ D

δR 33hhhhhhhhhhhhh

α•⊗D ��

A • (B • (C ⊗ D))

(A • (B •C)) ⊗ D
δR // A • ((B •C) ⊗ D)

A•δR

OO

(A⊗ B) ⊗ (C • D)
α⊗

++VVVVV
VVVVV

VVVVδL

sshhhhhh
hhhhh

hhh

((A⊗ B) ⊗C) • D

α⊗•D ��

A⊗ (B⊗ (C • D))

A⊗δL

��
(A⊗ (B⊗C)) • D A⊗ ((B⊗C) • D)δLoo

(A⊗ B) • (C • D)

((A⊗ B) •C) • D

α•
33hhhhhhhhhhhhh

A⊗ (B • (C • D))

δLkkVVVVVVVVVVVVV

(A⊗ (B •C)) • D

δL•D

OO

A⊗ ((B •C) • D)

A⊗α•
OO

δLoo

(A • B) ⊗ (C • D)
δL

sshhhhh
hhhhh

hhh δR

++VVVV
VVVVV

VVVV

((A • B) ⊗C) • D

δR•D ��

A • (B⊗ (C • D))

A•δL

��
(A • (B⊗C)) • D

α• // A • ((B⊗C) • D)

(A⊗ B) • (C ⊗ D)

((A⊗ B) •C) ⊗ D

δR 33hhhhhhhhhhhhhh
A⊗ (B • (C ⊗ D))

δLkkVVVVVVVVVVVVVV

(A⊗ (B •C)) ⊗ D

δL⊗D

OO

α⊗ // A⊗ ((B •C) ⊗ D)

A⊗δR

OO

The triangles relate the distributions to the units. Again, each triangle is a variant
of the familiar diagram in monoidal categories, analyzed in Proposition 1.

e⊗ (A • B) δL //

λ⊗

��

(e⊗ A) • B

λ⊗•B
��

A • B = A • B

(A • B) ⊗ e
δR //

ρ⊗

��

A • (B⊗ e)

A•ρ⊗
��

A • B = A • B

A⊗ (B • u) δL //

A⊗ρ•

��

(A⊗ B) • u

ρ•

��
A⊗ B = A⊗ B

(u • A) ⊗ B
δR //

λ•⊗B
��

u • (A⊗ B)

λ•

��
A⊗ B = A⊗ B

64

Exercise. Show that every monoidal category defines a linearly distributive category
in which the tensor and cotensor products coincide.�

4.9 Duality in linearly distributive categories

Let C be a linearly distributive category, formulated with the same notations as in
Section 4.8. A right duality inC is the data of:

• an objectA∗,

• two morphismsaxR
A : e−→ A∗ • A andcutRA : A⊗ A∗ −→ u

for every objectA of the categoryC. The morphisms are required to make the diagrams

A⊗ e

ρ⊗

��

A⊗axR

// A⊗ (A∗ • A)

δL

��
(A⊗ A∗) • A

cutR•A
��

A u • A
λ•oo

e⊗ A∗

λ⊗

��

axR⊗A∗ // (A∗ • A) ⊗ A∗

δR

��
A∗ • (A⊗ A∗)

A∗•cutR

��
A∗ A∗ • u

ρ•oo

commute. To every morphismf : A −→ B in the categoryC, one associates the
morphismf ∗ : B∗ −→ A∗ constructed in the following way:

B∗

(λ⊗)−1

��

A∗ • (A⊗ B∗)
A∗•(f⊗B∗) // A∗ • (B⊗ B∗)

A∗•cutR // A∗ • u

ρ•

��
e⊗ B∗

axR⊗B∗ // (A∗ • A) ⊗ B∗
δR

OO

(A∗• f)⊗B∗ // (A∗ • B) ⊗ B∗
δR

OO

A∗

The coherence diagrams ensure that this operation on morphisms defines a contravari-
ant functor

(A 7→ A∗) : Cop −→ C.

Besides, one shows that

Proposition 4 In any linearly distributive categoryC with a right duality,

• the functor(A⊗ −) is left adjoint to the functor(A∗ • −),

• the functor(− • B) is right adjoint to the functor(− ⊗ B∗),

for every objects A, B of the category. In particular, any such category is monoidal
closed.

There is also a notion of left duality in a linearly distributive categoryC, which is given
by the data of:

• an object∗A,

65

• two morphismsaxL
A : e−→ A • ∗A andcutLA : ∗A⊗ A −→ u

for every objectA of the categoryC. Just as in the case of a right duality, the morphisms
are required to make the coherence diagrams

e⊗ A

λ⊗

��

axL⊗A // (A • ∗A) ⊗ A

δR

��
A • (∗A⊗ A)

A•cutL

��
A A • u

ρ•oo

∗A⊗ e

ρ⊗

��

∗A⊗axL

// ∗A⊗ (A • ∗A)

δL

��
(∗A⊗ A) • ∗A

cutL•∗A
��

∗A u • ∗A
λ•oo

commute.

Proposition 5 In any linearly distributive categoryC with a left duality,

• the functor(− ⊗ B) is left adjoint to the functor(− • ∗B),

• the functor(A • −) is right adjoint to the functor(∗A⊗ −),

for every objects A, B of the category.

Exercise. Show that there is a natural isomorphism betweenA, ∗(A∗) and (∗A)∗ in any
linearly distributive category with a left and right duality. Hint: show that the bijections

C(A, B) � C(e,A∗ • B) � C(∗(A∗), B)

are natural inA andB. Deduce that there exists a natural isomorphism betweenA and
∗(A∗). Proceed similarly to establish the existence of a natural isomorphism betweenA
and (∗A)∗. �

Exercise.Suppose thatC is a linearly distributive category with a right duality. Deduce
from the previous exercise, and some diagrammatic inspection, that there exists at most
one left duality in the categoryC, up to the expected notion of isomorphism between
left dualities.�

4.10 Symmetric linearly distributive categories

A symmetric linearly distributive categoryC is a linearly distributive category in which
the two monoidal structures are symmetric, with symmetries given by natural isomor-
phisms:

γ⊗A,B : A⊗ B −→ B⊗ A, γ•A,B : A • B −→ B • A.

The symmetries and the distributions must make the diagram

A⊗ (B •C)
A⊗γ• //

δL

��

A⊗ (C • B)
γ⊗ // (C • B) ⊗ A

δR

��
(A⊗ B) •C

γ• // C • (A⊗ B)
C•γ⊗ // C • (B⊗ A)

66

commute.

Exercise. Show that every symmetric monoidal category defines a symmetric linearly
distributive category in which the tensor and cotensor products coincide.�

4.11 ∗-autonomous categories as linearly distributive categories

In a symmetric linearly distributive category, any right duality (A 7→ A∗) induces a left
duality (A 7→ ∗A) given by∗A = A∗ and the structure morphisms:

axL
A = γ

•
A∗,A ◦ axR

A, cutLA = cutRA ◦ γ
⊗
A∗,A.

We have seen in Section 4.9 (last exercise) that this defines the unique left duality in
the categoryC, up to the expected notion of isomorphism between left duality. In fact,
Cockett and Seely prove that this provides another formulation

Proposition 6 (Cockett-Seely)The three notions below coincide:

• ∗-autonomous categories,

• symmetric linearly distributive categories with a right duality,

• symmetric linearly distributive categories with a left duality.

4.12 Notes and references

The notion of linearly distributive is introduced by Robin Cockett and Robert Seely
in [15]. A coherence theorem for linearly distributive categories has been established
by these two authors, in collaboration with Rick Blute and David Trimble [11]. The
construction of the free linearly distributive category over a given categoryC (or more
generally, a polygraph) is described in full details. The approach is based on the proof-
net notation introduced by Jean-Yves Girard in linear logic [21]. The main difficulty is
to describe properly the equality of proof-nets induced by the free linearly distributive
category. An interesting conservativity result is established there: the canonical functor
from a linearly distributive category to the free∗-autonomous category over it, is a full
and faithful embedding.

67

5 Adjunctions between monoidal categories

In this chapter and in the last one, we discuss one of the earliest and most debated
question of linear logic: what is a categorical model of linear logic? This topic is
surprisingly subtle and interesting. A few months only after the introduction of linear
logic, there was already a general agreement among specialists

• that the category of denotationsL should be symmetric monoidal closed in order
to interpret intuitionistic linear logic,

• that the categoryL should be∗-autonomous in order to interpret classical linear
logic,

• that the categoryL should be cartesian in order to interpret the additive connec-
tive &, and cocartesian in order to interpret the additive connective⊕.

But difficulties (and possible disagreements) arose when people started to axiomatize
the categorical properties of the exponential modality “!′′. These categorical properties
should ensure that the categoryL defines a modular invariant of proofs for the whole of
linear logic. Several alternative definitions were formulated, each one adapted to a par-
ticular situation or philosophy: Seely categories, Lafont categories, Linear categories,
etc.

Today, nearly twenty years after the formulation of linear logic, it seems that a
consensus has finally emerged between these various definitions — around the notion
of symmetric monoidal adjunction.It appears indeed that each of the axiomatizations
of the exponential modality ! implements a particular recipe to produce a symmetric
monoidal adjunction between the category of denotationsL and a specific cartesian
categoryM, as depicted below.

(M,×,e)

(L,m)
**

⊥ (L,⊗,1)

(M,n)

jj

Our presentation in Chapter 7 of the categorical models of linear logic is thus regulated
by the theory of monoidal categories, and more specifically, by the notion of symmetric
monoidal adjunction. For that reason, we devote the present chapter to the elementary
theory of monoidal categories and monoidal adjunctions, with an emphasis on the 2-
categorical aspects of the theory:

• Sections 5.1— 5.6: we recall the notions of lax and colax monoidal functor,
including the symmetric case, and the notion of monoidal natural transformation
between such functors,

• Section 5.7— 5.8: after recalling the definition of a 2-category, we construct the
2-categoryLaxMonCat with monoidal categories as objects, lax monoidal func-
tors as horizontal morphisms, and monoidal natural transformations as vertical
morphisms,

68

• Sections 5.9— 5.13: the 2-categorical definition of adjunction is formulated in
three different ways, and applied to the 2-categoryLaxMonCat in order to define
the notion of monoidal adjunction,

• Section 5.14— 5.15: the notion of monoidal adjunction is characterized as an ad-
junctionF∗ a F∗ between monoidal categories, in which the left adjoint functor
(F∗,m) is strong monoidal.

• Section 5.16: in this last section, we explicate the notion ofsymmetricmonoidal
adjunction, and characterize it as a monoidal adjunction in which the left adjoint
functor (F∗,m) is strong and symmetric.

The various categorical axiomatizations of linear logic: Lafont categories, Seely cate-
gories, Linear categories, and their relationship to monoidal adjunctions, are discussed
thoroughly in the final Chapter 7.

5.1 Lax monoidal functors

A lax monoidal functor(F,m) between monoidal categories (C,⊗,e) and (D, •,u) is a
functorF : C −→ D equipped with natural transformations

m2
A,B : FA • FB −→ F(A⊗ B), m0 : u −→ Fe,

making the three diagrams

(FA • FB) • FC
α• //

m•FC
��

FA • (FB • FC)

FA•m
��

F(A⊗ B) • FC

m

��

FA • F(B⊗C)

m

��
F((A⊗ B) ⊗C)

Fα⊗ // F(A⊗ (B⊗C))

FA • u
ρ• //

FA•m

��

FA

FA • Fe
m // F(A⊗ e)

Fρ⊗

OO u • FB
λ• //

m•FB

��

FB

Fe⊗ FB
m // F(e⊗ B)

Fλ⊗

OO

commute in the categoryD, for every objectsA, B,C of the categoryC.
A strong monoidal functoris defined as a lax monoidal functor whose mediating

mapsm2 andm0 are isomorphisms. Astrict monoidal functoris a strong monoidal
functor whose mediating maps are identities.

Remark.Here, we take the terminology advocated by Lack, which is based on the idea
that lax monoidal functors are lax morphisms between algebras for a particular strict
monad in the 2-category of categories: the monad which associates to a category its

69

free symmetric monoidal category. But at the same time, we are careful to callstrong
monoidalfunctor what Lack would simply call monoidal functor.

Remark. We will encounter in Section 6.2, Chapter 7, one of the original motivations
for the definition of lax monoidal functor, discussed by Jean Bénabou in [5]. The
category1 with one object and its identity morphism defines a monoidal category in a
unique way. It appears then that a lax monoidal functor from this monoidal category1

to a monoidal categoryC is essentially the same thing as a monoid in the categoryC.
As we will see, this has the remarkable consequence that monoids are preserved by lax
monoidal functors, in a very strong sense.

5.2 Colax monoidal functors

The definition of a lax monoidal functor is based on a particular orientation of the
mediating maps: from the objectFA • FB to the objectF(A⊗ B), and from the object
u to the objectFe. Reversing the orientation leads to another notion of “lax” monoidal
functor, explicated now. Acolax monoidal functor(F,n) between monoidal categories
(C,⊗,e) and (D, •,u) consists of a functorF : C −→ D and natural transformations

n2
A,B : F(A⊗ B) −→ FA • FB n0 : Fe−→ u

making the three diagrams

F((A⊗ B) ⊗C)
Fα⊗ //

n

��

F(A⊗ (B⊗C))

n

��
F(A⊗ B) • FC

n•FC
��

FA • F(B⊗C)

FA•n
��

(FA • FB) • FC
α• // FA • (FB • FC)

F(A⊗ e)
Fρ⊗ //

n

��

FA

FA • Fe
FA•n // FA • u

ρ•

OO F(e⊗ B)
Fλ⊗ //

n

��

FB

Fe• FB
n•FB // u • FB

λ•

OO

commute in the categoryD, for every objectsA, B,C of the categoryC.
The notion of colax monoidal functor is slightly less familiar than its lax counter-

part. It may be justified by the following observation.

Exercise. Show that every functorF : C −→ D between cartesian categories defines a
colax monoidal functor (F,n) in a unique way.�

The definition of colax monoidal functor leads to an alternative definition of strong
monoidal functor, defined now as acolax monoidal functor whose mediating maps
n2 andn0 are isomorphisms. We leave the reader prove in the next exercise that this
definition of strong monoidal functor is equivalent to the definition given in Section 5.1.

70

Exercise. Show that every colax monoidal functor (F,n) whose mediating morphisms
n2 and n0 are isomorphisms, defines a lax monoidal functor (F,m) with mediating
morphismsm2

A,B andm0 the inverse ofn2
A,B andn0. �

5.3 Natural transformations

Suppose thatF andG are two functors between the same categories:

C −→ D.

We recall that a natural transformation

θ : F ⇒ G : C −→ D

between the two functorsF andG is a family (θA)A∈Ob(C) of morphisms of the cate-
goryD indexed by the objects of the categoryC, and making the diagram

FA
θA //

F f

��

GA

G f

��
FB

θB // GB

commute in the categoryD, for every morphismf : A −→ B in the categoryC.

