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Proof Theory is the result of a tumultuous history, developed in the periphery of main-
stream mathematics. Hence, its language is often idiosyncratic: sequent calculus, cut-
elimination, subformula property, etc. This survey is designed to guide the novice
reader and the itinerant mathematician on a smooth and engaging path through the
subject, focussed on the symbolic mechanisms of cut-elimination, and their transcrip-
tion as coherence diagrams in categories with structure. This spiritual journey at the
meeting point of linguistic and algebra is demanding at times, but unusually reward-
ing: at this date, no language (formal or informal) has been studied as thoroughly and
as deeply in mathematics as the language of proofs.

We start the survey by a short introduction to Proof Theory (Chapter 1) followed
by an informal explanation of the principles of Denotational Semantics (Chapter 2)
analogous to a Representation Theory for proofs, generating invariants modulo cut-
elimination. After describing in full detail the cut-elimination procedure of linear logic
(Chapter 3), we explain how to transcribe it in the language of categories with struc-
ture. We review two alternative constructions efautonomous category, or monoidal
category with duality (Chapter 4). After giving a 2-categorical account of lax and co-
lax monoidal adjunctions (Chapter 5) and recalling the notions of monoids and monads
(Chapter 6) we relate four flierent categorical axiomatizations of propositional linear
logic appearing in the litterature (Chapter 7).

Keywords: Proof Theory, Linear Logic, Cut-Elimination Theorem, Categorical Se-
mantics, Monoidal Categories, Linearly Distributive Categorieautonomous Cate-
gories, Monoidal Adjunctions.
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1 Proof theory: a short introduction

From vernacular proofs to formal proofs: Gottlob Frege

By nature and taste, the mathematician studies properties of specific mathematical ob-
jects, like rings, topological spaceS;-algebras, etc. This practice involves a high
familiarity with proofs, and with their elaboration. Hence, building a proof is fre-
quently seen as an art, or at least as a craft, among mathematicians. Any chair is fine
to sit down, but some chairs are more elegant than others. Similarly, the same theorem
may be established by beautiful or by ugly means ; and the experienced mathematician
will always look for an elegant proof.

In his daily work, the mathematician thinks of a proof as a rational argument ex-
changed on a blackboard, or exposed in a book — without further inquiry: the proof
is a vehicle of thought, not an object of formal investigation. In that respect, the logi-
cian interested in Proof Theory is a peculiar kind of mathematician, who investigates
inside mathematicthe linguistic event of convincing someone else, or oneself, by a
mathematical argument.

Proof Theory has a short and turbulent history, which starts in 1879 with a booklet
of eighty-eight pages, published by Gottlob Frege at the age of 31. In this short mono-
graph, Gottlob Frege describes the first formal notation ever imagined for proofs —
which he callsBegriftschriftin German, a neologism translatedidsography Gott-
lob Frege compares his ideography to a microscope which transkregcular proofs
exchanged between mathematicians fiotonal proofswhich may be studied like any
other mathematical object.

In this formal language, proofs are written in two stages. First, a formula is repre-
sented as 2-dimensional graphical structures: for instance, the syntactic tree

—Gr— F(a)
L 50

is a graphical notation for the first-order and second-order formula written

¥g. Ya. F(a) = F(a)

in our contemporary notation. Then, a proof is represented as a sequence of such
formulas, constructed incrementally according to a serieeo¥ation rules or logical
principles.

Looking for Foundations: David Hilbert

Gottlob Frege had terrible fiiculties to convince the mathematical community of his
time. Most of his articles were rejected by mainstream mathematical journals, and Got-
tlob Frege often ended up publishing them in a condensed and non technical form in
slightly obscure philosophical journals. The ideography was saved from oblivion two
decades later by Bertrand Russell whose curiosity in this quite extraordinary work was
aroused by Giuseppe Peano. Quite at the same time, the great mathematician David
Hilbert got interested in logic, and more specifically, in Gottlob Frege’s ideography. It



is significant that David Hilbert raises as early as 1900 a purely proof-theoretic prob-
lem in his famous communication of twenty-three open problems at the International
Congress of Mathematicians in Paris. The second open problem of the list consists
indeed in showing that arithmetics is consistent, that is, without contradiction.

David Hilbert develops further the idea in his monograph of 1925 on the Infi-
nite [25]. He explains there that he hopes to establish by pfirgtg combinatorial
arguments on formal proofs that there exists no contradiction in mathematics — in
particular no contradiction in arguments involviiginite objects in arithmetic and
analysis. This finitary program was certainly influenced by David Hilbert’s successful
work in Algebraic Geometry, which is also based on the finitary principle of reducing
the infinite to the finite. Kurt @del established three decades later in his Incomplete-
ness Theorem (1931) that Hilbert's program was a hopeless dream: consistency of
arithmetics cannot be established by purely arithmetical arguments.

Consistency of Arithmetics: Gerhard Gentzen

Hilbert’s dream was fruitful nonetheless. Hermann Weyl's student Gerhard Gentzen
established in 1936 the consistency of arithmetics, by a purely combinatorial argument.
Of course, we have just mentioned@el's incompleteness theorem, which says that
this proof of consistency cannot be performed inside arithmetics. Accordingly, Gerhard
Gentzen uses in his argument a transfinite induction up to Cantor’s oeginfsthd this
part of the reasoning lies outside arithmetics. We should recall here that the egdinal
is the first ordinal in Cantor’s epsilon hierarchy: it is defined as the smallest ordinal
which cannot be described starting from zero, and using addition, multiplication and
exponentiation of ordinals to the base

Like many mathematicians and philosophers of his time, Gerhard Gentzen was fas-
cinated by the idea of providing safileundationsor Grunlagenin German, to science
and knowledge. By proving consistency of arithmetics, Gerhard Gentzen hoped to
secure this part of mathematics from the kind of antinomies or paradoxes discovered
around 1900 in Set Theory by Cesare Burali-Forti, Georg Cantor, and David Russell.
Today, this foundational motivation does not seem as relevant as it was in the early
1930s. Most mathematicians believe that reasoning by finite induction on natural num-
bers is fine, and does not lead to contradictions in arithmetics. And it seems hopeless to
convince anyone that finite induction is safe, by exhibiting Gentzen’s argument based
on transfinite induction!

The sequent calculus

However, despite its inactuality, Gerhard Gentzen’'s work is not reduced today to a
useless bibelot hanging in a Cabinet of Curiosity. On the contrary, it is regarded by
our contemporaries as one of the most important and influential works ever produced
in Logic and Proof Theory. But the traditional perspective is reversed: what matters is
not the consistency result in itself, but rather the method invented by Gerhard Gentzen
in order to establish the result.
This methodology is based on a formal innovation: #leguent calculysand a

discovery: thecut-elimination theorem.They dfer together an elegant and flexible



framework to formalize proofs — either in classical or in intuitionistic logic. This
framework improves in many ways the formal proof systems designed previously by
Gottlob Frege, Bertrand Russell, and David Hilbert. We find useful to explain here the
fundamental principles underlying this calculus and this procedure, since this survey
on categorical semantics is based on them.

Formulas

For simplicity, we restrict ourselves to propositional logic without quantifiers, either
on first-order entities (elements) or second-order entities (propositions or sets). We
also do not consider first-order variables. In this very elementary logic, a forinisla
simply defined as a binary rooted tree

¢ with nodes labelled by a conjunction (notegl, a disjunction (noted/), or an
implication (noted=),
o with leaves labelled by the constant true (notgdthe constant false (notée)
or a propositional variable (ranging ovay B or C).
A typical formula is the so-called Charles Peirce’s law:
(A=B)=A)=A

which cannot be proved in intuitionistic logic, but can be proved in classical logic, as
we shall see later in this introductory chapter.

Sequents

A sequenis defined as a pair of sequences of formudas.., A, andBy, ..., B, sepa-
rated by a symbal in the following way:

A, ..., AnW+Bq,...,Bn (1)

The sequent (1) should be understood as the stating that the conjunction of all the
formulasAy,.. ., Ay, implies the disjunction of all the formulaB,, ..., By, what may
be written as follows:

AAN...ANALZ = BiVv...VB,

Three easy sequents

The simplest example of sequent is the following one:

ArA (2)
which states that the formukaimplies the formulaA. Another very simple sequent is
ABrA 3

which states that the conjunction of the formukaand B implies the formulaA. Yet
another typical sequent is
ArAB (4)

which states that the formukaimplies the disjunction of the formulasandB.



Philosophical interlude: truth values and tautologies

The specialists in Proof Theory are generally reluctant to justify the definition of their
sequent calculus by the external notion of “truth value” of a formula in a model. How-
ever, the notion of “truth value” has been so much emphasized by Alfred Tarski after
Gottlob Frege, and is so much spread today, that it may serve as a guideline for the
novice reader who discovers Gerhard Gentzen's sequent calculus for the first time. It
will always be possible to explain later the conceptual deficiencies of the notion, and
the necessity to reconstruct it from inside Proof-Theory.

In this perspective, the sequent (1) states that in any mbtiel which the formu-
lasAq, ..., Ay are all true, then at least one of the formulgs. . ., B, is also true. One
remarkable point of course is that nobody knows which formula is satisfied aBiong, B.
This makes all the spice of sequent calculus! One may carry on in this line, and observe
that the three sequents (2), (3) and (4) are tautologies in the model-theoretic sense that
they happen to be true in any mod®l. For instance, the tautology (2) states that a
formulaAis true in M whenever the formula is true; and the tautology (4) states that
the formulaA or the formulaB is true in M when the formulaA is true.