5.4 Monoidal natural transformations (between lax functors)

We suppose here that (F,m) and (G,n) are lax monoidal functors between the same
monoidal categories:

(C,⊗,e) −→ (D, •,u).

A monoidal natural transformation

θ : (F,m)⇒ (G,n) : (C,⊗,e) −→ (D, •,u)

between the lax monoidal functors (F,m) and (G,n) is a natural transformation

θ : F ⇒ G : C −→ D

between the underlying functors, making the two diagrams

FA • FB

m

��

θA•θB // GA • GB

n

��
F(A⊗ B)

θA⊗B // G(A⊗ B)

u

m

��

= u

n

��
Fe

θe // Ge

commute, for every objectsA andB of the categoryC.

71

5.5 Monoidal natural transformations (between colax functors)

The definition of monoidal natural transformation formulated in Section 5.4 for lax
monoidal functors is easily adapted to the colax situation. Amonoidal natural trans-
formation

θ : (F,m)⇒ (G,n) : (C,⊗,e) −→ (D, •,u)

between two colax monoidal functors (F,m) and (G,n) is a natural transformation

θ : F ⇒ G : C −→ D

between the underlying functors, making the two diagrams

F(A⊗ B)
θA⊗B //

m

��

G(A⊗ B)

n

��
FA • FB

θA•θB // GA • GB

Fe
θe //

m

��

Ge

n

��
u = u

commute, for every objectsA andB of the categoryC. We have seen in Section 5.2 that
every functorF between cartesian categories is colax in a canonical way. We leave the
reader establish as exercise below that natural transformations between such functors
are themselves monoidal.

Exercise. Suppose thatθ : F ⇒ G : C −→ D is a natural transformation between two
functorsF andG acting on cartesian categoriesC andD. Show that the natural trans-
formationθ is monoidal between the functorsF andG understood as colax monoidal
functors.�

5.6 Symmetric monoidal functors (lax and colax)

We suppose here that the two monoidal categories (C,⊗,e) and (D, •,u) are symmetric,
with symmetries notedγ⊗ andγ• respectively. A lax monoidal functor

(F,m) : (C,⊗,e) −→ (D, •,u)

is calledsymmetricwhen the diagram

FA • FB
γ• //

m

��

FB • FA

m

��
F(A⊗ B)

Fγ⊗ // F(B⊗ A)

commutes in the categoryD for every objectsA, B of the categoryC. Similary, a colax
monoidal functor

(F,n) : (C,⊗,e) −→ (D, •,u)

72

is calledsymmetricwhen the diagram

F(A⊗ B)
Fγ⊗ //

n

��

F(B⊗ A)

n

��
FA • FB

γ• // FB • FA

commutes in the categoryD for every objectsA, B of the categoryC.

Exercise. We have seen in Section 5.2 that every functorF between cartesian cate-
gories lifts to a colax monoidal functor (F,n) in a unique way. Show that this colax
monoidal functor is symmetric.�

5.7 The language of 2-categories

In order to define the notion ofmonoidal adjunctionbetween monoidal categories, we
proceed in three stages:

• In this section, we recall the notion of 2-category,

• In Section 5.8, we construct the 2-categoryLaxMonCat with monoidal cate-
gories as objects, lax monoidal functors as horizontal morphisms, and monoidal
natural transformations as vertical morphisms,

• In Section 5.10, we define what one means by anadjunctionin a 2-category, and
apply the definition to the 2-categoryLaxMonCat in order to define the notion
of monoidal adjunction.

Basically, a 2-categoryC is a category in which the classC(A, B) of morphisms be-
tween two objectsA andB is not a set, but a category. In other words, a 2-category
is a category in which there exist morphismsf : A −→ B between objects, and also
morphismsα : f ⇒ g between morphismsf : A −→ B andg : A −→ B with same
source and target. The underlying category is notedC0. The morphismsf : A −→ B
are calledhorizontal morphisms, and the morphismsα : f ⇒ g are calledvertical
morphismsor cells. They are generally represented as2-dimensional arrowsbetween
the1-dimensional arrows f: A −→ B andg : A −→ B of the underlying categoryC0:

A

f

��

g

BB⇓α B

Cells may be composed “vertically” and “horizontally”. We write

β ∗ α : f ⇒ h

73

for thevertical compositeof two cellsα : f ⇒ g andβ : g⇒ h, which is represented
diagrammatically as:

⇓α

A

f

��
g //

h

GGB
⇓β

= A

f

��

h

BB⇓β∗α B

We write
β ◦ α : f2 ◦ f1⇒ g2 ◦ g1

for thehorizontal compositeof two cellsα1 : f1 ⇒ g1 andα2 : f2 ⇒ g2, represented
diagrammatically as:

A

f1

��

g1

BB⇓α1 B

f2

��

g2

BB⇓α2 C = A

f2◦ f1

��

g2◦g1

BB⇓α2◦α1 C

The vertical and horizontal composition laws are required to define categories: they are
associative and have identities:

• the vertical composition has an identity cell 1f : f ⇒ f for every morphismf of
the underlying categoryC0,

• the horizontal composition has an identity cell 1A : idA⇒ idA for every objectA
and associated identity morphismidA : A −→ A of the underlying categoryC0.

The interchange law asks that composing four cells

α1 : f1⇒ g1 β1 : g1⇒ h1 α2 : f2⇒ g2 β2 : g2⇒ h2

vertically then horizontally as

(β2 ∗ α2) ◦ (β1 ∗ α1) : f2 ◦ f1⇒ h2 ◦ h1

or horizontally then vertically as

(β2 ◦ β1) ∗ (α2 ◦ α1) : f2 ◦ f1⇒ h2 ◦ h1

74

in the diagram below

⇓α1 ⇓α2

A

f1

��
g1 //

h1

GGB

f2

��
g2 //

h2

GGC
⇓β1 ⇓β2

is equivalent:
(β2 ∗ α2) ◦ (β1 ∗ α1) = (β2 ◦ β1) ∗ (α2 ◦ α1)

Finally, two coherence axioms are required on the identities:

• 1f2 ◦ 1f1 = 1f2◦ f1 for every pair of morphismsf1 : A −→ B and f2 : B −→ C of
the underlying categoryC0,

• the vertical identity 1idA associated to the identity morphismidA : A −→ A of
the underlying categoryC0 coincides with the horizontal identity 1A, for every
objectA.

Exercise. Show that every pair of morphismsh1 : A −→ B andh2 : C −→ D in a
2-categoryC defines a functor from the categoryC(B,C) to the categoryC(A,D) which
transports every cell

B

f

��

g

@@⇓α C

to the cell

A

h2◦ f◦h1

��

h2◦g◦h1

@@⇓1h2◦α◦1h1 D

�

5.8 The 2-category of monoidal categories and lax functors

We start by recalling a well-known property of category theory:

Proposition 7 Categories, functors and natural transformations define a 2-category,
notedCat.

75

Proof. The vertical compositeθ ∗ ζ of two natural transformations

ζ : F ⇒ G : C −→ D and θ : G⇒ H : C −→ D

is defined as the natural transformation

θ ∗ ζ : F ⇒ H : C −→ D

with components

(θ ∗ ζ)A : FA
ζA // GA

θA // HA.

The horizontal compositeθ ◦ ζ of two natural transformations

ζ : F1⇒ G1 : C −→ D and θ : F2⇒ G2 : D −→ E

is defined as the natural transformation

θ ◦ ζ : F2 ◦ F1⇒ G2 ◦ G1 : C −→ E

with components (θ ◦ ζ)A the diagonalF2F1A −→ G2G1A of the commutative square

F2F1A
F2ζA //

θF1A

��

F2G1A

θG1A

��
G2F1A

G2ζA // G2G1A

We leave the reader check as exercise that the constructions just defined satisfy the
axioms of a 2-category.�

The whole point of introducing the notion of 2-category in Section 5.7 is precisely that:

Proposition 8 Monoidal categories, lax monoidal functors and monoidal natural trans-
formations between lax monoidal functors define a 2-category, notedLaxMonCat.

Proof. The composite of two lax monoidal functors

(F,m) : (C,⊗,e) −→ (D, •,u) and (G,n) : (D, •,u) −→ (E, ·, i)

is defined as the compositeG ◦ F of the two underlying functorsF andG, equipped
with the mediating maps:

GFA · GFB
n // G(FA • FB)

Gm // GF(A⊗ B)

and

i
n // Gu

Gm // FGe.

76

The vertical and horizontal composition of monoidal natural transformations are de-
fined just as in the 2-categoryCat. We leave the reader check as exercise that the ver-
tical and horizontal composites of monoidal natural transformations definemonoidal
natural transformations, and from this, that the constructions satisfy the axioms of a
2-category.�

It is not difficult to establish in the same way that

Proposition 9 Symmetric monoidal categories, symmetric lax monoidal functors and
monoidal natural transformations between lax monoidal functors define a 2-category,
notedSymMonCat.

Proposition 10 Symmetric monoidal categories, symmetric colax monoidal functors
and monoidal natural transformations between colax monoidal functors define a 2-
category, notedSymColaxMonCat.

5.9 Adjunctions between functors

By definition, an adjunction is a triple (F∗,F∗, φ) consisting of two functors

F∗ : C −→ D F∗ : D −→ C

and a family of bijections

φA,B : C(A,F∗B) � D(F∗A, B)

indexed by the objectsA of the categoryC, and the objectsB of the categoryD. In that
case, the functorF∗ is calledleft adjoint to the functorF∗, and one writes

F∗ a F
∗.

The familyφ is required to be natural inA andB. This point is sometimes misunder-
stood, or simply forgotten. For that reason, we explain it briefly here. Suppose given a
morphism

h : A −→ F∗B

in the categoryC, and a pair of morphismshA : A −→ A′ in the categoryC and
hB : B′ −→ B in the categoryD. The two morphismshA andhB should be understood
asactionson the morphismh, in the group-theoretic sense. Naturality means that the
bijectionφ preserves the actions by the morphisms of the categoriesC andD on the
families of setsC(A,F∗B) andD(F∗A, B). More precisely, let the morphism

h′ = F∗(hB) ◦ h ◦ hA : A′ −→ F∗B′

denote the result of the action byhA andhB on the morphismh. The morphismh′ is
thus chosen to make the diagram

A
h // F∗B

F∗hB

��
A′

hA

OO

h′ // F∗B′

77

commute in the categoryD. Naturality inA andB means that the equality

φA′,B′ (h
′) = hB ◦ φA,B(h) ◦ F∗(hA)

is satisfied, or equivalently, that the diagram

F∗A
φA,B(h) // B

hB

��
F∗A′

F∗hA

OO

φA′ ,B′ (h′) // B′

commutes in the categoryD.

5.10 Adjunctions in the language of 2-categories

The definition of adjunction between functors given in Section 5.9 may be reformulated
using the language of 2-categories, in the following way. The translation is based on
the observation:

• that an objectA in the categoryC is the same thing as a functor [A] from the
category1 (the category with one object equipped with its identity morphism) to
the categoryC,

• that a morphismh : A −→ B in the categoryC is the same thing as a natural
transformation [h] : [A] ⇒ [B] between the functors representing the objectsA
andB,

• that the functor [A] : 1 −→ C composed with the functorF∗ : C −→ D coincides
with the functor [F∗A] : 1 −→ D:

F∗ ◦ [A] = [F∗A]

for every objectA of the categoryC. And similarly, that

F∗ ◦ [B] = [F∗B]

for every objectB of the categoryD.

All this put together, the adjunctionφA,B becomes a bijection between the natural trans-
formations

[A] ⇒ F∗ ◦ [B] : 1 −→ C

and the natural transformations

F∗ ◦ [A] ⇒ [B] : 1 −→ C.

Diagrammatically, the bijectionφA,B defines a one-to-one relationship between the cells

C

1

[A] --

[B]
11

⇓

D

F∗

OO

78

and the cells

C

F∗

��
1

[A] --

[B]
11

⇓

D

in the 2-categoryCat. Interestingly, it is possible to replace the category1 by any
categoryE in the bijection below. We leave the proof as exercise to the reader.

Exercise. Show that for every adjunction (F∗,F∗, φ) the familyφ extends to a family
(also notedφ) indexed by pairs of coinitial functors

A : E −→ C B : E −→ D

whose componentφA,B defines a bijection between the natural transformations

A⇒ F∗ ◦ B : E −→ C

and the natural transformations

F∗ ◦ A⇒ B : E −→ C.

Formulate accordingly the naturality condition on the extended familyφ. �

The discussion (and exercise) leads us to a very pleasant definition of adjunction in
a 2-category. From now on, we suppose given a 2-categoryC. An adjunctionin the
2-categoryC is defined as a triple (f∗, f ∗, φ) consisting of two morphisms

f∗ : C −→ D f ∗ : D −→ C

and a family of bijections

φa,b : C(E,C)(a, f ∗ ◦ b) � C(E,D)(f∗ ◦ a,b)

indexed by pairs of coinitial morphisms

a : E −→ C b : E −→ D

in the 2-categoryC. In that case, the morphismf∗ is called left adjoint to the mor-
phism f ∗ in the 2-categoryC, and one writes

f∗ a f ∗.

The familyφ is required to be natural ina andb, in the following sense. Suppose that
the bijectionφa,b transports the cellθ to the cellζ = φa,b(θ) — as depicted below.

C

E

a --

b
11

⇓θ

D

f ∗

OO
φa,b
7−→

C

f∗

��
E

a --

b
11

⇓ζ

D

79

Suppose given a morphismh : F −→ E and two cells

α : a′ ⇒ a ◦ h : F −→ C β : b ◦ h⇒ b′ : F −→ D

represented diagrammatically as:

C

F

a′

""

b′

<<

h //
⇓α

⇓β

E

a --

b
11 D

Naturality ina andb means that the bijectionφa,b preserves the actions of the cellsα
and β, in the following sense: the bijectionφa′,b′ transports the cellθ′ obtained by
pasting together the three cellsα, β, θ to the cellζ′ obtained by pasting together the
three cellsα, β, ζ — as depicted below.

C

F

a′

""

b′

<<

//
⇓α

⇓β

E

a --

b
11

⇓θ

D

f ∗

OO
φa′ ,b′

7−→

C

f∗

��
F

a′

""

b′

<<

//
⇓α

⇓β

E

a --

b
11

⇓ζ

D

Exercise. Show that the definition of adjunction given in Section 5.9 coincides with
the definition of adjunction in the 2-categoryCat. Show moreover that the original
formulation of naturality is limited to the instance in whichE = F is the category1
with one object, andh : F −→ E is the identity functor on that category.�

5.11 Another formulation: the triangular identities

As just defined in Section 5.10, suppose given an adjunction (f∗, f ∗, φ) in a 2-categoryC.
The two cells

η : idC ⇒ f ∗ ◦ f∗ ε : f∗ ◦ f ∗ ⇒ idD

are defined respectively as the cells related to the vertical identity cells 1f∗ and 1f ∗ by
the bijectionsφidC, f∗ andφ f ∗,idD — as depicted below.