Proofs: from tautologies to tautologies

What is more interesting from the proof-theoretic point of view is that tautologies may
be deduced mechanically from tautologies, by applying well-chosen rules of logic. For
instance, the two tautologies (3) and (4) may be deduced from the tautology (2) in the
following way. Suppose that one has established that a given sequent

I',Io A

describes a tautology — whefe andI';, andA denote sequences of formulas. It is not
difficult to establish then that the sequent

r]_,B,le-A

is a tautology. The sequeht, B,T'; + A states indeed that at least one of the formulas
in A is true when all the formulas if; andT', and moreover the formulB are true.
But this statement follows immediately from the fact that the seqlight, + A is a
tautology. Similarly, we leave the reader establish that whenever a sequent

I+ A]_, Az

is a tautology, then the sequent
I'r Al, B, Az

is also a tautology, for every formuBR and every pair of sequences of formulas
andA,.

The rules of logic: weakening and axiom

We have just identified two simple recipes to deduce a tautology from another tautol-
ogy. The two rules of logic are calldceft WeakeningndRight WeakeningThey re-
flect a fundamental principle of classical and intuitionistic logic, that a formAuta B



may be established just by proving the formBlawvithout using the hypothesk Like

the other rules of logic, they are written down vertically in the sequent calculus, with
the starting sequent on top, and the resulting sequent at bottom, separated by a line, in
the following way:

_TlerA ) g Weakening %)
F]_, B, Fz FA
and Tk ALA
_PALA2 Right Weakening (6)
't A, B A,

Gerhard Gentzen'’s sequent calculus is based on the principla thradf describes a
series of rules of logic like (5) and (6) applied to an elementary tautology like (2). For
homogeneity, the sequent (2) itself is identified as the result of a specific logical rule,
called theAxiom which deduces the sequent (2) from no sequent at all. The rule is thus
written as follows:

m Axiom
Now, the sequent calculus takes advantage of the horizontal notation for sequents, and
of the vertical notation for rules, to write down proofs as 2-dimensional entities. For
instance, the informal proof of sequent (3) is written as follows in the sequent calculus:

Axiom

_AFA | eft Weakening (7)
ABrA

The rules of logic: contraction and exchange

Another fundamental principle of classical and intuitionistic logic is that the foriuta

B is proved when the formulB is deduced from the hypothesis formuaused sev-

eral times. This principle is reflected in the sequent calculus by two additional rules of
logic, calledLeft ContractionandRight Contractionformulated as follows:

I, AAT2FA i
TLAATFA 8
AT, A Left Contraction (8)
and CeA A
TFALAARA pioht Contraction (9)
T'FALAA,

Another important principle of classical and intuitionistic logic is that the order of
hypothesis and conclusions does not really matter in a proof. This is reflected in the
sequent calculus by tHeeft ExchangandRight Exchangeules:

L, ABT,FA

Left Exchange
I, B, A, I'> - A

and

TraLABA; Right Exchange
't A, B A A



The rules of logic: structural rules vs. logical rules

According to Gerhard Gentzen, the rules of logic should be separated in three classes:
e the axiom rule,
o the structural rules: weakening, contraction, exchange, and cut,
e the logical rules.

We have already encountered all the structural rules, except for the cut rule, which de-
serves a special discussion, and will be introduced later for that reason. The structural
rules manipulate the formulas of the sequent, but do not alter them. In contrast, the task
of each logical rule is to introduce a new logical connective in a formula, either on the
lefthand side or righthand side of the sequent. Consequently, there exists two logical
rules for each connective of the logic. The left and right introduction rules associated
to conjunction are:

IMABrA

[ AANBraA CeftA

and

I'irAA I'oF B A nght/\
I',TorAAB, A, A,

The left and right introduction rules associated to disjunction are:

', Ar Ay I';,Br A,
I'i,To,AVBEALA;

Left v

and
'rABA
I'rA;,AVBA;
The left and right introduction rules associated to implication are:

T'i+AA I',BrA;

Right v

Fl, Fz,Aﬁ Br Al, Az Left=
and
_LAFBA  pight=
I'rA= BA

In each of these rules, the two sequences of formulasdA are arbitrary.

Formal proofs as derivation trees

Since we have already constructed a few formal proofs in our sequent calculus for
classical logic, it may be the proper time to give a general definition. From now on,

a formalproof is defined as a derivation tree constructed according to the rules of the
sequent calculus. Bgerivation tree we mean a rooted tree in which:

10



e every leaf is labelled by an axiom rule,
e every node is labelled by a rule of the sequent calculus,

e every edge is labelled by a sequent.

A derivation tree should satisfy the expected consistency property relating the sequents
on the edges to the rules on the nodes. In particular, the arity of a node in the deriva-
tion tree follows from the number of sequents on top of the rule: for instance, a node
labelled with thelLeft A rule has arity one, whereas a node labelled withRight A

rule has arity two. Note that every derivation tree has a root, which is a node labelled
by a rule of the sequent calculus. Téenclusiorof the proof is defined in the expected

way as the sequeitr A obtained by the rule.

Philosophical interlude: the anti-realist tradition in Proof Theory

Once the sequent calculus understood and accepted by the novice reader, the specialist
in Proof Theory will generally advise to forget any guideline related to model-theory,
like truth-values or tautologies. This is a pervasive dogma of Proof Theory, which
could simply follow from a naive application of Ockham’s razor: now that proofs can

be produced mechanically by a symbolic device (the sequent calculus) independently
of any notion of truth... why should we remember any of the “ancient” model-theoretic
explanations?

In fact, the philosophical position generally adopted in Proof Theory since Gerhard
Gentzen is far more radical, even if this remains generally implicit in the daily math-
ematical work. This position is calleghti-realist by the professional philosopher, in
order to stress the antagonism with the otlealist position. We will only sketch the
debate in a few words here. For the realist, the world is constituted of a fixed set of
objects, independent of the mind and of its symbolic representations. Thus, “truth”
amounts to a proper correspondence between the words and symbols emanating from
the mind, and the objects and external things of the world. For the anti-realist, on the
other hand, the very question “what objects is the world made of?” requires already
a theory or a description. In that case, “truth” amounts rather to some kind of ideal
coherence between our various beliefs and experiences.

The anti-realist position in Proof Theory may be summarized in four technical
tropisms:

e The sequent calculus generates formal proofs, and these formal proofs should be
studied as autonomous entities, just like any other mathematical object.

e The notion of “logical truth” in model-theory is based on the realist idea of the
existence of an external world: the model. This is too redundant to be useful:
what information does provide the statement that the forrAuld is true if and
only if the formulaA is true and the formul8 is true ?

e S0, the “meaning” of the connectives of logic arises from their introduction rules
in the sequent calculus, and not from an external and realist concept of truth-
value. These introduction rules are inherently justified by the structural proper-
ties of proofs, like cut-elimination, or the subformula property.

11



e Kurt Godel's completeness theorem may be reunderstood in this way: every
model M plays the role of a potential non recursive refutator which may be
simulated by some kind of infinite non recursive proof — this leading to a purely
proof-theoretic exposition of the completeness theorem.

This position is advocated today by Jean-Yves Girard in a series of sharp comments
exposed in French [22] and later developed in his work on ludics [23].

Two exemplary proofs in classical logic

There is a famous principle in classical logic that the disjunction of a forrAwdad
of its negation-A is necessarily true. This principle, called the Tertium Non Datur in
Latin (“the third is not given”) is nicely formulated by the formula

(A=B) v A

which states that for every formuB, either the formulaA holds, or the formulaA
implies the formula. This very formula is established by the following in our sequent
calculus for classical logic:

——x Axiom
_ArA_ Right Weakening

_ArBA Right= (10)
A= BA Right v

FA=B) Vv A

The proof works for every formulB, and may be specialized to the falsity formula
From this follows a proof of the formula:

-AV A

where we identify the negationA of the formulaA to the formulaA = L which states
that the formulaA implies falsity.
We have mentioned above the Charles Peirce’s formula below:

(A=B)=A)=A
may be established in classical logic. Indeed, we write down below the proof of the

formula in the sequent calculus:

——— Axiom
_ArA Right Weakening

_ArBA Right= o
FrA= BA ArA
(A=B)=A+rAA
(A=B) = A+ A
F(A=B)=A)=A
Note that the main part of the proof of the Tertium Non Datur appears at the very top
left of that proof. In fact, it is possible to prove that the two formulas are equivalent
in intuitionistic logic: in fact, each of them may be taken as an additional axiom of
intuitionistic logic, in order to obtain classical logic.

Axiom
Left=
Right Contraction

Right=

12



Cut-elimination

At this point, all the rules of our sequent calculus for classical logic have been intro-
duced... except possibly the most fundamental onecuheule, formulated as follows:
I1FAA; ATo A
I, T2k AL Az

Cut

The cut-rule reflects the famous deduction principle of logic: the Modus Ponens (“af-
firmative mode” in Latin) which states that the formBamay be deduced from the
two formulasA andA = B taken together. Suppose given two praofsandsn, of the
sequents AandA + B:

T 2
FA Ar+rB
The cut-rule may be applied to the two derivation trees so as to obtain a proof
1 V)
— . . (11)
FA ArB

T3

of the sequent B. This is the Modus Ponens translated in the sequent calculus.