80

C

C

idC --

f∗
11

⇓η

D

f ∗

OO
φidC , f∗
7−→

C

f∗

��
C

idC --

f∗
11

⇓1f∗

D

C

D

f ∗ --

idD
11

⇓1f ∗

D

f ∗

OO
φ f ∗ ,idD
7−→

C

f∗

��
D

f ∗ --

idD
11

⇓ε

D

This leads to a more concise (and equivalent) definition of adjunction in the 2-categoryC.
An adjunction is alternatively defined as a quadruple (f∗, f ∗, η, ε) consisting of two
morphisms:

f∗ : C −→ D f ∗ : D −→ C

and two cells
η : idC ⇒ f ∗ ◦ f∗ ε : f∗ ◦ f ∗ ⇒ idD

satisfying the so-calledtriangular identities:

(ε ◦ f∗) ∗ (f∗ ◦ η) = 1f∗ : C −→ D

and
(f ∗ ◦ ε) ∗ (η ◦ f ∗) = 1f ∗ : D −→ C.

The morphismsf ∗ ◦ f∗ and f∗ ◦ f ∗ are called respectively themonadand thecomonad
of the adjunction. The cellsη andε are called respectively theunit of the monadf ∗ ◦ f∗
and thecounitof the comonadf∗ ◦ f ∗.

Diagrammatically, the two triangular identities are represented as:

C f∗ //

idC

��
D f ∗ //

idD

DD

⇓η

C f∗ //

⇓ε

D = C f∗ //

idC

��
D ⇓1f∗

idD

DDC f∗ // D

D f ∗ //

idD

DDC f∗ //

idC

��

⇓ε

D f ∗ //
⇓η

C = D f ∗ //

idD

DDC ⇓1f ∗

idC

��
D f ∗ // C

81

We leave to the reader (exercise below) the proof that this formulation of adjunction
coincides with the previous one.

Exercise.Show that the definition of adjunction based on triangular identities is equiv-
alent to the definition of adjunction in a 2-categoryC formulated in Section 5.10.�

5.12 A dual definition of adjunction

The definition of adjunction formulated in Section 5.11 is not only remarkable for
its concision; it is also remarkable for its self-duality. Notice indeed that an adjunc-
tion (f∗, f ∗, η, ε) in a 2-categoryC induces an adjunction

(f∗)
op a (f ∗)op

between the morphisms

(f∗)
op : D −→ C (f ∗)op : C −→ D

in the 2-categoryCop in which the direction of every morphism is reversed (but the
direction of cells is maintained.)

From this follows mechanically that the original definition of adjunction formulated
in Section 5.10 may be dualized! An adjunction in a 2-categoryC is thus alternatively
defined as a triple (f∗, f ∗, ψ) consisting of two morphisms

f∗ : C −→ D f ∗ : D −→ C

and a family of bijections

ψa,b : C(C,E)(a,b ◦ f∗) � C(D,E)(a ◦ f ∗,b)

indexed by pairs of cofinal morphisms

a : C −→ E, b : D −→ E

in the 2-categoryC. The familyψ of bijections should be natural ina andb in a dualized
sense of Section 5.10. Suppose that the bijectionψa,b transports the cellθ to the cell
ζ = ψa,b(θ) — as depicted below.

C a

��
f∗

��
E⇓θ

D b

HH
ψa,b
7−→

C a

��
E⇓ζ

D b

HHf ∗

OO

Suppose given a morphismh : E −→ F and two cells

α : a′ ⇒ h ◦ a : C −→ F β : h ◦ b⇒ b′ : D −→ F

82

represented diagrammatically as:

C a

��

a′

��
E h // F

⇓α

⇓β

D b

HH

b′

JJ

Just as in Section 5.10, naturality ina andb means that the bijectionψa,b preserves the
actions of the cellsα andβ. Namely, the bijectionψa′,b′ transports the cellθ′ obtained
by pasting together the three cellsα, β, θ to the cellζ′ obtained by pasting together the
three cellsα, β, ζ — as depicted below.

C

f∗

��

a

��

a′

��
E⇓θ // F

⇓α

⇓β

D b

HH

b′

JJ
ψa′ ,b′

7−→

C a

��

a′

��
E⇓ζ // F

⇓α

⇓β

D b

HH

b′

JJf ∗

OO

It is thus possible to define an adjunction as a triple (f∗, f ∗, φ) as in Section 5.10, or
as a triple (f∗, f ∗, ψ) as just done here. Remarkably, the two bijectionsφ andψ are
compatiblein the following sense. Suppose given two cells

θ1 : f∗ ◦ a1⇒ b1 : E1 −→ D θ2 : a2 ◦ f ∗ ⇒ b2 : D −→ E2

depicted as follows:

C

E1

a1 --

b1
11

⇓θ1

D

f ∗

OO

and

C

f∗

��

a2

��
E2⇓θ2

D b2

GG

The equality

(ψa2,b2(θ2) ◦ 1b1) ∗ (1a2 ◦ θ1) = (1b2 ◦ φa1,b1(θ1)) ∗ (θ2 ◦ 1a1)

between cellsa2 ◦ a1⇒ b2 ◦ b1 is then satisfied; diagrammatically speaking:

83

C a2

��
E1

a1
..

b1
00

⇓θ1 E2⇓ψ(θ2)

D

f ∗

OO

b2

EE =

C

f∗

��

a2

��
E1

a1
..

b1
00

⇓φ(θ1) E2⇓θ2

D b2

EE

Exercise. Deduce the triangular identities of Section 5.11 from the compatibility just
mentioned between the bijectionsφ andψ. �

5.13 Monoidal adjunctions

Basically, the notion ofmonoidal adjunctionis defined by applying one of the three
equivalent definitions of adjunction in Section 5.10, Section 5.11 or Section 5.12 to the
2-categoryLaxMonCat (defined in Section 5.8). However, starting from Section 5.10
and its definition based on triangular identities leads to a particularly simple definition,
which we will use in Section 5.15. Suppose given a pair of lax monoidal functors:

(F∗,m) : (C,⊗,e) −→ (D, •,u) (F∗,n) : (D, •,u) −→ (C,⊗,e).

Then, a monoidal adjunction between the lax monoidal functors

(F∗,m) a (F∗,n)

is simply an adjunction (F∗,F∗, η, ε) between the underlying functors

F∗ : C −→ D F∗ : D −→ C

whose natural transformations

η : idC ⇒ F∗ ◦ F∗ ε : F∗ ◦ F
∗ ⇒ idD

are monoidal in the sense of Section 5.4. We characterize the notion of monoidal
adjunction another time in Section 5.15.

5.14 A duality between lax and colax monoidal functors

Suppose given a pair of monoidal categories (C,⊗,e) and (D, •,u) and a functorF∗ :
C −→ D left adjoint to a functorF∗ : D −→ C. Diagrammatically:

C

F∗

&&
⊥ D

F∗

ff

In that situation,

Proposition 11 Every lax monoidal structure(F∗, p) on the functorF∗ induces a colax
monoidal structure(F∗,n) on the functorF∗, defined as follows:

84

n2
A,B : F∗(A⊗ B)

F∗(η⊗η)

��

F∗A • F∗B

F∗(F∗F∗A⊗ F∗F∗B)
F∗p // F∗F∗(F∗A • F∗B)

ε

OO

n0 : F∗e
F∗p // F∗F∗u

ε // u.

Conversely, every colax monoidal structure(F∗,n) on the functorF∗ induces a lax
monoidal structure(F∗, p) on the functorF∗, defined as follows:

p2
A,B : F∗A⊗ F∗B

η

��

F∗A • F∗B

F∗F∗(F∗A⊗ F∗B)
F∗n // F∗(F∗F∗A • F∗F∗B)

F∗(ε•ε)

OO

p0 : e
η // F∗F∗e

F∗n // F∗u.

Besides, the two functions(p 7→ n) and(n 7→ p) are inverse, and thus define a one-to-
one relationship between the lax monoidal structures on the functorF∗ and the colax
monoidal structures on the functorF∗.

Note that the colax monoidal structuren may be defined alternatively from the lax
monoidal structurep as the unique family of morphisms making the diagrams

A⊗ B
η //

η⊗η

��

F∗F∗(A⊗ B)

F∗n

��
F∗F∗A⊗ F∗F∗B

p // F∗(F∗A • F∗B)

e

p

��

η // F∗F∗e

F∗n

��
F∗u = F∗u

commute for every objectsA andB of the categoryC. Conversely, the lax monoidal
structurep may be defined from the colax monoidal structuren as the unique family of
morphism making the diagrams

F∗(F∗A⊗ F∗B)
n //

F∗p

��

F∗F
∗A • F∗F∗B

ε⊗ε

��
F∗F

∗(A • B)
ε // A • B

F∗e

F∗p

��

= F∗e

n

��
F∗F

∗u
ε // u

commute for every objectsA andB of the categoryD.

85

5.15 A characterization of monoidal adjunctions

Here, we suppose given two monoidal categories (C,⊗,e) and (D, •,u) and a monoidal
functor

(F∗,m) : (C,⊗,e) −→ (D, •,u).

We suppose moreover that, just as in Section 5.14, the functorF∗ is left adjoint to a
functorF∗ : D −→ C. We investigate now when the adjunction

F∗ a F
∗

may be lifted to a monoidal adjunction

(F∗,m) a (F∗, p). (36)

Obviously, this depends on the lax structurep chosen to equip the functorF∗. By
Proposition 11 (Section 5.14) every such lax structurep is associated biunivoquely
to a colax structuren on the functorF∗. Hence, the question becomes: when does
a pair of lax and colax structuresm and n on the functorF∗ define a monoidal ad-
junction (F∗,m) a (F∗, p) by the bijectionn 7→ p ? The answer to this question is
remarkably simple. We leave the reader establish as exercise that:

Exercise. Show that

• the colax structuren is right inverse to the lax structurem iff the natural trans-
formationη is monoidal from the identity functor on the categoryC to the lax
monoidal functor (F∗, p) ◦ (F∗,m), and

• the colax structuren is left inverse to the lax structurem iff the natural trans-
formationε is monoidal from the lax monoidal functor (F∗,m) ◦ (F∗, p) to the
identity functor on the categoryD.

By the colax structuren is right inverse to the lax structurem, we mean that the mor-
phisms

m2
A,B ◦ n2

A,B : F∗(A⊗ B)
n // F∗A • F∗B

m // F∗(A⊗ B)

m0 ◦ n0 : F∗e
n // u m // F∗e

coincide with the identity for every pair of objectsA andB of the categoryC. Simi-
larly, by the colax structuren is left inverse to the lax structurem, we mean that the
morphisms

n2
A,B ◦m2

A,B : F∗A • F∗B
m // F∗(A⊗ B)

n // F∗A • F∗B

n0 ◦m0 : u m // F∗e
n // u

coincide with the identity for every pair of objectsA andB of the categoryC. �

This leads to the following characterization of monoidal adjunctions, originally noticed
by Max Kelly.

86

Proposition 12 Suppose given two monoidal categories(C,⊗,e) and (D, •,u) and a
lax monoidal functor

(F∗,m) : (C,⊗,e) −→ (D, •,u).

Suppose that the functorF∗ is left adjoint to a functor

F∗ : D −→ C.

Then, the adjunction
F∗ a F

∗

lifts to a monoidal adjunction
(F∗,m) a (F∗, p)

iff the lax monoidal functor(F∗,m) is strong. In that case, the lax structure p is associ-
ated by the bijection of Proposition 11 to the colax structure n= m−1 provided by the
inverse of the lax structure m.

In particular, the left adjoint functor (F∗,m) is strongly monoidal in every monoidal
adjunction (F∗,m) a (F∗, p).

5.16 A characterization of symmetric monoidal adjunctions

A symmetric monoidal adjunctionis defined in the same way as a monoidal adjunction,
by applying the 2-categorical definition of adjunction to the 2-categorySymMonCat
formulated in Proposition 9 (Section 5.13). We explain briefly how the characterization
of monoidal adjunctions formulated in Section 5.15 may be adapted to the symmetric
case.

The 2-categorySymMonCat hassymmetricmonoidal categories as objects,sym-
metricmonoidal functors as horizontal morphisms, and monoidal natural transforma-
tions as vertical morphisms. So, a symmetric monoidal adjunction is simply a monoidal
adjunction

(F∗,m) a (F∗, p)

between two lax monoidal functors

(F∗,m) : (C,⊗,e) −→ (D, •,u) (F∗, p) : (D, •,u) −→ (C,⊗,e)

in which:

• the two monoidal categories (C,⊗,e) and (D, •,u) are equipped with symme-
triesγ⊗ andγ•,

• the two lax monoidal functors (F∗,m) and (F∗, p) are symmetric in the sense of
Section 5.6.

Symmetric monoidal adjunctions may be characterized in the same way as monoidal
adjunctions, by observing that in Proposition 11, the lax monoidal functor (F∗, p) is
symmetric iff the colax monoidal functor (F∗,n) is symmetric. This leads to the fol-
lowing variant of Proposition 12.

87

Proposition 13 Suppose given two symmetric monoidal categories(C,⊗,e) and(D, •,u)
and a symmetric lax monoidal functor

(F∗,m) : (C,⊗,e) −→ (D, •,u).

Suppose that the functorF∗ is left adjoint to a functor

F∗ : D −→ C.

Then, the adjunction
F∗ a F

∗

lifts to a symmetric monoidal adjunction

(F∗,m) a (F∗, p)

iff the lax monoidal functor(F∗,m) is strong. In that case, the lax structure p is associ-
ated by the bijection of Proposition 11 to the colax structure n= m−1 provided by the
inverse of the lax structure m.

5.17 Notes and references

The notion of adjunction was formulated for the first time in 1958 in an article by
Daniel Kan [27]. The 2-categorical definition of adjunction was introduced by Ross
Street in [35]. We do not introduce the notion of Kan extension in this chapter, al-
though the trained reader will immediately recognize them hidden in our treatment of
adjunctions performed in Section 5.10. The relationship between adjunctions and Kan
extensions appears already in the original paper by Daniel Kan, as well as in Chapter
10 of Saunders MacLane’s book [31].

88

6 Monoids and monads

In this chapter, we recall the definitions and main properties of monoids and monads.
Once dualized and transformed as comonoids and comonads, the two notions play a
central role in the definition of the various categorical models of linear logic exposed
in the next Chapter 7 of the survey.

6.1 Monoids

A monoidin a monoidal category (C,⊗,1) is defined as a triple (A,m,u) consisting of
an objectA and two morphisms

1
u // A A⊗ A

moo

making theassociativitydiagram

(A⊗ A) ⊗ A

α

��

m⊗A // A⊗ A

m

��
A⊗ (A⊗ A)

A⊗m // A⊗ A
m // A

and the twounit diagrams

1⊗ A
u⊗A //

λ

��

A⊗ A

m

��

A⊗ 1
A⊗uoo

ρ

��
A = A = A

commute. Amonoid morphism

f : (A,mA,uA) −→ (B,mB,uB)

between monoids (A,mA,uA) and (B,mB,uB) is defined as a morphism

f : A −→ B

between the underlying objects in the categoryC, making the two diagrams

1

uA

��

= 1

uB

��
A

f // B

A⊗ A
f⊗ f //

mA

��

B⊗ B

mB

��
A

f // B

89

commute. A monoid defined in a symmetric monoidal category (C,⊗,1) is calledcom-
mutativewhen the diagram

A⊗ A
m

""EE
EE

EE
EE

E

γ

��

A

A⊗ A

m

<<yyyyyyyyy

commutes.

Exercise.Show that one retrieves the usual notions of monoid, of commutative monoid
and of monoid morphism when one applies the definitions to the monoidal category
(Set,×,1) with sets as objects, functions as morphisms, cartesian product as tensor
product, and terminal object as unit.�

6.2 The category of monoids

One reason invoked by Jean Bénabou for introducing the notion of lax monoidal func-
tor in [5] is its remarkable affinity with the traditional notion of monoid. This affinity is
witnessed by the followinglifting property. To every monoidal category (C,⊗,1), one
associates the category Mon(C,⊗,1)

• with objects the monoids,

• with morphisms the monoid morphisms.

Then, every lax monoidal functor

(F,n) : (C,⊗,e) −→ (D, •,u)

induces a functor

Mon(F,n) : Mon(C,⊗,e) −→ Mon(D, •,u)

which transports a monoid (A,mA,uA) to the monoid (FA,mFA,uFA) defined as fol-
lows:

mFA : FA⊗ FA
n2 // F(A⊗ A)

FmA // FA

uFA : u n0 // Fe
uA // FA

We leave the reader check that Mon(F,n) defines indeed a functor. This may be estab-
lished directly by a simple diagram chasing, or more conceptually by completing the
exercise below.

Exercise. Show that the category1 consisting of one object and its identity morphism
is monoidal. Show that a lax monoidal functor from the monoidal category1 to a

90

monoidal categoryC = (C,⊗,1) is the same thing as a monoid in this category; and
that the categoryLaxMonCat (1,C) coincides with the category Mon(C,⊗,1) with
monoids as objects and monoid morphisms as morphisms. Deduce the existence of
the functor Mon(F,n) from 2-categorical considerations.�

Note that the category Mon(C,⊗,1) is not monoidal in general. However, the cat-
egory becomes monoidal, and even symmetric monoidal, when the underlying cate-
gory (C,⊗,1) is symmetric monoidal.

Proposition 14 Every symmetric monoidal category(C,⊗,1) induces a symmetric monoidal
categoryMon(C,⊗,1) with the monoid

1
id1 // 1 1⊗ 1

λ=ρoo

as monoidal unit, and the monoid(A⊗ B,mA⊗B,uA⊗B) defined below

uA⊗B : 1
ρ−1=λ−1

// 1⊗ 1
uA⊗uB // A⊗ B

mA⊗B : (A⊗ B) ⊗ (A⊗ B)
α ��

(A⊗ A) ⊗ (B⊗ B)
mA⊗mB // A⊗ B.

A⊗ (B⊗ (A⊗ B))
A⊗α−1 ��

A⊗ (A⊗ (B⊗ B))
α
OO

A⊗ ((B⊗ A) ⊗ B)
A⊗(γ⊗B) // A⊗ ((A⊗ B) ⊗ B)

A⊗α
OO

as tensor product of two monoids(A,mA,uA) and (B,mB,uB). Moreover, the forgetful
functor

U : Mon(C,⊗,1) −→ (C,⊗,1)

which transports a monoid(A,m,u) to its underlying object A is symmetric and strict
monoidal (that is, its coercion maps are provided by identities.)

We have noted at the beginning of the section that every lax monoidal functor between
monoidal categories

(F,n) : (C,⊗,e) −→ (D, •,u)

lifts as a functor

Mon(F,n) : Mon(C,⊗,e) −→ Mon(D, •,u).

We have seen moreover in Proposition 14 that when the monoidal categories (C,⊗,e)
and (D, •,u) are symmetric, they induce symmetric monoidal categories Mon(C,⊗,e).
In that situation, and when the lax monoidal functor (F,n) is symmetric, the functor
Mon(F,n) lifts to a symmetric lax monoidal functor — equipped with the coercionsn.
This induces a commutative diagram of symmetric lax monoidal functors:

Mon(C,⊗,e)
Mon(F,n) //

U

��

Mon(D, •,u)

U

��
(C,⊗,e)

(F,n) // (D, •,u)

91

Exercise. Show that every commutative monoid in a symmetric monoidal category
(C,⊗,1) lifts to a commutative monoid in the category Mon(C,⊗,1). Conversely, show
that every monoid in the category Mon(C,⊗,1) is obtained in such a way. Conclude
that the category Mon(Mon(C,⊗,1),⊗,1) is isomorphic (as a symmetric monoidal cat-
egory) to the full subcategory of Mon(C,⊗,1) with commutative monoids as objects,
equipped with the same monoidal structure as the surrounding category Mon(C,⊗,1).
�

6.3 Comonoids

Every categoryC defines an opposite categoryCop obtained by reversing the direction
of every morphism in the categoryC. The resulting categoryCop has the same objects
as the categoryC, and satisfies

Cop(A, B) = C(B,A)

for every pair of objectsA and B. A remarkable aspect of the theory of monoidal
categories is its self-duality. It appears indeed that every monoidal category (C,⊗,e)
defines a monoidal category (Cop,⊗,e) on the opposite categoryCop, with same tensor
product and unit as in the original categoryC.

From this follows that every notion formulated in the theory of “monoidal cate-
gories” may be dualized by reversing the direction of morphisms in the definition. This
principle is nicely illustrated by the notion of comonoid, which is dual to the notion of
monoid formulated in Section 6.1. Hence, acomonoidin a monoidal category (C,⊗,1)
is defined as a triple (A,d,e) consisting of an objectA and two morphisms

1 A
d //eoo A⊗ A

making theassociativitydiagram

A
d //

d

��

A⊗ A
d⊗A // (A⊗ A) ⊗ A

α

��
A⊗ A

A⊗d // A⊗ (A⊗ A)

and the twounit diagrams

1⊗ A

λ

��

A⊗ A
e⊗Aoo A⊗e // A⊗ 1

ρ

��
A = A

d

OO

= A

commute. Acomonoid morphism

f : (A,dA,eA) −→ (B,dB,eB)

is defined as a morphism
f : A −→ B

between the underlying objects in the categoryC, making the two diagrams

92

A
f //

eA

��

B

eB

��
1 = 1

A
f //

dA

��

B

dB

��
A⊗ A

f⊗ f // B⊗ B

commute. A comonoid defined in a symmetric monoidal category (C,⊗,1) is called
commutativewhen the diagram

A
d // A⊗ A

γ

��

||

A
d // A⊗ A

commutes.

6.4 Cartesian categories among monoidal categories

In a cartesian category, every object defines a comonoid. Conversely, it is useful to
know when a monoidal category (C,⊗,1) in which every object defines a comonoid, is
a cartesian category. This is precisely the content of the next proposition.

Proposition 15 Let (C,⊗,1) be a monoidal category. The tensor unit is a terminal
object and the tensor product is a cartesian product if and only if there exists two
natural transformations d and e with components

dA : A −→ A⊗ A eA : A −→ 1

such that:

1. (A,dA,eA) is a comonoid for every object A,

2. the diagram

A⊗ B
dA⊗B // (A⊗ B) ⊗ (A⊗ B)

(A⊗eB)⊗(eA⊗B)

��

||

A⊗ B (A⊗ 1)⊗ (1⊗ B)
ρ⊗λoo

(37)

commutes for every pair of objects A and B,

3. the component e1 : 1 −→ 1 coincides with the identity morphism.

Proof. The direction (⇒) is nearly immediate, and we leave it as exercise to the reader.
We prove the other more difficult direction (⇐). We show that for every pair of objects
A andB, the morphisms

93

π1 : A⊗ B
A⊗eB // A⊗ 1

ρ // A

π2 : A⊗ B
eA⊗B // 1⊗ B

λ // B

define the two projections of a cartesian product. To that purpose, we need to show that
for every two morphisms

f : X −→ A g : X −→ B

there exists a unique morphism

〈 f ,g〉 : X −→ A⊗ B

making the diagram

A

X
〈 f ,g〉 //

f

''

g

77

A⊗ B

π1

<<yyyyyyy

π2

""E
EE

EE
EE

B

(38)

commute in the categoryC. Existence follows easily from the definition of the mor-
phism〈 f ,g〉 as

〈 f ,g〉 : X
dX // X ⊗ X

f⊗g // A⊗ B.

One establishes by an elementary diagram chasing that Diagram (38) commutes. Typ-
ically, the equalityπ1 ◦ 〈 f ,g〉 = f holds because the diagram

X
dX // X ⊗ X

f⊗g //

X⊗eX

��

(b)

A⊗ B

A⊗eB

��
|| (a) X ⊗ 1 f⊗1 //

ρ

��

(c)

A⊗ 1

ρ

��
X = X

f
// A

(a) property of the comonoidX,
(b) g is a comonoid morphism,
(c) ρ is natural.

94

commutes. We prove uniqueness. Suppose that a morphismh : X −→ A⊗B makes the
diagram

A

X
h //

f

''

g

77

A⊗ B

π1

<<yyyyyyy

π2

""E
EE

EE
EE

B

(39)

commutes. In that case, a simple diagram chasing shows that the two diagrams below
commute in the categoryC.

X
dX //

h

��

(a)

X ⊗ X

h⊗h

��
A⊗ B

dA⊗B //

(b)

(A⊗ B) ⊗ (A⊗ B)

(A⊗eB)⊗(eA⊗B)

��

||

A⊗ B (A⊗ 1)⊗ (1⊗ B)
ρ⊗λoo

(a) naturality ofd,
(b) Diagram (37).

X
dX //

〈 f ,g〉

��

(c)

X ⊗ X

h⊗h

��
f⊗g
��
��
��
��
��
��
�

����
��
��
��
��
��
� (A⊗ B) ⊗ (A⊗ B)

(A⊗eB)⊗(eA⊗B)

��
A⊗ B (A⊗ 1)⊗ (1⊗ B)

ρ⊗λoo

(d)

(c) definition of〈 f ,g〉
(d) Diagram (39)

and definition ofπ1 andπ2.

From this follows that the two morphismsh and〈 f ,g〉 coincide. We conclude that the
tensor product is a cartesian product.

There only remains to show that the tensor unit is a terminal object. For every
object A, there exists the morphismeA : A −→ 1. We claim thateA is the unique
morphism from the objectA to the object 1. Suppose thatf : A −→ 1 is any such

95

morphism. By naturality ofe, the diagram

A
f //

eA ��>
>>

>>
>>

B

e1����
��
��
�

1

commutes. From this and the hypothesis thate1 is the identity morphism follows that
the morphismf necessarily coincides with the morphismeA. The tensor unit 1 is thus
a terminal object of the categoryC. This concludes the proof of Proposition 15.�

Note that we do not need to suppose that the category (C,⊗,1) is symmetric monoidal
in Proposition 15, nor that every objectA defines acommutativecomonoid. However,
the situation becomes slightly more conceptual when the category (C,⊗,1) is symmet-
ric monoidal. In that case, indeed, the two endofunctors

X 7→ X ⊗ X X 7→ 1

on the categoryC may be seen as lax monoidal endofunctors of the monoidal cate-
gory (C,⊗,1). The coercionsm of the functorX 7→ X ⊗ X are defined in a similar
fashion as the product of two monoids in Proposition 14:

m0 : 1
ρ−1=λ−1

// 1⊗ 1

m2
A,B : (A⊗ B) ⊗ (A⊗ B)

α ��
(A⊗ A) ⊗ (B⊗ B)

A⊗ (B⊗ (A⊗ B))
A⊗α−1 ��

A⊗ (A⊗ (B⊗ B))
α
OO

A⊗ ((B⊗ A) ⊗ B)
A⊗(γ⊗B) // A⊗ ((A⊗ B) ⊗ B)

A⊗α
OO

(40)

The coercionn of the functorX 7→ 1 is defined as the identityn0 : 1 −→ 1 and the
morphismn2 = λ1 = ρ1 : 1⊗1 −→ 1. Note that the endofunctorsX 7→ X⊗X andX 7→ 1
are strong and symmetric, but that we do not care about this additional property here.
The following result is folklore:

Corollary 16 Let (C,⊗,1) be a symmetric monoidal category. The tensor unit is a
terminal object and the tensor product is a cartesian product if and only if there exists
two monoidal natural transformations d and e with components

dA : A −→ A⊗ A eA : A −→ 1

defining a comonoid(A,dA,eA) for every object A.

Proof. The direction (⇒) is easy, and left as exercise to the reader. The other di-
rection (⇐) established by applying Proposition 15. To that purpose, we show that
Diagram (37) commutes for every pair of objectsA andB, and that the componente1

96

coincides with the identity. This is deduced by an elementary diagram chasing in which
the monoidality ofd ande is only used to ensure thate1 = id and that the diagram

A⊗ B
dA⊗dB //

id

��

(A⊗ A) ⊗ (B⊗ B)
α��

A⊗ (A⊗ (B⊗ B))
A⊗α−1��

A⊗ ((A⊗ B) ⊗ B)
A⊗(γ⊗B)��

A⊗ ((B⊗ A) ⊗ B)
A⊗α��

A⊗ (B⊗ (A⊗ B))
α−1��

A⊗ B
dA⊗B // (A⊗ B) ⊗ (A⊗ B)

commutes for all objectsA andB. �

Remark. Note that we do not require that the comonoid (A,dA,eA) is commutative in
Corollary 16, and that we do not use in the proof the equalityd1 = λ1, nor the property
that the diagram

1⊗ 1

λ=ρ

��

A⊗ B

eA⊗eB

::vvvvvvvvv

eA⊗B

$$HH
HHH

HHH
HH

1

commutes for all objectA andB, although these two facts hold by monoidality ofd
ande.

6.5 The category of commutative comonoids

To every symmetric monoidal category (C,⊗,1), we associate the category CoMon(C,⊗,1)

• with commutative comonoids as objects,

• with comonoid morphisms as morphisms.

The category CoMon(C,⊗,1) is symmetric monoidal with the monoidal structure de-
fined in Proposition 14 in Section 6.2 dualized. We establish below that the tensor
product is a cartesian product, and that the tensor unit is a terminal object in the cate-
gory CoMon(C,⊗,1). This folklore property is deduced from Proposition 15.

Corollary 17 The categoryCoMon(C,⊗,1) is cartesian.