Despite the fact that it captures Modus Ponens, the most fundamental principle,
Gerhard Gentzen made the extraordinary observation that the cut-rule may be forgotten
from the point of view of provability, or what can be proved in logic! In technical terms,
the cut-rule iadmissiblén classical logic, as well as in intuitionistic logic. This means
that every sequert + A which may be proved by a proafmay be also proved by a
proofz’ in which the cut-rule does not appear at any stage of the proof. Such a proof
is calledcut-free

Gerhard Gentzen called this property thé-elimination theoreror Hauptsatzn
German. Applied to our previous example (11) the property states that there exists an
alternative cut-free proof

T4

(12)

+B
of the sequent B.

The subformula property and the consistency of logic

The cut-elimination theorem is the backbone of modern Proof Theory. It is remarkable
for instance that three fundamental properties of formal logic follow quite directly from
this single theorem:

¢ the subformula property,

¢ the consistency of the logic,

13



¢ the completeness theorem.

Let us discuss the subformula property first. A formDlas called a subformula of a
formulaAcBin three cases only:

e when the formuld is equal to the formul#cB,
e when the formuld is subformula of the formula,
e when the formuld is subformula of the formul8,

whereAcBmeans eitheA = B, or AA Bor AV B. And the constant formulg (resp.
T) is the only subformula of the formula (resp.T).

The subformula property states that every provable formrAulaay be established
by a proofr in which only subformulas of the formulA appear. This remarkable
property follows immediately from the cut-elimination theorem. Suppose indeed that
a formulaA is provable in the logic. This simply means that there exists a proof of the
sequent A. By cut-elimination, there exists a cut-free praodf the sequent A. A
simple inspection of the rules of our sequent calculus shows that this cut-freesproof
contains only subformulas of the original formula

Then, the consistency of the logic follows easily from the subformula property.
Suppose indeed that the constant formilas provable in the logic. Then, by the
subformula property, there exists a proobf the sequent F which contains only
subformulas of the formul&. Since the formuld is the only subformula of itself,
every sequent appearing in the praacshould be a sequence Ibf

F.....F - F...,F

Any logical rule in the proofr would introduce a connective of logie or A or v,
which is not possible. From this follows that besides some axiom rules, the pisof
made of structural rules only. From this follows easily that every sequent in thesproof
is empty on the lefthand side:

FF... F

Since no such sequent can be obtained as result of an Axiom rule, one concludes that
there exists no proof of the formulaF in our logic. This is precisely the statement of
consistency.

The completeness theorem is slightly mor@dilt to deduce from the cut-elimination
theorem. The interested reader will find a detailed proof of the theorem in the first
chapter of the Handbook of Proof Theory, exposed by Samuel Buss [14].

The cut-elimination procedure

In order to establish the cut-elimination theorem, Gerhard Gentzen introduces a series
of symbolic transformations on proofs. Each of these rules tranforms a proworf-
taining a cut-rule into a proof’ with the same conclusion. In practice, the resulting
proof 7’ will involve several cut-rules; but the complexity of these cut-rules will be
strictly less than the complexity of the cut-rules in the original prao€onsequently,

the rewriting rules may be iterated until one reaches a cut-free proof. Termination of the
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procedure is far from obvious: this is precisely to prove this termination that Gerhard

Gentzen uses a transfinite induction up to Cantor’s ordinarhis provides anféec-

tive cut-elimination procedurgvhich transforms any proof of the sequéht A into a

cut-free proof of the same sequent. The cut-elimination theorem follows immediately.
This procedural aspect of cut-elimination is the starting point of denotational se-

mantics, whose task is precisely to provide mathematical invariants of proofs under

cut-elimination procedure. The exercice is far from obvious. Offigcdity comes

from the symbolic intricacy of the cut-elimination procedure. We will see in Chapter 3

that describing in full details the cut-elimination procedure of a reasonable logic like

linear logic takes already a dozen of meticulous pages.

Intuitionistic logic

Intuitionistic logic has been introduced and developed by Luitzen Egbertus Jan Brouwer
at the beginning of the 20th century, in order to provide safer foundations to mathemat-
ics. Brouwer rejected the idea of formalizing mathematics, but left his student Arend
Heyting commit the outrage, and produce in 1930 a formal system for intuitionistic
logic, based on the idea that the Tertium Non Datur principle of classical logic should
be rejected.

A surprising and quite remarkable observation of Gerhard Gentzen an equivalent
formalization of intuitionistic logic is obtained simply by restricting the sequent calcu-
lus for classical logic to “intuitionistic” sequents:

'rA

with exactly one formulaA on the righthand side. The reader will easily check for
illustration that the proof (10) of the sequent

(A= B)VA

cannot be performed in the intuitionistic fragment of classical logic: one needs the
ability to contract on the righthand side of the sequent in order to perform the proof.

Linear logic

Gerhard Gentzen’s idea to describe intuitionistic logic by limiting classical logic to
particular sequents seems too simplistic and too arbitrary to work... But it works, and
deeper reasons must explain this unexpected success. This reflexion is precisely the
starting point of linear logic. It appears indeed that the key feature of intuitionistic
sequent calculus, compared to classical sequent calculus, is that the Weakening and
Contraction rules can be only applied on the lefthand side of the sequehts Hy-
pothesis), and not on the righthand siggtfe conclusion).

Precisely, linear logic is based on the idea that the Weakening and Contraction rules
do not apply toany formula, but only to very particular kind of modalized formulas.
Two modalities are involved: the modality ! (pronounce: of course) and the modality
? (pronounce: why not). Weakening and Contraction apply on formélas!the
lefthand side, and on formulag&\®n the righthand side.
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Informally speaking, the intuitionistic sequent
ABrC

is translated as
IAIB+-C

where the of course modality on the formuldsand BB indicates that the two formulas
may be weakened and contracted at will.

First-order logic

In this short introduction to Proof Theory, we have chosen to limit ourselves to the
propositional fragment of classical logic: no variables, no quantification. This simpli-
fies matters, and captures the essence of Gerhard Gentzen’s ideas. Here, we would like
to indicate the logical principles underlying first-order classical logic, and illustrate the
logic at work on a remarkable formula, called the drinker formula.

In order to define first-order logic, one needs:

¢ an infinite setV of first-order variable symbols, ranging overy, z,
e a setF of symbols with a specified arity, ranging oveg,
e a setR of relation symbols with a specified arity, ranging oReQ.

The termsof the logic are constructed from the function symbols and the first-order
variables. Hence, any first-order variabiles a term, and (ty, ..., ty) is a term ifty,... tx
are terms, and has arityk. In particular, any function symbdi of arity O defines a
term. Theatomic formulaor the logic are defined as a relation symbol substituted by
terms. HenceR(ty, ..., ty) is an atomic formula ify,... tx are terms, an® has arityk.

The formulas of first-order logic are constructed as in the propositional case, except
that:

e propositional variables, B, C are replaced by atomic formul&§ts, ..., t),

e every node of the formula is either a propositional connectizg v or = as in
the propositional case, or a universal quantifieror an existential quantifietx.

So, a typical first-order formula looks like:
VY.R(f(X).y).

One should be aware that this formula in which the quantifiebinds the first-order
variablex is treated as the same formula as:

Yz R(f(X), 2).

We will not discuss here the usual distinction betwedreaand aboundoccurrence
of a variable in a first-order formula; nor describe how a free varialolfa first-order
formula A(x) is substituted without capture of variable by a tdrrim order to define a
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formulaA(t). These definitions may be found in many textbooks. It should be enough
to illustrate the definition by mentioning that the formula

A(X) = Yy.R(f(x),y)
applied to the termh = g(y) defines the formula

A(t) = VZR(f(g(y)). 2.
Except for those syntactic details, the sequent calculus works just as in the propo-
sitional case. The left introduction of the universal quantifier
LA - A
[LYXAX) F A
and the right introduction of the existential quantifier
'+ A®f),A
I+ IXAX), A
may be performed for any tertof the language, and without any restriction. On the
other hand, the right introduction of the universal quantifier
'+ AX),A
I+ YXA(X),A
and the left introduction of the existential quantifier
LAX) FA
[AXAX) F A
may be applied only if the first-order variabtedoes not appear in any formula of the
contexts” andA. Note that the formul&(x) may contain other free variables than

Let usillustrate these rules with the following first-order formula, called the drinker
formula:

LeftVv

Right3

Rightv

Left 3

Ay {AYY) = YXA(X)} (13)
which states that for every formul&(x) with first-order variablex, there exists an
elementy of the ontology such that iA(y) holds, thenA(x) holds for every element
of the ontology. The elements thus the witness for the universal validityAfx). The
name of “drinker formula” comes from the following case study: supposettatges
over the customers of a pub, and tigk) means that the customgiis not drinking
beer; then, there exists a particularly addicted custgn(iire drinker) such that, if any
customerx in the pub is drinking beer, then the custoryés also drinking beer. The
existence of such a customein the pub is far from obvious, but it may be established
by purely logical means in classical logic.