97

Proof. Once dualized, Proposition 14 in Section 6.2 states that the category CoMon(C,⊗,1)
is symmetric monoidal. By definition, every objectA of the category CoMon(C,⊗,1)
is a commutative comonoidA = (A,dA,eA) of the underlying symmetric monoidal cat-
egory (C,⊗,1). This commutative comonoid lifts to a commutative comonoid in the
symmetric monoidal category CoMon(C,⊗,1). This is precisely the content (once du-
alized) of the exercise appearing at the end of Section 6.2. Similarly, every morphism

f : A −→ B

in the category CoMon(C,⊗,1) defines a comonoid morphism

f : (A,dA,eA) −→ (B,dB,eB)

in the underlying monoidal category (C,⊗,1). From this follows thatf is a comonoid
morphism

f : (A,dA,eA) −→ (B,dB,eB)

in the monoidal category CoMon(C,⊗,1) itself. This proves thatd and e are natu-
ral transformations in the category CoMon(C,⊗,1). Finally, the construction of the
monoids 1 andA ⊗ B in Proposition 14 in Section 6.2 implies that, once dualized,
Diagram (37) commutes for every pair of objectsA andB, and that the morphisme1

coincides with the identity. We apply Proposition 15 and conclude that in the cate-
gory CoMon(C,⊗,1), the tensor product is a cartesian product, and the tensor unit is a
terminal object.�

Corollary 18 A symmetric monoidal category(C,⊗,1) is cartesian iff the forgetful
functor

U : CoMon(C,⊗,1) −→ C

defines an isomorphism of category.

Exercise. By isomorphism of category, we mean a functorU with an inverse, that is,
a functorV such that the two composite functorsU ◦ V andV ◦ U are the identity.
Suppose that the functor (U,m) is strong monoidal and symmetric between symmetric
monoidal categories — as this is the case in Corollary 18. Show that the inverse functor
V lifts as a strong monoidal and symmetric functor (V,n) such that (U,m) ◦ (V,n) and
(V,n) ◦ (U,m) are the identity functors, with trivial coercions. [Hint: use the fact that
V is at the same time left and right adjoint to the functorU, with trivial unit η and
counitε, and apply Proposition 13 in Section 5.16, Chapter 5.]�

Exercise. Establish the following universality property of the forgetful functorU
above, understood as a symmetric and strict monoidal functor (U, p) whose coercion
mapsp are provided by identities. Show that for every colax monoidal functor

(F,m) : (D,×,e) −→ (C,⊗,1)

from a cartesian category (D,×,e) to a symmetric monoidal category (C,⊗,1) there
exists a unique symmetric colax monoidal functor

(G,n) : (D,×,e) −→ CoMon(C,⊗,1)

98

making the diagram of symmetric colax monoidal functors

(D,×,e)
(G,n) // CoMon(C,⊗,1)

(U,p)

��

||

(D,×,e)
(F,m) // (C,⊗,1)

commute.�

6.6 Monads and comonads

A monadT = (T, µ, η) in a categoryC consists of a functor

T : C −→ C

and two natural transformations

µ : T ◦ T ⇒ T η : I ⇒ T

making theassociativitydiagram

T3
Tµ //

µT

��

T2

µ

��
T2

µ // T

and the twounit diagrams

IT
ηT // T2

µ

��

T I
Tηoo

|| ||

T = T = T

commute, whereI is notation for the identity functor on the categoryC.

Exercise. Show that the categoryCat(C,C) of endofunctors on a categoryC

• with functorsF : C −→ C as objects,

• with natural transformationsθ : F ⇒ G as morphisms,

defines a strict monoidal category in which

• the productF ⊗G of two functors is defined as their compositeF ◦G,

99

• the unite is defined as the identity functor on the categoryC.

Show that a monad on the categoryC is the same thing as a monoid in the monoidal
category (Cat(C,C), ◦, I). �

Dually, a comonad (K, δ, ε) in a categoryC consists of a functor

K : C −→ C

and two natural transformations

δ : K ⇒ K ◦ K ε : K ⇒ I

making theassociativitydiagram

K
δ //

δ

��

K2

Kδ

��
K2

δK // K3

and the twounit diagrams

IK K2
εKoo Kε // KI

|| ||

K = K

δ

OO

= K

commute.

Exercise.Show that a comonad on a categoryC is the same thing as a comonoid in its
monoidal category (Cat(C,C), ◦, I) of endofunctors.�

Exercise. Every objectA in a monoidal category (C,⊗,e) defines a functor

X 7→ A⊗ X : C −→ C.

Show that this defines a strong monoidal functor from the monoidal category (C,⊗,e)
to its monoidal category (Cat(C,C), ◦, I) of endofunctors. Deduce that every monoid
(A,m,u) in the monoidal category (C,⊗,e) defines in this way a monad (T, µ, η) on the
categoryC; and dually, that every comonoid (A,d,e) defines in this way a comonad
(K, δ, ε) on the categoryC. �

We have seen as exercise that a monad (resp. a comonad) over a categoryC is a
monoid (resp. a comonoid) in the monoidal categoryCat(C,C) of endofunctors and
natural transformations. This leads to a generic notion of monad and comonad in a
2-category developed in Section 6.9.

100

6.7 Monads and adjunctions

Every adjunction

C

F∗

&&
⊥ D

F∗

ff (41)

induces a monad (T, µ, η) on the categoryC and a comonad (K, δ, ε) on the categoryD,
in which the functorsT andK are the composites:

T = F∗ ◦ F∗ K = F∗ ◦ F∗

and the two natural transformations

η : 1C ⇒ F∗ ◦ F∗ ε : F∗ ◦ F∗ ⇒ 1D

are constructed as explained in Section 5.11 of Chapter 5. Here, we use the notation 1C

for the identity functor of the categoryC. The two natural transformationsµ andδ are
then deduced fromη andε by composition:

µ = F∗ ◦ ε ◦ F∗ : F∗ ◦ F∗ ◦ F
∗ ◦ F∗ ⇒ F∗ ◦ F∗

δ = F∗ ◦ η ◦ F
∗ : F∗ ◦ F

∗ ⇒ F∗ ◦ F
∗ ◦ F∗ ◦ F

∗

We leave the reader check that, indeed, we have defined a monad (T, µ, η) and a
comonad (K, δ, ε). The proof follows from the triangular equalities formulated in Chap-
ter 5 (Section 5.11). It may be also performed at a more abstract 2-categorical level, as
will be explored in Section 6.9.

Conversely, given a monad (T, µ, η) on the categoryC, does there exist an ad-
junction (41) whose induced monad on the categoryC coincides precisely with the
monad (T, µ, η). The answer happens to be positive, and positive twice: there exists
indeed two different canonical ways to construct such an adjunction, each one based
on a specific categoryCT andCT .

C

F∗
''

⊥ CT

F∗

ff C

G∗
''

⊥ CT

G∗

ff

The two categories are called:

• the Kleisli categoryCT of the monad,

• the Eilenberg-Moore categoryCT of the monad.

The interested reader will find the construction of the two categoriesCT andCT ex-
posed in any good textbook on category theory, like Saunders Mac Lane’s mono-
graph [31] and Francis Borceux’s Handbook of Categorical Algebra [13]. We will de-
fine them in turn here. Once dualized and adapted to comonads, the two categoriesCT

andCT play indeed a central role in the semantics of proofs in linear logic, as will be
clear in Chapter 7.

The Kleisli categoryCT has

101

• the same objects as the categoryC,

• the morphismsA −→ B are the morphismsA −→ T Bof the categoryC.

Composition is defined as follows. Given two morphisms

f : A −→ B g : B −→ C

in the categoryCT , understood as morphisms

f : A −→ T B g : B −→ TC

in the categoryC, the morphism

g ◦ f : A −→ C

in the categoryCT is defined as the morphism

A
f // T B

Tg // TTC
µ // TC.

The identity on the objectA is defined as the morphism

ηA : A −→ T A

in the categoryC.

Exercise. Prove that the composition law defines indeed a categoryCT . In order to
establish associativity of the composition law, one may consider the diagram

T3D

Tµ

��
T2C

T2h

77ooooooooooooo

µ

��

T2D

µ

��
T B

Tg
77ooooooooooooo
TC

Th

77nnnnnnnnnnnnn
T D

A

f
77ppppppppppppp

B

g

77oooooooooooooo
C

h

77nnnnnnnnnnnnnn
D

in the categoryC, and check that the two morphisms fromA to T D coincide. Note that
we writeT2 andT3 for the composite functorsT2 = T ◦ T andT3 = T ◦ T ◦ T. �

The functor

CT
F∗ // C

transports every objectA of the Kleisli categoryCT to the objectT Aof the categoryC,
and every morphism

f : A −→ B

102

in the categoryCT understood as a morphism

f : A −→ T B

in the categoryC, to the morphism

F∗(f) = T A
T f // T2B

µ // T B

in the categoryC.
The functor

C
F∗ // CT

transports every objectA of categoryC to the same objectA of the Kleisli categoryCT ;
and every every morphism

f : A −→ B

in the categoryC, to the morphism

F∗(f) : A
f // B

ηB // T B

in the categoryC, understood as a morphismA −→ B in the categoryCT .

The categoryCT has

• the algebras of the monad (T, µ, η) as objects,

• the algebra morphisms as morphisms.

An algebra of the monad (T, µ, η) is defined as a pair (A,h) consisting of an objectA of
the categoryC, and a morphism

h : T A−→ A

making the two diagrams

T A

h

 A
AA

AA
AA

AA
AA

A

ηA

>>}}}}}}}}}}}
= A

T2A
µA //

Th

��

T A

h

��
T A

h // A

commute in the categoryC. An algebra morphism

f : (A,hA) −→ (B,hB)

is defined as a morphismf : A −→ B between the underlying objects in the categoryC,
making the diagram

T A

hA

��

T f // T B

hB

��
A

f // B

103

commute. The functor

CT
G∗ // C

is called theforgetful functor. It transports every algebra (A,h) to the underlying ob-
ject A, and every algebra morphism

f : (A,hA) −→ (B,hB)

to the underlying morphismf : A −→ B. The functor

C
G∗ // CT

is called thefree functor. It transports every objectA to the algebra

µA : T2A −→ T A

This algebra (T A, µA) is called thefree algebraof the objectA.
Every morphismf : A −→ B of the categoryC is transported to the algebra mor-

phism
T f : (T A, µA) −→ (T B, µB).

Exercise.Check that the pair (T A, µA) defines indeed an algebra of the monad (T, µ, η);
and that the morphismT f : T A−→ T Bdefines an algebra morphism between the free
algebras (T A, µA) and (T B, µB). �

It is folklore in category theory that:

• the adjunctionF∗ a F∗ based on the Kleisli categoryCT is initial among all the
possible “factorization” of the monad (T, δ, ε) as an adjunction,

• the adjunctionG∗ a G∗ based on the Eilenberg-Moore categoryCT is terminal
among all the possible “factorization” of the monad (T, δ, ε) as an adjunction.

We will not develop this point here, although it is fundamental in this topic. The inter-
ested reader will find a nice exposition in Saunders Mac Lane’s monograph [31].

6.8 Comonads and adjunctions

Because we are mainly interested here in the categorical semantics of linear logic,
we will generally work with a comonad (K, δ, ε) on a given categoryC, instead of
a monad (T, µ, η). This does not matter really, since a comonad on the categoryC is
simply a monad on the opposite categoryCop. Hence, the two constructions of a Kleisli
categoryCT and of an Eilenberg-Moore categoryCT for a monad, dualize to:

• a co-Kleisli categoryCK ,

• an Eilenberg-Moore categoryCK ,

for the comonad (K, δ, ε), with the expected derived adjunctions:

104

CK

F∗

&&
⊥ C

F∗

gg CK

G∗

&&
⊥ C

G∗

gg

The co-Kleisli categoryCK has:

• the objects of the categoryC as objects,

• the morphismsKA −→ B as morphismsA −→ B.

The Eilenberg-Moore categoryCK has

• the coalgebras of the comonad (K, δ, ε) as objects,

• the coalgebra morphisms as morphisms.

A coalgebra of the comonad (K, δ, ε) is defined as a pair (A,h) consisting of an objectA
of the categoryC, and a morphism

h : A −→ KA

making the two diagrams

KA

εA

 A
AA

AA
AA

AA
AA

A

h

>>}}}}}}}}}}}
= A

A
h //

h

��

KA

δ

��
KA

Kh // K2A

commute in the categoryC. A coalgebra morphism

f : (A,hA) −→ (B,hB)

is defined as a morphismf : A −→ B between the underlying objects in the categoryC,
making the diagram

A

hA

��

f // B

hB

��
KA

K f // KB

commute.

6.9 Symmetric monoidal comonads (lax and colax)

The notion of symmetric monoidal comonad plays a central role in the definition of
a linear category, the third axiomatization of linear logic presented in Section 7.4. In
order to introduce the notion, we proceed as in Chapter 5 and start by providing a

105

generic definition of comonad (k, δ, ε) over an objectC in a 2-categoryC. The 2-
categorical definition of comonad generalizes the definition of comonad developed pre-
viously: a comonad in the sense of Section 6.6 is the same thing as a comonad in the 2-
categoryCat of categories, functors, and natural transformations. From this follows by
analogy the definition of a (lax) symmetric monoidal comonad as a comonad in the 2-
categorySymMonCat of symmetric monoidal categories, lax monoidal functors, and
monoidal natural transformations introduced in Chapter 5, Section 5.8, Proposition 9.

Every objectC in a 2-categoryC induces a strict monoidal categoryC(C,C) with
objects the endomorphismsf : C −→ C, with morphisms the cellsf ⇒ g : C −→ C
and with monoidal structure provided by horizontal composition in the 2-categoryC. A
comonadon the objectC is defined as a comonoid of this monoidal categoryC(C,C).
The definition may be explicated in the following way. A comonad on the objectC is
defined as a triple (k, ε, δ) consisting of a morphism

k : C −→ C

and two cellsε andδ:

C

⇑ δ

k

��
C

k
//

idC

@@k // C
⇓ ε

satisfying coassociativity:

C
k //

⇓ δ

C

k

��
⇓ δ

C

k

OO

k
//

k��������

??��������

C

=

C
k //

k
??

??
??

??

��?
??

??
??

?

C

k

��

⇓ δ

C

k

OO

k
//

⇓ δ

C

and the two unit laws:

C
k //

k

idC

GG
⇓ ε

C
k //

⇓ δ

C =
C

k

��

k

@@⇓ 1k C
= C

k //

k

C

k //
⇓ δ

idC

GG
⇓ ε

C

A monad on the objectC is defined in a similar fashion, as a monoid in the monoidal
categoryC(C,C).

106

Exercise. Show that every adjunctionf∗ a f ∗ between morphismsf∗ : C −→ D and
f ∗ : D −→ C in a 2-categoryC induces a monad on the objectC and a comonad on the
objectD. �

Conversely, we have seen in Section 6.6 that every comonad over a categoryC is
the comonad associated to two particular adjunctions:

1. an adjunction with the co-kleisli categoryCK ,

2. an adjunction with the category of Eilenberg-Moore coalgebrasCK .

This well-known fact about a comonad in the 2-categoryCat is not true any more
(or only half-true) for a comonad in the 2-categorySymMonCat. Let us explain this
point. There exists a forgetful 2-functor from the 2-categorySymMonCat to the 2-
categoryCat which transports every comonadK in SymMonCat to a comonadUK
in Cat. This comonadUK generates an adjunction with each of the two categoriesCUK

andCUK . It follows from a general 2-categorical argument developed by Stephen Lack
in [29] that only the adjunction with the categoryCUK of Eilenberg-Moore coalgebras
lifts to an adjunction inSymMonCat.