The drinker formula has been thoroughly analyzed by Jean-Louis Krivine [28] who
generally replaces it with a formula expressed only with universal quantification, and
equivalent in classical logic:

YY{(Aly) = VXAX) =B} = B

Here,B stands for any formula of the logic. The original formulation (13) of the drinker
formula is then obtained by replacing the form@dy the falsity formulaL, and by
applying the series of equivalences in classical logic:

17



= Vy{=(AY) = YXAX))
Ay {==(Aly) = YXAX))}
Ay {A®Y) = YXA(X)}

where, again, we writelA for the formula A = L). The shortest proof of the drinker
formula in classical logic is then:

Axiom

AXo) F AlX) Right Weakening

F A(X) = YXA(X), A(Xo) B+ B
(A(%) = YX.A(X)) = B+ A(X), B
YY{(Aly) = YX.A(X)) = B} + A(X), B
YY.{(A(y) = YX.A(X)) = B} + YX.A(X), B Left Weakening
YY{(AY) = YXA(X) = B}, A(Y)o F YX.A(X), B Right =
YY{(A(y) = YXA(X)) = B} - A(Y)o = YX.A(X), B BrB
VY {(Aly) = YX.A(X)) = B}, (A(y)o = YXA(X)) = B+ B,B
Yy {(Aly) = YX.A(X)) = B}, VY.{(A(Y) = YXA(X)) = B} - B,B
Yy.{(Aly) = YXA(X)) = B} + B,B
YY{(A(y) = YXA(X)) = B} + B
FVYYA{(AlY) = YXAX) =B} =B

Axiom
Left =

LeftVv
Rightv

Axiom
Left =

LeftVv
Contraction

Contraction
Right=

An historical remark on Gerhard Gentzen’s system LK

The reader already aware of Proof Theory will notice that our presentation of classical
logic departs in several ways from Gerhard Gentzen’s original presentation. One main
difference is that Gerhard Gentzen’s original sequent caldilKugontainstwo right
introduction rules for disjunction:

& Right\/l & Right\/z
'rAvBA I'rAvBA
whereas the sequent calculus presented here contains the introduction rule:
'-rABA Right v

I'rA,AVB, A
We know since the discovery of linear logic, and the clarificationgfirs, that the
two presentations of classical logic are verffelient in nature. The introduction rules
of the sequent calculuskK are calledadditive whereas the presentation chosen here
aremultiplicative However, it is possible to simulate the multiplicative rule inside the
original systeniK, in the following way:
'+ AL, ABA;
T'+A,AVB,B,A
I'rA;,AvVB,AVEBA
I'A,AV B, A
Conversely, the two additive introduction rules of the sequent calditkusire simu-
lated in our sequent calculus, in the following way:

Right v,
nght Vo
Right Contraction
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_FALAA Right Weakening _FALB A Right Weakening
I+ A]_, A, B, Az RightVl I+ A]_, A, B, Az RightVl
I'tA,AV B, A I'tA,AVB, A

Note however that the Weakening and the Contraction rules play a key role in the
back and forth translations between the additive and the multiplicative sequent calculi.
Indeed, the two logical systems (additive and multiplicative) becorfiierdnt, but re-
markably complementary, in linear logic — where the Weakening and the Contraction
rules are limited to modalized formulas.

Notes and references

We advise the interested reader to look directly at the original papers by Gerhard
Gentzen, collected and edited by Manfred Szabo in [18]. More recent material will

be found in Jean-Yves Girard’s monographs on Proof Theory [19] and [20] as well as
in the Handbook of Proof Theory edited by Samuel Buss [14].
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2 Semantics: proof invariants and categories

2.1 Proof invariants organize themselves as categories

In order to understand better linear logic, we are lookingreariantsof proofs under
cut-elimination. Any such invariant is a function

7 [n]

which associates to every proafof linear logic a mathematical entityr] called

the denotationof the proof. Invariance under cut-elimination means that the deno-
tation [r] coincides with the denotationr]] of any proofz’ obtained by applying the
cut-elimination procedure to the proof An analogy comes in mind with Knot The-

ory, and more specifically the induced Representation Theory: by definition, a knot
invariant is a function which associates to every knot an entity (typically, a number
or a polynomial) which remains unaltered under the action of the three Reidemeister

. 0- -0

Reidemeister Type I move

I OIC
~N /<
Reidemeister Type I move

\

= = /
™~ N\ T N
1~ X IX - XTI
7
Reidemeister Type 11l moves

We are looking for similar invariants for proofs, this time with respect to the proof
transformations occurring in the course of cut-elimination. We will see that, just like in
Representation Theory, the construction of such invariants is achieved by constructing
the suitable kind of categories and functors.

Note that invariance is not enough: we are lookingrfaxdularinvariants. What
does that mean? Suppose given three formijds C, together with a prook; of the
sequentA + B and a proofr, of the sequenB + C. We have already described the
cut-rulein classical logic and in intuitionistic logic. The same cut-rule exists in linear
logic. When applied to the proofs, andry, it leads to the following proof of the
sequeniA + C:

1 2

ArB BrC
ArC

Cut
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Now, we declare an invariant modular when the denotation of the praufy be
deduced directly from the denotations] and [r,] of the proofsz; andn,. In that
case, there exists a binary operatioon denotations satisfying

[x] = [72]o[m].

The very design of linear logic (and of its cut-elimination procedure) ensures that this
composition law is associative and has a left and a right identity. What do we mean?
This point deserves to be clarified. First, consider associativity. Suppose given a for-
mulaD and a proofrs of the sequent + D. By modularity, the two proofs

1 T
: : 73
A+B BrC
ArC cut CrD oy
A+ D
and
T m3
m : :
: BrC CrD
ArB BrD o, Cut
A+rD

have respective denotations

[7r3] o ([2] o [m1]) and (Irs] o [72]) o [m1].

The two proofs are equivalent from the point of view of cut-elimination. Indeed, de-
pending on the situation, the procedure may transform the first proof into the second
proof, or conversely, the second proof into the first proof. This illustrates what lo-
gicians call acommutative conversionn that case a conversion permuting the order
of the two cut rules. By invariance, the denotations of the two proofs coincide. This
establishes associativity of composition:

[s] o ([m2] o [m]) = ([73] o [72]) o [mi].

What about the left and right identities? There is an obvious candidate for the identity
on the formulaA, which is the denotatioitl 5 associated to the proof

m Axiom
Given a proofr of the sequenf + B, the cut-elimination procedure transforms the two
proofs

AL A Axiom TR
ArB

Cut
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and

T
ArB  BrB 0"
Ar+rB
into the proof
T
At

Modularity and invariance imply together that
[floida = idgo[r] = [x].

From this, we deduce that every modular invariant of proofs gives rise to a category. In
this category, every formula defines an objectd], which may be rightly called the
denotationof the formula; and every proof

/s

A+rB
denotes a morphism
(7] : [A] — [B]

which, by definition, is invariant under cut-elimination of the praof

2.2 Atensor product in linear logic

The usual conjunction of classical and intuitionistic logic is replaced in linear logic
by a conjunction akin to theensor producbf linear algebra, and thus noted We are

thus tempted to look for denotations satisfying not just invariance and modularity, but
alsotensoriality By tensoriality, we mean two related things. First, the denotation [

B] of the formulaA ® B should follow directly from the denotations of the formula
andB, by applying a binary operation (also notgflon the denotations of formulas:

[A®B] = [Al®[B].
Second, given two proofs
1 o
Al A B:+ B>

the denotation of the proaf
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T 2

AlAF ABZ - By : B2 Righte

1, B1 F Ao ® By

A®BLr A@B, O

should follow from the denotations of the proafsandxr, by applying a binary oper-
ation (noteds again) on the denotations of proofs:

[z] = [m]®[r].

These two requirements imply together that the linear conjunctiaf linear logic
defines abifunctor on the category of denotations. We check this claim as exercise.
Consider four proofs

T 2 3 T4
AL+ A Bi+ By A+ Az B, + B3
with respective denotations
f1 = [m], fo = [m2], f3 = [r3], fa = [74].

The cut-elimination procedure transforms the proof

1 o 71:3 71:4

A]_ + A2 B]_ = Bz A2 F A3 BZ F B3 nght®
ALBi+FA®B Ao, Bo - A3 ® B3 Left ®
AARB A ®B; ARB+A;®Bs cut

AL® By F Ag® Bg u

Right®
Left®

with denotation
(z® fs) o (f1® )

into the proof

1 3 Vv T4

AL+ Ay Ao+ Ag Bi+ By B, + Bs
A+ A3

A1,B1 + A3 ® B3

AL®Bi+A3® B3

Cut
BirBs pights

Left®

Cut

with denotation
(fao f)) @ (fa o f).
By invariance, the equality

(fs®@f)o(fi®df) = (fzof)®(fs0f)
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holds in the underlying category of denotations. This ensures that the first equation of
bifunctoriality is satisfied. One deduces in a similar way the other equation

idiaersy = idia @ idpg
by noting that the cut-elimination procedure transforms the proof

AgBrAgB /Xiom

into the proof .
Axiom

ArA BrB Right®
ABrA®B
A®BrA®B

by then-expansiorrule described in Chapter 3, Section 3.5.

Axiom

Left®

2.3 Proof invariants organize themselves as monoidal categories (1)

We have just explained the reasons why the operatiatefines a bifunctor on the
category of denotations. We go further, and show now that this bifunctor defines a
monoidal category — not exactly in fact, but nearly so. The reader will find the notion
of monoidal category recalled in Chapter 4.