(CK ,⊗,1)

(L,m)

$$
⊥ (C,⊗,1)

(M,n)

dd

In this symmetric monoidal adjunction, the categoryCUK = CK is equipped with the
symmetric monoidal structure:

A

hA��
KA

⊗

B

hB��
KB

=

A⊗ B

hA⊗hB��
KA⊗ KB

mA,B

��
K(A⊗ B)

1

m0

��
K1

(42)

On the other, the adjunction betweenC and its co-kleisli categoryC! does not lift in
general to a symmetric monoidal adjunction.

Dually, we may define acolax symmetric monoidal comonad as a comonad in
the 2-categorySymColaxMonCatof symmetric monoidal categories,colaxmonoidal
functors, and monoidal natural transformations introduced in Proposition 10 (Chap-
ter 5, Section 5.8). The same 2-categorical argument by Stephen Lack in [29] applies
by duality, and shows that in the previous case, only the adjunction with the co-kleisli

107

categoryCUK lifts to an adjunction inSymColaxMonCat.

(CK ,⊗K ,1)

(L,m)

$$
⊥ (C,⊗,1)

(M,n)

dd

The monoidal structure of the categoryC lifts to the co-kleisli categoryCK of the
colax symmetric monoidal comonad ((K,n), δ, ε) in the following way. Every pair of
morphisms

f : A −→ A′ and g : B −→ B′

in the categoryCK is given by a pair of morphisms

f : KA −→ A′ and g : KB −→ B′

in the categoryC; the morphismf ⊗ g in the categoryCK is defined as the morphism

f ⊗K g : K(A⊗ B)
n2

A,B // (KA⊗ KB)
f⊗g // A′ ⊗ B′

in the categoryC. This is precisely what happens in Section 7.3 with the colax symmet-
ric monoidal comonad ((!,n), δ, ε) whose associated co-kleisli categoryL! is symmetric
monoidal, and in fact in that case, cartesian.

108

7 Categorical models of linear logic

We review here three alternative categorical semantics of linear logic: Lafont cate-
gories, Seely categories, and Linear categories. We show that, in each case, the axiom-
atization induces asymmetric monoidal adjunction

(L,m) a (M,n)

between the symmetric monoidal closed category of denotationsL and a specific carte-
sian categoryM. The reader starting at this point will find the definition of a symmetric
monoidal adjunction in Section 5.16 at the end of Chapter 5.

Definition 19 A linear-non-linear adjunction is a symmetric monoidal adjunction be-
tween lax monoidal functors

(M,×,e)

(L,m)
**

⊥ (L,⊗,1)

(M,n)

jj .

in which the categoryM is equipped with a cartesian product× and a terminal object e.

The notationsL and M are mnemonics forLinearizationandMultiplication. Infor-
mally, the functorM transports alinear proof — which may be used exactly once as
hypothesis in a reasoning — to amultipleproof — which may be repeated or discarded.
Conversely, the functorL transports amultiple proof to alinear proof — which may
then be manipulated as a linear entity inside the symmetric monoidal closed categoryL.

The exponential modality ! of linear logic is then interpreted as thecomonadon the
categoryL defined by composing the two functors of the adjunction:

! = L ◦ M.

This factorization is certainly one of the most interesting aspects of the categorical
semantics of linear logic; we will see in Section 7.1 one of its most remarkable effects.
It appears that each categorical semantics of linear logic provides a particular recipe to
construct the cartesian category (M,×,e) and the monoidal adjunction (L,m) a (M,n)
from the symmetric monoidal category (L,⊗,e):

• Lafont category: the categoryM is defined as the category CoMon(L,⊗,e) with
commutative comonoids of the category (L,⊗,e) as objects, and comonoid mor-
phisms between them as morphisms,

• Seely category: the categoryM is defined as the co-kleisli categoryL! associated
to the comonad ! which equips the categoryL in the definition of a Seely category
(here, one needs to replace Seely’s original definition by the definition of a new-
Seely category advocated by Bierman in [9]).

• Linear category: the categoryM is defined as the categoryL! of Eilenberg-Moore
coalgebras associated to the symmetric monoidal comonad ! which equips the
categoryL in the definition of a Linear category.

109

We recall that by Proposition 13 (Chapter 5, Section 5.16) an adjunction between func-
tors

L a M

lifts to a symmetric monoidal adjunction

(L,m) a (M,n)

iff the monoidal functor

(L,m) : (M,×,e) −→ (L,⊗,1)

is symmetric and strong monoidal. The purpose of each axiomatization of linear logic
is thus to provide what is missing (not much!) to be in such a situation.

• Lafont category: the categoryM = CoMon(L,⊗,e) associated to a given sym-
metric monoidal category (L,⊗,e) is necessarily cartesian; and the forgetful
functor L from CoMon(L,⊗,e) to (L,⊗,e) is strict monoidal and symmetric.
Thus, the only task of Lafont’s axiomatization is to ensure that the forgetful
functorL has a right adjointM.

• Seely category: given a comonad (!, ε, δ) on the categoryL, there exists a canon-
ical adjunctionL a M between the categoryL and its co-kleisli categoryM = L! .
Moreover, since the categoryL is supposed to be cartesian in the definition of a
Seely category, its co-kleisli categoryL! is necessarily cartesian. The only task
of the axiomatization is thus to ensure that the functorL is strong monoidal and
symmetric.

• Linear category: given a symmetric monoidal comonad (!, ε, δ, p) on the sym-
metric monoidal category (L,⊗,e), there exists a canonical symmetric monoidal
adjunction (L,m) a (M,n) between the symmetric monoidal category (L,⊗,e)
and its categoryM = L! of Eilenberg-Moore coalgebras. The categoryL! is
equipped with the symmetric monoidal structure induced from (L,⊗,e). The
only task of the axiomatization is thus to ensure that this symmetric monoidal
structure on the categoryL! defines a cartesian category.

The notions of symmetric monoidal comonad, co-kleisli category, category of Eilenberg-
Moore coalgebras, have been introduced in the course of Chapter 5 and Chapter 6.

7.1 The transmutation principle of linear logic

One fundamental principle formulated by Jean-Yves Girard in his original article on
linear logic [21] states that the exponential modality ! transports (ortransmutesin the
language of alchemy) the additive connective & and its unit> into the multiplicative
connective⊗ and its unit 1. This means formally that there exists a pair of isomor-
phisms

!A⊗!B � !(A& B) 1 � !> (43)

for every formulaA andB of linear logic.

110

Quite remarkably, the existence of these isomorphisms may be derived from purely
categorical principles, starting from the slightly enigmatic factorization of the expo-
nential modality as

! = L ◦ M.

We find useful to start the section on that topic, because it demonstrates the beauty and
elegance of categorical semantics. At the same time, this short discussion will provide
us with a categorical explanation (instead of a proof-theoretic one) for the apparition
of the isomorphisms (43) in anycartesiancategory of denotationsL— and will clarify
the intrinseque nature and properties of these isomorphisms.

In order to interpret the additive connective & and unit> of linear logic, we suppose
from now on that the category of denotationsL is cartesian, with:

• the cartesian product of a pair of objectsA andB notedA& B,

• the terminal object noted>.

We have seen in Chapter 5 (exercises at the end of Section 5.2, Section 5.5 and Sec-
tion 5.6) that

• every functorF between cartesian categories lifts as a symmetric and colax
monoidal functor (F, j) in a unique way,

• every natural transformation between two such symmetric colax monoidal func-
tors is monoidal.

From this follows that the adjunction

M

L

&&
⊥ L

M

ff

lifts as asymmetricandcolax monoidaladjunction:

(M,×,e)

(L, j)
**

⊥ (L,& ,>)

(M,k)

jj

By this, we mean an adjunction in the 2-categorySymColaxMonCatdefined in Propo-
sition 10 (Chapter 5, Section 5.8). Such an adjunction is characterized by Proposi-
tion 13 (Chapter 5, Section 5.16) as an adjunction in which theright adjoint func-
tor (M, k) is strong monoidal and symmetric. By this slightly sinuous path, we get
the well-known principle that right adjoint functors preserve limits (in that case, the
cartesian products and the terminal object) modulo isomorphism.

Thus, taken separately, each of the two functors

(L,& ,>)
(M,k) // (M,×,e)

(L,m) // (L,⊗,e)

is strong monoidal and symmetric. From this follows that their composite

111

(!, p) = (L,m) ◦ (M, k) : (L,& ,>) // (L,⊗,e)

is also strong monoidal and symmetric. By definition of such a functor, the monoidal
structurep defines a pair of isomorphisms

p2
A,B : !A⊗!B

�
−→ !(A& B) p0 : 1

�
−→ !>

natural in the objectsA andBof the categoryL, and satisfying the coherence conditions
formulated in Chapter 5, Sections 5.1 and 5.6.

7.2 Lafont categories

A Lafont categoryis defined as a symmetric monoidal closed category (L,⊗,1) in
which the forgetful functor

U : CoMon(L,⊗,1) −→ L

has a right adjoint. The right adjunct functor ! is called a free construction, because it
associates thefreecommutative comonoid !A to any objectA of the categoryL.

Equivalently, a Lafont category is defined as a symmetric monoidal closed cate-
gory (L,⊗,1) in which there exists a commutative comonoid

!A = (!A,dA,eA)

and a morphism
εA : !A −→ A

for every objectA of the category, satisfying the following universality property: for
every commutative comonoid

X = (X,d,e)

and for every morphism
f = X −→ A

there exists auniquecomonoid morphism

f † : (X,d,e) −→ (!A,dA,eA)

making the diagram
!A

εA

��
X

f †
55lllllllllll

f))RRR
RRRR

RRRR

A

commute in the categoryL, noted !. Once dualized and specialized to commutative
comonoids, Proposition 14 in Section 6.2 states that the forgetful functorU is strict
monoidal and symmetric. It follows from Proposition 13 in Chapter 5, Section 5.16,
that the adjunctionU a! between the forgetful functor and the free construction lifts to
a symmetric monoidal adjunction:

112

(CoMon(L,⊗,1),⊗,1)

(L,m)

%%
⊥ (L,⊗,1)

(M,n)

ee

in whichL is the forgetful functorU from the category CoMon(L,⊗,1) of commutative
comonoids to the underlying symmetric monoidal category (L,⊗,1). Finally, we apply
Corollary 17 in Section 6.5 and deduce that the category CoMon(L,⊗,1) is cartesian.

This establishes that

Proposition 20 Every Lafont category defines a linear-non-linear adjunction, and thus,
a model of intuitionistic linear logic.

Remark. One well-known limitation of this categorical axiomatization is that the ex-
ponential modality is necessarily interpreted as a free construction. This is often limita-
tive, especially in game semantics, where several exponential modality may coexist on
the same categoryL, each of them expressing a particular duplication policy: repetitive
vs. non repetitive, uniform vs. non uniform, etc. It is thus useful to notice that the cat-
egory CoMon(L,⊗,1) may be replaced by anyfull subcategoryM closed under tensor
product and containing the unit comonoid 1. A Lafont category is then defined as a
symmetric monoidal closed category in which the (restriction of the) forgetful functor

U : M −→ L

has a right adjoint. As previously, this definition may be reformulated as a universality
property of the morphism

εA : !A −→ A

in which, this time, only the commutative comonoids (X,d,e) in the subcategoryM are
considered. We leave the reader check that Proposition 20 adapts smoothly. We will
take advantage of this remark in Section 7.5, where we crossbreed the two definitions
of Lafont and of Seely category.

7.3 Seely categories

A Seely categoryis defined as a symmetric monoidal closed category (L,⊗,1) with
finite products (binary product notedA& B and terminal object noted>) together with

1. a comonad (!, δ, ε),

2. two natural isomorphisms

m2
A,B : !A⊗!B �!(A& B) m0 : 1 �!>.

113

One asks moreover that the five coherence diagrams below commute in the categoryL,
for all objectsA, B,C:

!A⊗!B
m //

δA⊗δB

��

!(A& B)

δA& B
��

!!(A& B)

!〈!π1,!π2〉��
!!A⊗!! B

m // !(!A&! B)

(44)

(!A⊗!B)⊗!C α //

m⊗!C

��

!A⊗ (!B⊗!C)

!A⊗m

��
!(A& B)⊗!C

m

��

!A⊗!(B&C)

m

��
!((A& B)&C) !α // !(A&(B&C))

(45)

!A⊗ 1
ρ //

!A⊗m

��

!A

!A⊗!>
m // !(A&>)

!ρ

OO 1⊗!B
λ //

m⊗!B

��

!B

!>⊗!B
m // !(>& B)

!λ

OO
(46)

!A⊗!B
γ //

m

��

!B⊗!A

m

��
!(A& B)

!γ // !(B&A)

(47)

By a general categorical fact explained in Sections 6.7 and 6.8, the comonad (!, δ, ε)
generates an adjunction

L!

L

⊥ L

M

`` (48)

between the co-kleisli categoryL! of the comonad and the original categoryL.
We would like to show that the adjunction (48) defines a linear-non-linear adjunc-

tion. By definition, the categoryL is cartesian. We have seen in Chapter 5, Section 5.2,
that every functor ! between cartesian categories defines a colax monoidal functor (!,n)
in a unique way. The coercion is provided by

m2
A,B : !(A& B)

〈!π1,!π2〉 // !A&! B

114

whereπ1 andπ2 denote the two projections of the cartesian product, and〈−,−〉 the
pairing bracket; and by the unique morphismm0 :!> −→ > to the terminal object.
We will see in Section 6.9 that the comonad (!, δ, ε) itself defines a (colax) symmetric
monoidal functor in the sense of Section 6.9. From all this follows that the co-kleisli
categoryL! is cartesian, with finite products (&,>) inherited from the categoryL. It
is worth explaining here how the cartesian product & lifts from a bifunctor on the
categoryL to a bifunctor on the categoryL! . Every pair of morphisms

f : A −→ A′ and g : B −→ B′ (49)

in the categoryL! may be seen alternatively as a pair of morphisms

f : !A −→ A′ and g : !B −→ B′

in the categoryL; the morphismf &g in the categoryL! is then defined as the morphism

f &g : !(A& B)
〈!π1,!π2〉 // (!A&! B)

f &g // A′& B′

in the categoryL. Since the co-kleisli categoryL! is cartesian, there only remains to
show that the adjunction (48) lifts to a symmetric monoidal adjunction

(L! ,& ,>)

(L,m)

$$
⊥ (L,⊗,1)

(M,n)

dd

in order to obtain a linear-non-linear adjunction. By Proposition 13 of Section 5.16,
Chapter 5, this reduces to showing that the functorL equipped with the family of iso-
morphismsm defines a strong monoidal functor. The main difficulty to achieve that
purpose is to establish that the family of isomorphismsm is natural with respect to the
categoryL! , and not only with respect to the categoryL. The functorL transports every
morphism

f : A −→ B

of the categoryL! , understood as a morphismf :!A −→ B of the categoryL, to the
morphism

L(f) : !A
δA
−→!!A

! f
−→!B

115

of the categoryL. Thus, naturality ofm with respect to the categoryL! means that the
following diagram

!A⊗!B
m //

δ⊗δ

��

!(A& B)

δ

��
!!(A& B)

!〈!π1,!π2〉

��
!!A⊗!! B

! f⊗!g

��

!(!A&! B)

!(f &g)

��
!A′⊗!B′ m

// !(A′& B′)

commutes in the categoryL for every pair of morphisms (49). This follows from the
first coherence Diagram (47) of Seely categories, and from naturality ofmwith respect
to the categoryL, by decomposing the diagram in the following way:

!A⊗!B
m //

δ⊗δ

��

(1)

!(A& B)

δ

��
!!(A& B)

!〈!π1,!π2〉

��
!!A⊗!! B

m //

(2)! f⊗!g

��

!(!A&! B)

!(f &g)

��
!A′⊗!B′ m

// !(A′& B′)

(1) coherence Diagram (47),
(2) naturality ofm with respect toL.