A preliminary step in order to define a monoidal category is to choose a unit @bject
in the category. The choice is nearly immediate in the case of linear logic. In classical
and intuitionistic logic, the truth valu€ standing for “true” behaves as a kind afit
for conjunction, since the two sequents

AATHA and ArAAT

are provable for every formula of the logic. In linear logic, the truth valug is
replaced by a constant 1 which plays exactly the same role for the tensor product. In
particular, the two sequents

A®1rA and ArAel

are provable for every formul&of linear logic. Theunit of the category is thus defined
as the denotatioa = [1] of the formula 1.
Now, we construct three isomorphisms

appc (A®B)®C — A (B®C),

Ap e A — A pa ARe— A

indexed on the objects, B,C of the category, which satisfy all the coherence and
naturality conditions of a monoidal category. The associativity morphissdefined
as the denotation of the proef s below:

Axiom
Right®

Right®
Left®
Left®

BrB Xom  ErE

Ar A B,C+-B®C
AB,CrA®(B®C)
A®B,CrA®(B®C)

(A®B)®C+A®(B®C)

Axiom
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The two morphism4a andp are defined as the respective denotations of the two proofs
below:

Axiom

Leftl

Left®

ArA
LAFA
1 ArA
and

Axiom
Left 1

Left®

ArA
AlrA
A®1lrA
The naturality and coherence conditionsegm andp are not particularly diicult to
establish. For instance, naturality@fmeans that for every three proofs

m 2 73
All-Ag B]_I-Bz C1I—C2
with respective denotations:
f1 = [m], fo = [m2], f3 = [r3].
the following categorical diagram commutes:
(A1®B)®Cy " A1 ®(B1®Cy)
(f1®f2)®f3l i f18(f,@1s) (14)
(A2 ® Bz) ®C, a AR (Bz ® Cg)

where, for this time, and for clarity’s sake only, we do not distinguish between the
formula, say A ® B;) ®Cq, and its denotation J; ® B;) ® C1]. We would like to prove
that this diagram commutes. Consider the two proofs:

T, o
A+ A B+ By 7{3 B+ By CrCo
A,Bi-ARB) . A+ A By,Co - Bo®Cy
AI®B A ®B, Ci+tGCy Ao, Bz,CgI—Az@(Bz@Cz)
A1®Bl,C1I-(A2®Bz)®C2 A2®Bz,C2I-A2®(Bz®Cz)

(A1®Bl)®C1I-(A2®Bz)®C2 (A2®Bz)®C2l—A2®(Bz®C2) cut
(A1®Bl)®C1 F A2®(52®C2) u

o 3
B: + B; Ci+tCy ﬂ:l B+ By Ci1+Cy
Ak A B1,C1+ B ®Cy : B;,Ci+B®Cy
A1,B,Ci - A ® (B ®Cq) AL+ A Bi®Ci+B,®C»,
A1®Bl,C1I-A1®(Bl®C1) A, Bl®C1I-A2®(Bg®C2)
(Al ® Bl) ®Ci1-AI® (Bl ®C1) A ® (Bl ®Cl) FA® (Bg ®C2) cut

(A1®B1)®Ci A9 (B, ®C))
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By modularity, the two proofs have
ao((fi® f2) ® fa) and (fL® (f2® f3)) 0 .

as respective denotations. Now, the two proofs reduce by cut-elimination to the same
proof:

T 2

3

A]_ F A2 Bl + Bz Right®
Al, Bl F A2 ® Bz Cl + Cz Right®
A1,B1,Ci + (A2 ® Bz) ®Co Left®
Al,Bl®C1I—(A2®Bz)®C2 Left @
Al ® (Bl ®C1) F (Az ® Bz) ®C,

which is simply the original proof of associativity in which every axiom step

Ar A B+ B CtC

has been replaced by the respective proof

T 2 T3

ALF A, Bi + B, Ci+rGC

The very fact that the two proofs reduce to the same proof, and that denotation is
invariant under cut-elimination, ensures that the equality

ao((ief)efy) = (hie(hef)oa

holds. We conclude that the categorical diagram (14) commutes, and thus, that the
family « of associativity morphisms is natural. The other naturality and coherence
conditions required of a monoidal category are established in just the same way.

2.4 Proofinvariants organize themselves as monoidal categories (2)

In order to conclude that the tensor prodgctiefines a monoidal category of deno-
tations, there only remains to check that the three morphismsandp are isomor-
phisms. Interestingly, this is not necessarily the case! The expected inverse of the three
morphismsz, A andp are the denotationis, 1 andp of the three proofs below:

Axiom Axiom
ALABF Agg B Righte Axiom
Right®
ABCr(A®B)®C Left o
BeCtr(A®BY ®C
A ( ) ® Left®

A®(BoC)r (A®B)®C

and
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Right1-——- 2T A

ArleA

Axiom
Right®

and

—— Right 1
ArA F1 Right®

ArAg1l
Itis not difficult to deduce the following two equalities from invariance and modularity:

Axiom

Ao = ida, pop = ida.
On the other hand, and quite surprisingly, none of the four expected equalities
710/1 = idB@A» ﬁop = idA®67

@oa = idsp)c, ao@ = idag(Bs0),

is necessarily satisfied by the category of denotations. Typically, modularity ensures
that the morphismp o p denotes the proof

ArA Axiom Right 1

_AFA A ——Ri

AlrA Left 1 AI—AAXIOm - ol

— left® Right®

A1+ A ArA®l cut
Al+rA®1

which is transformed by cut-elimination into the proof

m AXxiom
ALrA el .
P Lefte Right 1 (15)
®1r Right®
Al-rA®1l

Strictly speaking, invariance, modularity and tensoriality do not force that the proof (15)
has the same denotation as thexpansion of the identity:

TArA Aom T pxiom
ight®
AlrAsl | (16)
AglrApl %

at least if we are careful to define the cut-elimination procedure of linear logic in the
slightly unconventional but right way exposed in Chapter 3.

2.5 Proofinvariants organize themselves as monoidal categories (3)

However, we are not very far at this point from obtaining a monoidal category of deno-
tations. To that purpose, it isficient indeed to add a series of equalities to invariance,
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modularity and tensoriality. For every two proofs andr,, we require first that the
proof

m
: o
[LC,D+A : (17)
rcebDrA -M® 2B
: Right®
ICeD,A+-A®B
has the same denotation as the proof
T T2
18
I[LCCDFA ArB Right® (18)
IC,D,A+rA®B
Left®

INCoD,A-rA®B

obtained by “permuting” the left and right introduction of the tensor product. We re-
quire symmetrically that the proof

2
T
A,C,.D+B (19)
FFA ACeDrB oN®
: Right®
[LA,CeDrA®B
has the same denotation as the proof
72
1 .
: 20
_ACDFB pighte (20)

I'r A ACe®D+B
I'AC®DrA®B

obtained by “permuting” the left and right introduction of the tensor product. We also
require that the two proofs

Left®

m

: P
TA : 21
FFIFI-AA Leftl 378 e
: Right®

ILA+A®B

and
T2
T
: ArB 22
ArB | g (22)
A LAFA 20
Right®
INLA+A®B
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have the same denotation as the proof

T2
1 .

A+ B (23)
'rA A+ B Right®
IA+rA®B

INLArA®B

Left1

obtained by “relocating” the left introduction of the unit 1 from the sequéentA or
the sequenA + Bto the sequeni, A + A® B.

Once these four additional equalities satisfied, the original hypothesis of invariance,
modularity and tensoriality of denotations implies the desired equalities:

10/1 = ide®/_\, 50,0 = idA®e,

@oa = idasp)ec, aoa = idag(esc)-

Hence, the three morphismasA andp are isomorphisms in the category of denotations,
with respective inverse, 1 andp. We conclude in that case that the category of
denotations is monoidal.

Remark. The discussion above is mainly intended to the amaze the insider. The cut-
elimination procedure described in Chapter 3 is designed extremely carefully in order
to avoid unnecessary proof transformations. Once this strict cut-elimination policy
adopted, it appears that the equalities mentioned above are not necessarily satisfied:
consequently, the category of denotations is not necessarily monoidal. On the other
hand, all the existing cut-elimination procedures appearing in the litterature are strictly
more permissive than ours, in the sense that more proof transformations are accepted
and valid. We will see in Chapter 3 that when a permissive policy is adopted, the
three principles of invariance, modularity and tensoriality imply the equalities just men-
tioned: the category of denotations is monoidal in that case.

2.6 Conversely, what is a categorical model of linear logic?

We have recognized that every (invariant, modular, tensorial) denotation defines a
monoidal category of denotations, at least when the cut-elimination procedure is suf-
ficiently permissive. There remains to investigate the converse question: what axioms
should satisfy a given monoidal categ@yin order to define a modular and tensorial
invariant of proofs? The general principle of the interpretation is that every sequent

A]_,...,Am + B

of linear logic will be interpreted as a morphism

(Al ®---®[An] — [B]
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in the categorC, where we write ;] for the object which denotes the formudan the
category. This object] is computed by induction on the size of the formilan the
expected way. Typically,
[A®B] = [A]®[B]

This explains why the categofy should admit, at least, a tensor product. It is useful
to write

Il = [A] ®---@[An]
for the denotation of the context

I =A.....An
as an object of the catego@ Every proof of the sequent
' -B

is thus interpreted as a morphism
[T — [B]

in the categoryC. A proof r is then interpreted by induction on the “depth” of its
derivation tree. Typically, the axiom rule

m Axiom
is interpreted as the identity morphism on the interpretation of the fordula
id[A] . [A] — [A]

Also typically, given two proofs

1 o

rrA A+ B
interpreted as morphisms
f o] — [Al g : [A] — [B]

in the categoryC, the proof

V&8 o

I'rA A+ B Righte
IArArB
is interpreted as the morphism

feg

(1 e[A]

in the monoidal categorg.

Beyond these basic principles, the structures and properties required of a c@tegory
in order to provide an invariant of proofs depends on the fragment (or variant) of linear
logic one has in mind: commutative or non commutative, classical or intuitionistic,
additive or non additive, etc. In each case, we sketch below what kind of axioms
should satisfy a monoidal categatyin order to define an invariant of proofs.