This establishes the naturality ofm with respect to the categoryL! . The last four co-
herence diagrams (45—47) of Seely categories ensure then that (L,m) defines a strong
monoidal functor from the cartesian category (L! ,& ,>) to the symmetric monoidal
category (L,⊗,1). From this follows that

Proposition 21 Every Seely category defines a linear-non-linear adjunction, and thus
a model of intuitionistic linear logic with additives.

Remark.Here, we call Seely category what Gavin Bierman calls a new-Seely category
in his work on categorical models of linear logic [9]. See the end of the chapter for a
discussion.

7.4 Linear categories

A linear categoryis defined as a symmetric monoidal closed category (L,⊗,1) together
with

1. a symmetric monoidal comonad ((!,m), δ, ε),

116

2. two monoidal natural transformationsd ande whose components

dA : !A −→ !A⊗!A eA : !A −→ 1

form a commutative comonoid and are coalgebra morphisms from the free coal-
gebra (!A, δA),

3. wheneverf : (!A, δA) −→ (!B, δB) is a coalgebra morphism between free coal-
gebras, then it is also a comonoid morphism.

By a general categorical property explained in Section 6.9, the (lax) symmetric monoidal
comonad ((!,m), δ, ε) induces a symmetric monoidal adjunction

(L! ,⊗,1)

(L,m)

$$
⊥ (L,⊗,1)

(M,n)

dd

In order to prove that every linear category defines a linear-non-linear adjunction, there
remains to show that the categoryL! of Eilenberg-Moore coalgebras equipped with the
tensor product inherited from the categoryL, is cartesian. The proof is elementary but
far from immediate. In particular, it does not seem to follow from general categorical
properties. The proof is also difficult to find in the litterature, although it appears in
Gavin Bierman’s PhD thesis [8]. We give a variant of the proof here.

Proposition 22 In a linear categoryL, every coalgebra hA : !A −→ A defines a
retraction:

A
hA
−→!A

εA
−→ A

making the diagram

A

hA

��

hA // !A

dA

��

!A

dA

��
!A⊗!A

εA⊗εA

��
A⊗ A

hA⊗hA // !A⊗!A

(50)

commute.

117

Proof. Any comonad (!, δ, ε) has the property that the diagram

!A
δA //

δA

��

!!A

δ!A

��
!!A

!δA

// !!! A

commutes. This says that the morphismδA is coalgebraic from the free coalgebra !A
to the free coalgebra !!A. By Property 3. of linear categories, the morphismδA is also
a comonoid morphism. This simply means that the diagram

!A
dA //

δA

��

!A⊗!A

δA⊗δA

��
!!A

d!A

// !!A⊗!!A

commutes. The diagram

!A
dA //

δA

��

!A⊗!A

!!A
d!A

// !!A⊗!!A

εA⊗εA

OO
(51)

is obtained by postcomposing the previous diagram with the morphismεA ⊗ εA and by
applying the identityεA ◦ δA = id!A. It thus commutes.

From all this, and the commutative diagram below, we deduce that Diagram (50)
commutes for every coalgebrahA in a linear category.

A
hA //

hA

��
(a)

!A

δA

��

(d)

= !A

dA

��

!A !hA
//

dA

��
(b)

!!A

d!A

��
!A⊗!A !hA⊗!hA

//

εA⊗εA

��
(c)

!!A⊗!!A

ε!A⊗ε!A

��
A⊗ A

hA⊗hA

// !A⊗!A = !A⊗!A

(a) property of the coalgebrahA, (b) naturality ofd,
(c) naturality ofε, (d) Diagram (51) commutes.

This concludes the proof.�

118

Proposition 23 Let (C,⊗,1) be a monoidal category, and suppose given a retraction

A
i
−→ B

r
−→ A = A

idA
−→ A (52)

between an object A and a comonoid(B,dB,eB). Then, the object A induces a comonoid(A,dA,eA)
in such a way that the morphism i becomes a comonoid morphism:

(A,dA,eA)
i
−→ (B,dB,eB) (53)

iff the following diagram commutes:

A

i

��

i // B

dB

��

B

dB

��
B⊗ B

r⊗r

��
A⊗ A

i⊗i // B⊗ B

(54)

In that case, the comonoid(A,dA,eA) is necessarily defined in the following way:

A
dA // A⊗ A = A

i // B
dB // B⊗ B

r⊗r // A⊗ A

A
eA // 1 = A

i // B
eB // 1

(55)

Proof. The direction (⇒) is nearly immediate. Suppose indeed that (A,dA,eA) defines
a comonoid involved in a comonoid morphism (53). In that case, the two diagrams

A

dA

��

i // B

dB

��
A⊗ A

i⊗i // B⊗ B

A

eA

��

i // B

eB

��
1 = 1

commute. The diagram below is then obtained by postcomposing the lefthand side
with the morphismr ⊗ r, and by applying the equalityr ◦ i = idA:

A

dA

��

i // B

dB

��
A⊗ A B⊗ B

r⊗roo

119

and is thus commutative. From this follows that the comonoidA is necessarily defined
as in Equation (55). Moreover, Diagram (54) commutes simply because the morphismi
is a comonoid morphism.

We prove the more difficult direction (⇐) and suppose that Diagram (54) com-
mutes. We want to show that the triple (A,dA,eA) defined in Equation (55) satisfies
the properties (associativity, units) of a comonoid. The two diagrams below are ob-
tained by postcomposing part (a) of Diagram (55) with the morphismB ⊗ r and the
morphismr ⊗ B, and by applying the equalityr ◦ i = idA:

A

i

��

i // B

dB

��

B

dB

��
B⊗ B

r⊗r

��

B⊗ B

B⊗r

��
A⊗ A

i⊗A // B⊗ A

A

i

��

i // B

dB

��

B

dB

��
B⊗ B

r⊗r

��

B⊗ B

r⊗B

��
A⊗ A

A⊗i // A⊗ B

(56)

For that reason, they both commute. Coassociativity of the triple (A,dA,eA) follows
from the commutative diagram below.

A
i //

i

��

i

$$HH
HH

HH
HH

HH
HH B

dB //

(b)

B⊗ B
r⊗r // A⊗ A

A⊗i

��
B

dB

��
(a)

B
dB //

dB

��

(c)

B⊗ B
r⊗B //

B⊗dB

��
(d)

A⊗ B

A⊗dB

��
B⊗ B

r⊗r

��

B⊗ B

B⊗r

��

dB⊗B //

(e)

(B⊗ B) ⊗ B
α //

(B⊗B)⊗r

��
(f)

B⊗ (B⊗ B)
r⊗(B⊗B) // A⊗ (B⊗ B)

A⊗(r⊗r)

��
A⊗ A

i⊗A
// B⊗ A

dB⊗A
// (B⊗ B) ⊗ A

(r⊗r)⊗A
// (A⊗ A) ⊗ A

α
// A⊗ (A⊗ A)

(a) lefthand side of Diagram (56), (b) righthand side of Diagram (56),
(c) coassociativity ofdB, (d) bifunctoriality of⊗,
(e) bifunctoriality of⊗, (f) naturality ofα and bifunctoriality of⊗.

120

Now, the diagram below commutes:

A
i //

i

��

B

dB

��

(b)

= B

B

dB

��
(a)

||

B⊗ B

r⊗r

��

B⊗ B

B⊗r

��

eB⊗B //

(c)

1⊗ B
λB //

1⊗r

��
(d)

B

r

��
A⊗ A

i⊗A
// B⊗ A

eB⊗A
// 1⊗ A

λA

// A

(a) lefthand side of Diagram (56), (b) unit law of the comonoid (B,dB,eB),
(c) bifunctoriality of⊗, (d) naturality ofλ.

The series of equalities follows:

A
dA // A⊗ A

eA⊗A // 1⊗ A
λA // A = A

i // B
r // A = A

idA // A.

This establishes one of the two unit laws of the triple (A,dA,eA). The other unit law is
established by a similar diagram chasing, involving this time the righthand side of Dia-
gram (56). From all this, we conclude that Equation (55) defines a comonoid (A,dA,eA).
It is not difficult to check that the morphismi in the retraction (52) is a comonoid mor-
phism (53) since this is precisely what is stated by the commutative Diagram (54). This
concludes the proof.�

We consider below the categoryL! of Eilenberg-Moore coalgebras equipped with
the monoidal structure defined in Equation (42) of Section 6.9. After the last two
Propositions 22 and 23, it follows from Corollary 15 that:

Proposition 24 Let (L,⊗,1) be a linear category. The categoryL! of Eilenberg-Moore
coalgebras equipped with the monoidal structure inherited from(L,⊗,1) is cartesian.

Proof. Together, Proposition 22 and Proposition 23 imply that in a linear categoryL,
every coalgebra

hA : A −→!A

defines a comonoid (A,dA,eA) equipped with the morphisms:

A
dA // A⊗ A = A

hA // !A
dA // !A⊗!A

εA⊗εA // A⊗ A

A
eA // 1 = A

hA // !A
eA // 1

(57)

In order to apply Corollary 15 in Section 6.5, one needs to show that (A,dA,eA) is not
only a comonoid in the category (L,⊗,1), but also a comonoid in the category (L! ,⊗,1)

121

of Eilenberg-Moore coalgebras. This is far from obvious, at least for the morphismdA,
because the morphismεA⊗ εA is not a coalgebra morphism in general. Establishing the
property amounts to showing that the two diagrams

A
hA //

hA

��

!A
dA // !A⊗!A

εA⊗εA // A⊗ A

hA⊗hA��
!A⊗!A

m
��

!A
!hA // !!A

!dA // !(!A⊗!A)
!(εA⊗εA) // !(A⊗ A)

A
hA //

hA

��

!A
eA // 1

m

��
!A

!hA // !!A
!eA // !1

commute in the categoryL. This is achieved by the following diagram pasting.

A
hA //

hA

��

hA

BB
BB

B

 B
BB

BB

!A
dA //

(a)

!A⊗!A
εA⊗εA // A⊗ A

hA⊗hA

��

(b)

!A
dA //

δA

��

(c)

!A⊗!A

δA⊗δA

��

(d)

= !A⊗!A

||

!!A⊗!!A
!εA⊗!εA //

m

��

(e)

!A⊗!A

m

��
!A

!hA // !!A
!dA // !(!A⊗!A)

!(εA⊗εA) // !(A⊗ A)

(a) Diagram (50), (b) hA : A −→!A is a coalgebra,
(c) dA is a coalgebra morphism, (d) (!, δ, ε) is a comonad,
(e) naturality ofm.

A
hA //

hA

��

(a)

!A
eA //

δA

��

(b)

1

m

��
!A

!hA

// !!A
!eA

// !1

(a) hA : A −→!A is a coalgebra,
(b) eA is a coalgebra morphism.

122

This establishes that the triple (A,dA,eA) defines a comonoid in the categoryL! . Now
we need to prove that every coalgebra morphism

f : A −→ B

is at the same time a comonoid morphism

f : (A,dA,eA) −→ (B,dB,eB).

Consider the diagrams

A
f //

hA

��

B

hB

��
!A

! f //

dA

��

!B

dB

��
!A⊗!A

! f⊗! f //

εA⊗εA

��

!B⊗!B

εB⊗εB

��
A⊗ A

f⊗ f
// B⊗ B

A
f //

hA

��

B

hB

��
!A

! f //

eA ��@
@@

@@
@@

@ !B

eB��~~~
~~
~~
~

1

The top squares commute becausef is a coalgebra morphism, and the other cells com-
mute by naturality ofd ande. This establishes that every coalgebra morphism is a
comonoid morphism, or equivalently, that

dA : A −→ A⊗ A eA : A −→ 1

are natural transformations in the categoryL! of Eilenberg-Moore coalgebras.
There remains to show that the two natural transformationsd ande are monoidal.

In fact, in order to apply Corollary 15 in Section 6.5, we only need to check thate1

123

coindices with the identity, and that the diagram

A⊗ B
hA⊗hB //

id

��

!A⊗!B
dA⊗dB //

m

��

(!A⊗!A) ⊗ (!B⊗!B)
α ��

(ε⊗ε)⊗(ε⊗ε) // (A⊗ A) ⊗ (B⊗ B)
α��

!A⊗ (!A⊗ (!B⊗!B))

!A⊗α−1
��

A⊗ (A⊗ (B⊗ B))

A⊗α−1
��

!A⊗ ((!A⊗!B)⊗!B)
!A⊗(γ⊗!B) ��

A⊗ ((A⊗ B) ⊗ B)
A⊗(γ⊗B)��

!A⊗ ((!B⊗!A)⊗!B)

!A⊗α ��

A⊗ ((B⊗ A) ⊗ B)

A⊗α

��

!A⊗ (!B⊗ (!A⊗!B))

α−1
��

(!A⊗!B) ⊗ (!A⊗!B)

(ε⊗ε)⊗(ε⊗ε)
QQQQ

QQQQ

((QQQ
QQQQ

Qm⊗m

��

A⊗ (B⊗ (A⊗ B))

α−1

��
A⊗ B

hA⊗B

// !(A⊗ B)
dA⊗B

// !(A⊗ B)⊗!(A⊗ B)
ε⊗ε

// (A⊗ B) ⊗ (A⊗ B)

commutes. In this diagram, the left rectangle commutes by Definition (42) of the tensor
producthA⊗B of the two Eilenberg-Moore coalgebrashA andhB, the middle rectangle
commutes by monoidality ofd, the right trapezium by naturality of associativityα and
symmetryγ, and the triangle by monoidality ofε.

Now, the morphism

e1 = 1
h1
−→!1

e1
−→ 1

coincides with the identity becauseh1 = m0 by Equation (42) in Section 6.9, and
because the equality

1
h1
−→!1

e1
−→ 1 = 1

id
−→ 1

follows by monoidality ofe. This concludes the proof: the categoryL! of Eilenberg-
Moore coalgebras equipped with the monoidal structure of Equation (42) of Section 6.9
is cartesian.�

Proposition 25 Every linear category defines a linear-non-linear adjunction, and thus
a model of intuitionistic linear logic.