[Al @ [B]
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Commutative vs. non commutative logic

Linear logic is generally understood as commutative logic, because there exists a canon-
ical proof of the sequerA ® B + B ® A for every formulaA and B. The proof is
constructed as follows.

Axiom
Right®

Exchange
Left®

Bre MOM  ATA

B,AFrB®A

AB-rBoA
A®BrB®A

For that reason, usual (commutative) linear logic is interpreted in monoidal categories
equipped with a symmetry, called for that reasymmetrianonoidal categories, see
Section 4.3 in Chapter 4 for a definition.

On the other hand, several non commutative variants of linear logic have been
introduced in the litterature, in which the exchange rule:

IABArC

ILB,AAA+C
has been removed, or has been replaced by a restricted exchange rule. These non
commutative variants of linear logic are interpreted in monoidal categories, possibly

equipped with a suitable notion of permutation, like a braiding, see Section 4.2 in
Chapter 4 for a definition.

Exchange

Classical linear logic and duality

In his original article, Jean-Yves Girard introducedlassicallinear logic, in which
sequents are monolateral:
}_ Al7 e b An'

The main feature of the logic is a duality principle, based on an involutive negation:
e every formulaA has a negatioA*,
e the negation of the negatiokt+ of a formulaA is the formulaA.
From this follows by duality a new connectidg defined as follows:
(A®B) = (B'®AY)-.

This leads to an alternative presentation of linear logic, based this time on bilateral
sequents:
At An + By,--- By (24)

We have seen in Chapter 1 that in classical logic, the bilateral sequent stands for the
formula
ALA--AAn = Biv---V B

Similarly, in linear logic, the bilateral sequent stands for the formula

A® - QAn — BB ---BB,
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where — is implication in linear logic. The notion of linearly distributive category
introduced by Robin Cockett and Robert Seely, and recalled in Chapter 4 of this survey,
is a category equipped wittvo monoidal structure® ande precisely to interpret such

a bilateral sequent (24) as a morphism

[Ad]@...@[An] — [Bi]e...e[By].

in the category.

Intuitionistic linear logic and linear implication —

Theintuitionistic fragment of linear logic was later extracted from classical linear logic
by restricting the bilateral sequents (24) to “intuitionistic” sequents

Al""’Am F Bl"",Bn-

in which several formulas may appear on the lefthand side of the sequent, but only
one formula appears on the righthand side. We have seen in the introduction (Chap-
ter 1) that Arend Heyting applied the same trick to classical logic in order to formalize
intuitionistic logic. Hence the name of "intuitionistic” linear logic.

Duality generally disappears in the usual formalizations of intuitionistic linear logic:
the original connectives of linear logic are limited to the tensor proguthe unit 1,
and the linear implicatiore. The right introduction of linear implication is performed
by the rule:

AT+B
'rA—-B

which may be interpreted in a monoidal closed category, see Chapter 4 of this survey
for a definition.

The additive conjunction & of linear logic

One important aspect of linear logic is the discovery that there etisislifferent
conjunctions in logic:

e a “multiplicative” conjunction called “tensor” and notexl because it behaves
like a tensor product in linear algebra,

¢ another “additive” conjunction called “with” and noted & which behaves like a
cartesian product in linear algebra.

In intuitionistic linear logic, the right introduction of the connective & is performed by

the rule:
T'rA I'rB

'+ A&B (25)
The left introduction of the connective & is performed by twéelient rules:
IAA+C IB,A+C (26)
ILA&B,A+C IA&B,A+C
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The additive conjunction & is generally interpreted as a cartesian product in a monoidal
categoryC. Suppose indeed thBt = X4, ..., Xy and thatra andng are two proofs

A B

I'r I'r

of the sequents on top of the right introduction rule (25) are interpreted by the mor-
phisms:

f o[ — [Al g: [l — [B]
in the monoidal categorg. In order to interpret the proof
A g

(27)

I'cA I'rB Right &
I'r A&B
we suppose from now on that every pair of obje&tand B in the categoryC has a
cartesian product notedl& B. Then, the two morphismé andg give rise to a unique
morphism
(f.g) : [IT — [Al&[B]

making the diagram

(A
(f.9) %
[r] % (ml 8]
\
[6]

g

commute in the catego§. In the diagram, the two morphisms andnr, denote the
first and second projection of the cartesian product. Now, we define the interpretation
of the formulaA& B as expected:

[A&B] = [Al&] B

and interpret the proof (27) as the morphisfg).
The two left introduction rules (26) are interpreted by precomposing with the first
or second projection of the cartesian produd&] B]. Consider a proof

T

IB,ArC
interpreted as the morphism

f [ e[A ® [A] — [C]
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in the categoryC. Then, the proof

T

IB,A+C

————— left&;
IA&B,A+C

is interpreted as the morphism:

Iemn®[A]

M ® [A&B] ®[A] — Me [Al®[A] ———[C].

Exponential modality

The main dificulty of the field is to understand the categorical properties of the expo-
nential modality ! of linear logic. This question has been much debated in the past,
sometimes with extreme vigour. It seems however that we have reached a state of
agreement, or at least relative equilibrium, in the last few years. People have realized
indeed that all the axiomatizations appearing in the litterature converge to a unique
notion: a well-behaved (that is: symmetric monoidal) adjunction

between:
e a symmetric monoidal closed categdry
e a cartesian categoiy.

By cartesian category, we mean a category with finite products: the category has a
terminal object, and every pair of objedsandB has a cartesian product.

An adjunctionM 4 L satisfying these properties is calledirrear-non-linear ad-
junction, see Definition 19 at the beginning of Chapter 7. It provides a categorical
model ofintuitionistic linear logic, and a categorical model dfassicallinear logic
when the categor{ is not only symmetric monoidal closed, but alsautonomous.

In this model, the exponential modality ! is interpreted as the comonad

' =MoL

induced on the categotly by the linear-non-linear adjunction. We will come back to
this point in Chapter 7 of the survey, where we review four alternative definitions of a
categorical model of linear logic, and extract in each case a particular linear-non-linear
adjunction.

34



2.7 Proof invariants as free categories

It is worth explaining another time that Proof Theory is in many ways similar to Knot
Theory, as understood in Representation Theory. In Knot Theoty, every object in a
monoidal category equipped withbaaiding and aleft duality defines an invariant of
knots under the Reidemeister moves. See Chapter 4 for a definition of braiding and
left duality. The invariant is then computed as follows. One defines a catggwith
natural numbers as objects, and knots (or rataegled as morphisms. One shows
that:

o the category is monoidal with braiding and left duality,

o there exists a unique structure preserving fun&tdrom this categoryy” to any
monoidal category with braiding and left duality.

The notions of braiding and duality are given in Chapter 4. By structure preserving, we
mean that the functor should transport the monoidal structure and the braiding of the
category of tangles to the categdty

By analogy, Denotational Semantics may be called the Representation Theory of
proofs. For instance, it is possible to construct a free symmetric monoidal closed cat-
egory over a categor§. Then, an invariant of proofs in intuitionistic multiplicative
linear logic is the same thing as a structure preserving functor from this category to a
symmetric monoidal closed category.

2.8 Notes and references

Several variants of non commutative linear logic have been introduced in the litterature, starting
from the cyclic linear logic formulated by Jean-Yves Girard, and described by David Yetter
in [36]. The intuitionistic fragment of this cyclic linear logic happens to coincide with a sequent
calculus devised by Jim Lambek [30] as early as 1958 in order to parse sentences in English and
other vernacular languages.

One motivation for cyclic linear logic is topological: cyclic linear logic generates exactly
theplanar proofsof linear logic. By planar proof, one means a proof whose proof-net is planar,
see [21]. Cyclic linear logic was later extended in several ways: to a hon commutative logic by
Paul Ruet [1], to a planar logic by Paul-ArdMellieés [32], and more recently to a permutative
logic by Jean-Marc Andreoli, Gabriele Pulcini and Paul Ruet [2]. Again, these logics are mainly
motivated by the topological properties of the proof they generate: planarity, etc. Another moti-
vation is provided by the Curry-Howard isomorphism relating Proof Theory to the Programming
Language Theory. Frank Pfenning and Jolakow study in [33] a non commutative extension
of intuitionistic linear logic, in which non commutativity captures the stack discipline involved
in the standard continuation passing style translations.

There remains a lot to be understood and clarified on the various non commutative logics,
in particular on the semantic side. In that direction, one should mention the early work by Rick
Blute and Phil Scott on Hopf algebras and cyclic linear logic [10, 12]. In Chapter 4, we will
investigate two non-commutative variants of well-known categorical models of multiplicative
linear logic: the linearly distributive categories introduced by Robin Cockett and Robert Seely
in [15], and the non symmetrieautonomous categories formalized by Michael Barr in [4].

35



3 Linear logic and its cut-elimination procedure

In this chapter, we introduce propositional linear logic, understood now as a formal
proof system. First, we describe the sequent calculus of classical linear logic (LL) and
explain how to specialize to its intuitionistic fragment (ILL). Then, we expose in full
detail the cut-elimination procedure in the intuitionistic fragment. Finally, we return to
classical linear logic and describe briefly the cut-elimination procedure in the general
system.

3.1 Classical linear logic

The formulas

The formulas of propositional linear logic are constructed by an alphabet of four nullary
constructors callednits

0 1 L T
two unary constructors calledodalities
1A ?A
and four binary constructors callednnectives
Ao B A®B AR B A&B

Each constructor receives a specific name in the folklore of linear logic. Each con-
structor is also classified in three classestditive multiplicative and exponential
depending on its nature antfiaities with other constructors. This is recalled in the
table below.

® plus

0 zero: the unit ofp The

& with additives

T top: the unit of &

® tensor product

1 one: the unit of® The
% parallel product multiplicatives
1 bottom: the unit of®

! bang (or shriek) The exponential
? why not modalities

The sequents

The sequents amonolateral
F AL AL

understood asequencesf formulas, not sets. In particular, the same formAllmay
appear twice consecutively in the sequence: this is precisely what happens when the
contraction rule applies.
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The sequent calculus

A proof of propositional linear logic is constructed according to a series of rules pre-
sented in Figure 1. Note that there is no distinction between “Left” and “Right” intro-
duction rules, since every sequent is monolateral.

Axiom Cut FLA FASA
AL A FTLA
% LA FA,B 2 +rI,A B
FTLA,A®B rT,A%® B
1 o n I
1 FI, L
o FT,A & FILA +FI,B
! FT,A®B FT,A&B
o +I,B
2 F[,A®B
0 no rule T
[
. FIL2A7A . T
Contraction — Weakenin —_
FT.2A 9 FT.2A
Dereliction FLA Promotion LA
FT,2A FALIA

Figure 1: Sequent calculus of linear logic (LL)

3.2 Intuitionistic linear logic

The formulas

The formulas of propositional intuitionistic linear logic (with additives) are constructed
by an alphabet of twanits

one modality:

and three connectives:

A®B A—-B A& B
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The connective- is called linear implication.

The sequents

The sequents aifatuitionistic, that is, bilateral

Al,...,Am + B

with asequencef formulasAy, ..., A on the lefthand side, andumiqueformulaB on
the righthand side.
The sequent calculus

A proof of propositional intuitionistic linear logic is constructed according to a series of
rules presented in Figure 2. We follow the tradition, and call “intuitionistic linear logic”
the intuitionistic fragment without the connective & nor umit Then, “intuitionistic
linear logicwith finite productsis the logic extended with the four rules of Figure 3.

3.3 Cut-elimination in intuitionistic linear logic

The cut-elimination procedure is described comprehensively in Sections 3.5—3.4 as a
series of symbolic transformations on proofs.

3.4 Cut-elimination: commuting conversion cut vs. cut

The proof
2 3
m : :
Tz,A,TgI—B T]_,B,T4I-C cut
TrA T T2 A5 Tar C u
Y1, 5T, 03, Tq F C !
is transformed into the proof
1 T2
: : 3
'rA T2, A, T3+ B Cut :
YT, Y3+ B U LB Y.rC
Cut

T1, T2, I, Y3, YarC

and conversely. In other words, the two proofs are equivalent from the point of view
of the cut-elimination procedure. This point is already mentioned in Section 2.1 of
Chapter 2: the commutative conversion ensures that composition is associative in the
category induced by any invariant and modular denotation of proofs.
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Axiom
Ar A

I'rA T1,A T2+ B

Cut
T]er Tz I— B
Tl, A, B, TZ = C
Left T1,ABTHC
¥ T1,A®B, T2+ C
Right 'rA  A+B
e IA+rA®B
'rA T1,B, T2+ C
Left —
Tl,F,A—o B,Tz FC
Right AT+B
- _—
’ 'rA—oB
‘rl9 TZ F A
Left 1 T, Mo F A
T, LYo r A
Right 1 L
’ 1
i TrHA
Promotion ' A
| IT HA
Dereliction YT,A Yo+ B
Tl’ IA, Tz + B
Weakenin Ty, oFB
’ Tla IA, ‘rz FrB

Contraction T,!AIAT,+B
Tl’ IA, TZ I— B

Exchange T1, A1, Ap, Y2 + B
’ Tl’ A27 Al, Tz B

Figure 2: Sequent calculus of intuitionistic linear logic (ILL)

3.5 Cut-elimination: the p-expansion steps
3.5.1 The tensor product
The proof

ARBrA®B Axiom
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Left & T,ATo+C
! T, A&B, T, C
Y1,B, Yo C
Left & _b>ez
2 T1.A&B, T, C
. T'rA I'rB
Right&  —F 728
True
u T'rT

Figure 3: Addendum to figure 2: ILL with finite products

is transformed into the proof

Axiom
Right®

Left®

ArA MM BB

ABrA®B
A®BrA®B

3.5.2 The linear implication

The proof
Axiom

A—-BrA—-B
is transformed into the proof

Axiom
Left —

ArA MM BB

AA—-B+B
A—-BrA—-oB

3.5.3 The tensor unit

The proof

1r1 Axiom

is transformed into the proof
—— Right 1

F1
1r1 Left 1

3.5.4 The exponential modality

The proof

TAHA Axiom

is transformed into the proof
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Axiom
Dereliction
Promotion

Ar A
IA- A
TAHIA

3.6 Cut-elimination: the axiom steps
3.6.1 Axiom steps

The proof
v/
ArA AXOM AT, B cut
TL,A T+ B u
is transformed into the proof
T
TL,ATo+B
3.6.2 Conclusion vs. axiom
The proof
T
FrA  ArA 20O
I'rA
is transformed into the proof
/8
'rA
3.7 Cut-elimination: the exchange steps
3.7.1 Conclusion vs. exchange (the first case)
The proof
2
1 .
- TABTrC Exchange
'rA Tl,B,A,Tzl-C cut
‘I’l, B, F, Tz +C u

is transformed into the proof
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1 2

'rA T,ABT,rC
T]_,F, B,Tg +C
T,BI,T2+rC

Cut
Series of Exchanges

3.7.2 Conclusion vs. exchange (the second case)

The proof
T2
1 .
- TLABTrC Exchange
I'+B T,B A YT, +C cut
TLLA T2+ C u
is transformed into the proof
1 T
I'+B T,ABTYT,rC
L 2 Cut

T1,AT, T2+ C

Series of Exchanges
T1,I,A Y2 C

3.8 Cut-elimination: principal formula vs. principal formula

In this section and the next, we explain how the cut-elimination procedure transforms
a proof

1 2

I'rA Tl, A, Tz + B
Tl, I, Tz + B
in which the conclusiorA and the hypothesié are bothprincipal in their respective

proofszy andm,. In this section, we treat the cases in which the last rules of the proofs
m1 andm, introduces:

Cut

¢ the tensor product (Section 3.8.1),
¢ the linear implication (Section 3.8.2),
¢ the tensor unit (Section 3.8.1).

For clarity’s sake, we treat separately in Section 3.9 the three cases where the last rule
of the proofr; is a promotion rule, and the last rule of the pragfis a “structural
rule”: a dereliction, a weakening or a contraction.
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3.8.1 The tensor product
The proof

st 2 3

rrA ArB Right® T1,AB YT+ C
IA+rA®B T1,A®B, T2+ C
Tl, I,A, Tz +C
is transformed into the proof

Left®
Cut

2 3
1 :

: A+ B T, A B, YT, C
LrA T1,AAT+C
T]_,F,A,Tg +C

Cut

Cut

3.8.2 The linear implication
The proof

T T 3

AaA'_B nght—o A T]_,B,Tzl-c
A+rA—oB Tl,r,A—OB,Yzl-C
Tl, F, A, Tz +C
is transformed into the proof

Left —
Cut

2 T
. . -

A AArB Cut :
F,A'_B Tl,B,TZ"C
Tl,F,A,TQI-C

Cut

3.8.3 The tensor unit

The proof

T

— Right1 _Tu.T2rA

1 Tu1 T2 r A éefttl
Tj_, Tz FA u
is transformed into the proof
v/
T, Yok A
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3.9 Cut-elimination: promotion vs. dereliction and structural rules

In this section, we explain how the cut-elimination procedure transforms a proof

m
: 2
ITrFA . :
IT 1A promotion  —w—r g cut
Y. 0. T, F B u

in which the hypothesisAis principal in the proofr,. There are exactly three cases to
treat, depending on the last rule of the pragf

e adereliction (Section 3.9.1),
e a weakening (Section 3.9.2),
e acontraction (Section 3.9.3).

The interaction with an exchange step is already treated in Section 3.7.