7.5 Lafont-Seely categories

We introduce below a fourth axiomatization of intuitionistic linear logic as so-called
Lafont-Seelycategories, which cross-breeds Lafont categories and Seely categories.
The axiomatization is designed to be general and easy to check on concrete models
of linear logic. Of Lafont categories, Lafont-Seely categories retain the simplicity:
unlike Seely categories and linear categories, the axiomatization does not require that
the modality ! defines a comonad — a property which is sometimes difficult to check

124

in full detail, for instance in game-theoretic models. Of Seely categories, Lafont-Seely
categories retain the generality: unlike Lafont categories, the axiomatization is not
limited to free exponential modalities.

A Lafont-Seely categoryis defined as a symmetric monoidal closed category (L,⊗,1)
with finite products (notedA& B and>) together with the following data:

1. for every objectA, a commutative comonoid

!A = (!A,dA,eA)

with respect to the tensor product, and a morphism

εA : !A −→ A

satisfying the following universal property: for every morphism

f : !A −→ B

there exists a unique comonoid morphism

f † : (!A,dA,eA) −→ (!B,dB,eB)

making the diagram
!B

εB

��
!A

f †
55kkkkkkkkkkk

f))SSS
SSSS

SSSS

B

commute,

2. for every pair of objectsA and B, two comonoid isomorphisms between the
commutative comonoids:

p2
A,B : (!A,dA,eA) ⊗ (!B,dB,eB)

�
−→ (!(A& B),dA& B,eA& B)

p0 : (1, ρ−1
1 = λ

−1
1 , id1)

�
−→ (!>,d>,e>)

Just like in the case of Lafont categories, every Lafont-Seely category defines a sym-
metric monoidal adjunction

(M,⊗,1)

(L,m)

$$
⊥ (L,⊗,1)

(M,n)

dd

in which:

125

• M is the full subcategory of CoMon(L,⊗,1) whose objects are the commutative
comonoids isomorphic (as comonoids) to a commutative comonoid of the form
(!A,dA,eA).

• the functorL is the restriction of the forgetful functorU from the cartesian cat-
egory CoMon(L,⊗,1) of commutative comonoids to the underlying symmetric
monoidal category (L,⊗,1).

In addition, it follows easily from Corollary 17 in Section 6.5 that the categoryM
equipped with the tensor product⊗ and the tensor unit 1 is cartesian. This establishes
that:

Proposition 26 Every Lafont-Seely categoryL induces a linear-non-linear adjunction,
and thus a model of intuitionistic linear logic with additives.

7.6 Notes and references

In his original formulation, Seely defines aGirard categoryas a∗-autonomous category (L,⊗,1)
with finite products, together with

1. a comonad (!, δ, ε),

2. for every objectA, a comonoid (!A,dA,eA) with respect to the tensor product,

3. two natural isomorphisms

m2
A,B : !A⊗!B �!(A& B) m0 : 1 �!>

which transport the comonoid structure (A,∆A,uA) of the cartesian product to the comonoid
structure (!A,dA,eA) of the tensor product, in the sense that the diagrams

!A⊗!A

m

��

!A

dA

66nnnnnnnnnnnnn

!∆A ''PP
PPP

PPP
PPP

PP

!(A&A)

1

m

��

!A

eA

77ppppppppppppp

!uA ''NN
NNN

NNN
NNN

NN

!>

commute.

In Seely’s axiomatization, linear logic is explicitly reduced to a decomposition of intuitionistic
logic. To quote Seely in [34]: “what is really wanted [of a model of intuitionistic linear logic] is
that the kleisli category associated to [the comonad] (!, δ, ε) be cartesian closed, so the question
is: what is the minimal condition on (!, δ, ε) that guarantees this — ie. can we axiomatize this
condition satisfactorily?”

A few years later, Nick Benton, Gavin Bierman, Valeria de Paiva and Martin Hyland [6, 26]
reconsider Seely’s axioms from the point of view of linear logic, instead of intuitionistic logic.
Surprisingly, they discover that something is missing in Seely’s axiomatization. More precisely,
Gavin Bierman points out in [8, 9] that the interpretation of proofs in a Seely category is not

126

necessarily invariant under cut-elimination. One main reason is that the diagram

Γ
f // !A

δA //

dA

��

!!A
!g // !B

dB

��
!A⊗!A

δA⊗δA // !!A⊗!!A
!g⊗!g // !B⊗!B

h // C

(58)

which interprets the duplication of a proof

!g ◦ δA :!A −→!B

inside a proof
h ◦ dB◦!g ◦ δA ◦ f : Γ −→!C

does not need to commute in Seely’s axiomatization. Gavin Bierman suggests to callnew-Seely
category any Seely category in which the adjunction between the original categoryL and its
co-kleisli categoryL! is symmetric monoidal. This amounts precisely to our definition of Seely
category in Section 7.3. In that case, the category provides invariants of proofs, see Proposi-
tion 21. In particular, Diagram (58) is shown to commute by pasting the two diagrams below:

Γ
f // !A

δA //

dA

��

!!A
!g //

d!A

��

!B

dB

��
!A⊗!A

δA⊗δA // !!A⊗!!A
!g⊗!g // !B⊗!B

h // C

The definition of linear-non-linear adjunction has been introduced by Nick Benton
in [7] after discussions with Martin Hyland and Gordon Plotkin. Interestingly, the
original definition by Nick Benton requires that the categoryM is cartesian-closed.
People realized only later that this additional condition is not necessary in order to
establish soundness: a cartesian categoryM is sufficient to that purpose.

References

[1] Michele Abrusci and Paul Ruet.Non-commutative logic I: the multiplicative
fragment.Annals of Pure and Applied Logic101(1): 29-64, 2000.

[2] Jean-Marc Andreoli, Gabriele Pulcini, Paul Ruet. Permutative Logic.Pro-
ceedings of Computer Science Logic 2005.Volume 3634 of Lecture Notes in
Computer Science, Springer Verlag, 2005.

[3] Michael Barr . ∗-autonomous categories and linear logic.Mathematical Struc-
tures in Computer Science. 1(2):159-178, 1991.

[4] Michael Barr. Non-symmetric∗-autonomous categories.Theoretical Com-
puter Science, 139 (1995), pp 115 - 130.

[5] Jean B́enabou.Introduction to bicategories.Reports of the Midwest Category
Seminar.Volume 47 of Lecture Notes in Mathematics, Springer Verlag. 1967.

127

[6] Nick Benton, Gavin Bierman, Valeria de Paiva, Martin Hyland. Term as-
signment for intuitionistic linear logic.Technical Report 262, Computer Labo-
ratory, University of Cambridge, 1992.

[7] Nick Benton. A Mixed Linear and Non-Linear Logic: Proofs, Terms and Mod-
els. Proceedings of Computer Science Logic ’94,Kazimierz, Poland. Volume
933 of Lecture Notes in Computer Science, Springer Verlag. June 1995.

[8] Gavin Bierman. On intuitionistic linear logic.PhD Thesis.University of Cam-
bridge Computer Laboratory, December 1993.

[9] Gavin Bierman. What is a categorical model of intuitionistic linear logic?Pro-
ceedings of the Second International Conference on Typed Lambda Calculus
and Applications.Volume 902 of Lecture Notes in Computer Science, Springer
Verlag. Edinburgh, Scotland, April 1995. Pages 73-93.

[10] Rick Blute. Hopf Algebras and Linear Logic.Mathematical Structures in Com-
puter Science6, pp. 189-217, 1996.

[11] Rick Blute, Robin Cockett, Robert Seely, Todd Trimble.Natural Deduction
and Coherence for Weakly Distributive Categories.Journal of Pure and Applied
Algebra,113(1996)3, pp 229-296.

[12] Rick Blute and Phil Scott. The Shuffle Hopf Algebra and Noncommutative
Full Completeness.Journal of Symbolic Logic63, pp. 1413-1435, (1998).

[13] Francis Borceux.Handbook of Categorical Algebra 2. Categories and Struc-
tures. Volume 51 of the Encyclopedia of Mathematics and Its Applications.
Cambridge University Press, 1994.

[14] Samuel Buss.An introduction to Proof Theory.Handbook of Proof Theory,
Edited by Samuel Buss. Volume 137 of Studies in Logic and the Foundations
of Mathematics, North Holland, 1998.

[15] Robin Cockett, Robert Seely.Linearly Distributive Categories.Journal of
Pure and Applied Algebra,114(1997)2, pp 133-173.

[16] Gottlob Frege.Begriffschrift, a formula language, modeled upon that of arith-
metic, for pure thought (1879). An english translation appears inFrom Frege to
Gödel. A source book in Mathematical Logic, 1879—1931.Edited by J. van Hei-
jenoort. Harvard University Press, 1967.

[17] Gerhard Gentzen. Investigations into logical deduction (1934). An english
translation appears inThe Collected Papers of Gerhard Gentzen.Edited by
M. E. Szabo, North-Holland 1969.

[18] Gerhard Gentzen. The Collected Papers.Edited by M. E. Szabo, North-
Holland 1969.

[19] Jean-Yves Girard. Proof Theory and Logical Complexity.Studies in Proof
Theory, Bibliopolis, 1987.

128

[20] Jean-Yves Girard, Yves Lafont, Paul Taylor.Proofs and Types.Cambridge
University Press (Cambridge Tracts in Theoretical Computer Science, 7). First
published 1989, reprinted with corrections 1990. The book is available online
athttp://www.cs.man.ac.uk/ pt/stable/Proofs+Types.html

[21] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50: 1-102,
1987.

[22] Jean-Yves Girard.Constructivité: vers une dualité moniste.1996. Manuscript
available online athttp://iml.univ-mrs.fr/ girard/Articles.html

[23] Jean-Yves Girard. Locus Solum.Mathematical Structures in Computer Sci-
ence11, pp. 301-506, 2001.

[24] Kurt G ödel. On formally indecidable propositions of Principia Mathematica
and related systems I (1931). An english translation appears inFrom Frege to
Gödel. A source book in Mathematical Logic, 1879—1931.Edited by J. van Hei-
jenoort. Harvard University Press, 1967.

[25] David Hilbert. On the infinite (1925). An english translation appears inFrom
Frege to Gödel. A source book in Mathematical Logic, 1879—1931.Edited by
J. van Heijenoort. Harvard University Press, 1967.

[26] Martin Hyland. Game Semantics. InSemantics and logics of computation.A.
Pitts and P. Dybjer editors. Publications of the Newton Institute, Cambridge
University Press, 1997.

[27] Daniel Kan. Adjoint functors.Transactions of the American Mathematical So-
ciety,87:294-329, 1958.

[28] Jean-Louis Krivine. Realizability in classical logic. This volume ofPanoramas
et Synthèses.

[29] Stephen Lack. Limits for lax morphisms.Applied Categorical Structures,
13(3):189-203, 2005.

[30] Jim Lambek. The mathematics of sentence structure.American Mathematical
Monthly,65 (3): 154–170, 1958.

[31] Saunders Mac Lane.Categories for the working mathematician.Graduate
Texts in Mathematics5. Springer Verlag 2nd edition, 1998.

[32] Paul-Andr é Melliès.A topological correctness criterion for non-commutative
logic. Linear Logic in Computer Science.Edited by T. Ehrhard, J-Y. Girard, P.
Ruet and P. Scott. London Mathematical Society Lecture Notes Series, Volume
316, 2004.

[33] Jeff Polakow and Frank Pfenning. Relating natural deduction and sequent
calculus for intuitionistic non-commutative linear logic.Proceedings of the 15th
Conference on Mathematical Foundations of Programming Semantics,New Or-
leans, Louisiana, April 1999. Edited by A. Scedrov and A. Jung. Electronic
Notes in Theoretical Computer Science, Volume 20.

129

[34] Robert Seely. Linear logic,∗-autonomous categories and cofree coalgebras.
Applications of categories in logic and computer science, Contemporary Math-
ematics, 92, 1989.

[35] Ross Street.The formal theory of monads.Journal of Pure and Applied Alge-
bra, 2:149-168, 1972.

[36] David Yetter. Quantales and (noncommutative) linear logic.Journal of Sym-
bolic Logic55 (1990), 41-64.

130

Index
∗-autonomous category, 62
2-category, 73

Cat, 75
LaxMonCat , 76
SymColaxMonCat, 77
SymMonCat, 77

Adjunction, 77
Definition in 2-categories, 78
Linear-non-linear, 109
Triangular identities, 80

Algebra, 101
Algebra morphism, 101

Cartesian categories
Characterization, 93

Category
of commutative comonoids, 97
cokleisli category, 104
Eilenberg-Moore categoryCK , 104
Eilenberg-Moore categoryCT , 101
Kleisli category, 101
Kleisli categoryCT , 101
Lafont category, 112
Lafont-Seely category, 124
Linear category, 116
of monoids, 90
Seely category, 113

Coalgebra, 104
Coalgebra morphism, 104

Comonad, 99
Coalgebra of a monad, 104
Eilenberg-Moore category, 104
Kleisli categoryCK , 104
Symmetric monoidal comonad, 105

Comonoid, 92
Comonoid morphism, 92

Cut-elimination theorem, 13
Axiom vs. hypothesis, 41
Commuting conversion, 38
Exchange steps, 41
Principal conclusion vs. principal

hypothesis, 42

Procedure, 14
Promotion vs. structural rules, 44
Secondary conclusion, 45
Secondary hypothesis, 48
Theη-expansion steps, 39

Derivation trees, 8, 10

Formula, 7
Functor

Colax monoidal, 70
Duality between lax and colax func-

tors, 84
Lax monoidal, 69
Symmetric colax monoidal, 72
Symmetric lax monoidal, 72

Linearly distributive categories, 63
Duality, 65
Symmetry, 66

Logic
Classical Logic, 12
First-order Logic, 16
Intuitionistic linear logic, 38
Intuitionistic Logic, 15
Linear Logic, 15
Linear logic, 37

Monad, 99
Algebra of a monad, 101
Eilenberg-Moore category, 101
Kleisli category, 101

Monoid, 89
Commutative monoid, 89
Monoid morphism, 89

Monoidal adjunction, 84
Characterization, 86, 87
Symmetric, 84

Monoidal category, 54
∗-autonomous, 62
Biclosed, 60
Braided, 57
Closed, 59

131

Symmetric and closed, 61
Symmetry, 59

Natural transformation, 71
Monoidal between colax functors,

72
Monoidal between lax functors, 71

Proofs, 8, 10

Rules of logic
Contraction, 9
Exchange, 9
Logical Rules, 10
Structural Rules, 10
Weakening, 8

Sequent calculus, 6
Cut-elimination, 13
Derivation trees, 10
Formula, 7
Intuitionistic linear logic, 38
Linear logic, 37
Proofs, 10
Rules of logic, 8
Sequent, 7
Subformula Property, 13

Subformula Property, 13

Tautologies, 8
Truth values, 8

132