3.9.1 Promotion vs. dereliction

The proof
T T2
TrA . T, AT+ B -
TEIA Promotion TLIA T, B ge:ehctlon
TLIT, T2 F B u
is transformed into the proof
1 o
'+ A T,A T+ B cut
TLIT.T,+ B !
3.9.2 Promotion vs. weakening
The proof
T, 71:2
'C'+A : 11,028 B \veakenin
PV e— g
ITHIA Fromoton " A T+ B cut

T,!I,Y2 B

is transformed into the proof
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2

T, Yo+ B

———=—=_— Series of Weakenings
Tl, !F, Tz + B

3.9.3 Promotion vs. contraction

The proof
T T2
TrA . T, IAIAY B )
T 1A Promotion TLIA Yot B CCtontractlon
TLIT, T2+ B u
is transformed into the proof
m
gl 2
- ALEA bomotion :
TFA P i IT HA T, IAIAY B cut
ITiA Promotion T1,IA I, T2 + B "
T T, B o Cut
ey Series of Contractions and Exchanges
T,!I, T2 B

3.10 Cut-elimination: secondary conclusion
In this section, we explain how the cut-elimination procedure transforms a proof

1 2

I'rA Tl, A, Tz + B
Tl, I, Tz + B
in which the conclusior\ is secondaryn the proofr;. This leads us to a case analysis,

in which we describe how the proof evolves depending on the last rule of themroof
The six cases are treated in turn:

Cut

o aleftintroduction of the linear implication,
e adereliction,
e aweakening,
e a contraction,
e an exchange,

¢ aleft introduction of the tensor product (low priority)
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e aleftintroduction of the tensor unit (low priority).
The last two cases are treated at the end of the section because they are given a lower
priority in the procedure.
3.10.1 Leftintroduction of the linear implication
The proof

T 2
. . -

T'rA To,B, T3+ C Left .
ToLA=BTsrC S0 Y CT,rD

T1. T2, A = B, Y3 T4t D Cut
is transformed into the proof
V¥ 3
m : :
T, B, T3+ C Y1,C,Ts4+ D
Cut

T'rA T]_,Tz, B,Tg,T4 + D
T1,T2,I,A—o B, T3, T4+ D

Left -

3.10.2 A generic description of the structural rules: dereliction, weakening, con-
traction, exchange

Four cases remain to be treated in order to describe entirely how the cut-elimination
procedure transforms a proof

1 2

I'rA Tl,A,T4I-B
‘I’l,l",‘ml- B

Cut

in which the conclusio\ is secondaryin the proofr;. Each case depends on the last
rule of the proofr;, which may be:

a dereliction,

a weakening,

a contraction,

an exchange.

Each of the four rules is of the form

Ty, @, T3+ A
Tz,‘l’, ‘rg FA
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where the contex® is transformed into the conteX in a way depending on the
specific rule:

e dereliction: the contex® consists of a formul&, and the contex¥ consists of
the formula C,

e weakening: the context is empty, and the conte}t consists of a formulag,

e contraction: the contexb consists of two formulasQ,!C and the contex®¥
consists of the formulad,

e exchange: the contestt consists of two formula€, D and the contexX¥ consists
of the two formula, C.

By hypothesis, the proof; decomposes in the following way:

T3
2P 030 A e specific rule
To, ¥, T3+ A
The proof
3
. ﬂz

the specificrule _____°~
Tz,“I",T;gI-A Tj_,A,T4|‘B

11, T2, W, T3, Ta+ B

is then transformed into the proof

Cut

3 2

Yo, @, T3+ A T,A T4+ B
Tl, TZ’ (D9 T3’ r114 F B
Ty, T2, ¥, T3, T4+ B

Cut
the specific rule

3.10.3 Leftintroduction of the tensor (with low priority)

The proof
m
: o
Tz, A, B, Tg +C .
T, AeBTsr C " T ET, D

Cut

Ty, Yo, A® B, Y3, T4+ D

is transformed into the proof
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U 2

T, A B, YT3+C T,C, Y4+ D
11, T2, A B, T3, T4+ D
T, To,A® B, Y3, T4+ D

Cut
Left®

3.10.4 Leftintroduction of the tensor unit (with low priority)

The proof
1
: 2
Tz, Tg FA .
T Lsr A ML AT B cut
T]_, Tg, 1, Tg, T4 +B u
is transformed into the proof
m
: o
Ty, T3+ A .
Ty, 1, Y3+ A Left 1 T1,A T4+ B
Cut

T1,T2,1,73,Tar B

3.11 Cut-elimination: secondary hypothesis
In this section, we explain how the cut-elimination procedure transforms a proof

T 2

I'rA Tl, A, Tz + B
Tl, I, Tz + B
in which the hypothesi# is secondaryin the proofr,. This leads us to a long case

analysis, in which we describe how the proof evolves depending on the last rule of the
proofr,. The nine cases are treated in turn in the section:

Cut

¢ the right introduction of the tensor,

the left introduction of the linear implication,

the four structural rules: dereliction, weakening, contraction, exchange,

the left introduction of the tensor (low priority),

the left introduction of the tensor unit (low priority),

the right introduction of the linear implication (low priority).

The last three cases are treated at the end of the section, because they are given a low
priority in the procedure.
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3.11.1 Rightintroduction of the tensor (first case)

The proof
2 3
1 . .
F'rA Tl"rA,ZzTF BA B ACF:C Righta
F A Y2, AFB®
L 2 Cut

T,I, T2, A+ BC

is transformed into the proof

1 2
. . 3

r-A T,A T+ B Cut
T,T, Yo+ B U TArC

Right®
T,T,T2,A+r BC

3.11.2 Right introduction of the tensor (second case)
The proof

T 3

T . :

: ArB T, AT,+C

'rA ATL,AYT-BeC
AT, T, Y BeC

is transformed into the proof

Right®
Cut

T 3
7 . .

. I'rA T1,A T+ C
A+ B YT,I, T+ C
AT, T, Y- BC

Cut
Right®

3.11.3 Leftintroduction of the linear implication (first case)

The proof
o 3
m : :
T2, A T3+ B T1,C, T4+ D Left
T'rA Y1, Y2, A T3,B = C, T2+ D Cute -

Tl, Tz,r, T3, B —o C, T4 +D

is transformed into the proof
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T 2
. . 3

'rA To, A T3+ B cut .
Y,.[. T3+ B U Y. CT.rD

Yl? TZ’ r’ T39 B —0 C, T4 F D

Left —

3.11.4 Leftintroduction of the linear implication (second case)

The proof
o 3
T : :
Tgl—B Tl,A,Tz,C,Tzﬂ-D Left
TrA Y1, A Y7 T3, B — C, T4 F D Cu‘f -

Tls r, T29 ‘Y‘3, B —0 C, T4 F D

is transformed into the proof

1 3
2 : :
. 'rA Tl,A,Tz,C,T4l—D cut
Tsr B TLT2.C ¥k D o u
-

Tl5r9 TZs T3, B — C, T4 + D
3.11.5 Leftintroduction of the linear implication (third case)

The proof

2 T3
- K .

Tz +B Tl,C,Tg,A,T4 +D
A Tl,Tz,B—OC,Tg,A,T4|-D
T1,72,B—-C, T3, T4+ D

is transformed into the proof

Left —
Cut

1 3
- . .

. I'rA Tl,C,Tg,A,T4I-D
T+ B Tl,C, Y3, I, T4+ D
Tl,Tz, B —o C, Tg,r, T4 +D

Cut
Left —

3.11.6 A generic description of the structural rules: dereliction, weakening, con-
traction, exchange

Four cases remain to be treated in order to describe how the cut-elimination procedure
transforms a proof
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U 2

A T,A T+ B

T.T. T, B Cut

in which the hypothesi# is secondaryin the proofr,. Each case depends on the last
rule of the proofr,, which may be:

e adereliction,
e aweakening,
e a contraction,
e an exchange.

Each of the four rules is of the form

T, P, T2+ B
T]_,‘P, Tz + B

where the contex® is transformed into the conteX in a way depending on the
specific rule:

e dereliction: the contex® consists of a formul&, and the contex¥ consists of
the formula C,

o weakening: the context is empty, and the contedt consists of a formulag,

e contraction: the contexb consists of two formulasQ,!C and the contex®¥
consists of the formulad,

e exchange: the contesit consists of two formula€, D and the contex¥ consists
of the two formula®D, C.

From this follows that the proof, decomposes as a proof of the form

3

T, AT, P, T3+ C
T, AT, ¥, T3+ C

or as a proof of the form

the specific rule

3

T, D, T2, A T3+C
Tl» ‘{1’ T23A7T3 F C

depending on the relative position of the secondary hypottearx of the context®
and¥ among the hypothesis of the progf. In the first case, the proof

the specific rule
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3

1

T15A7T2’®’T3 - B
I'rA Tj_,A,Tz,“P,T;gI-
11,1, T2, ¥, T3+ B

is transformed into the proof

5 the specific rule
Cut

1 3

T'rA Tl,A,Tz,(I),Tgl-B
Tl,r,Tz,(D,Tg + B
T1,I, 72, ¥, T3+ B

In the second case, the proof

Cut
the specific rule

3

1

‘I‘l,CD, Tg, A, ‘rg +B
'rA Tl,‘P,Tz,A,Tgl-B
T1,W,T2,I, T3+ B

is transformed into the proof

the specific rule
Cut

1 3

T'rA Tl,q),Tz,A,TgI—B
T1,®, 72, I, T3+ B
Tl’ \P, TZ’ r’ T3 l_ B

Cut
the specific rule

3.11.7 Leftintroduction of the tensor (first case) (with low priority)
The proof
)
1 :

T1,A 12,B,C, T3+ B
I'rA T1,A Y2, B®C, T3+ B
Tl,r,Tz,B(@C,Tg + B

is transformed into the proof

Left®
Cut

T 2

I'rA T]_,A,Tg,B,C,TgI-B
Tl, F, Tg, B, C, Tg + B
T, I,73,BRC, T3+ B

Cut
Left®
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3.11.8 Leftintroduction of the tensor (second case) (with low priority)

The proof
T
m :
T1,A,B,T2,C, T3+ B
I'rC  T.L,A®B, 15C T3r B (L:if:®

T1,A® B, T2, I, T3+ B
is transformed into the proof

T 2

r-C Tl,AB,TQ,C,T3I-B
T1,A B, Ty, I, T3+ B
T1,A®B, T, I, T3+ B

Cut
Left ®

3.11.9 Leftintroduction of the tensor unit (with low priority)
Justasin
Each of the five rules is of the form
Tl, (OR Tz + B
T,¥, T2+ B

where the contex® is transformed into the conteX in a way depending on the
specific rule:
the contextd is empty, and the conte}t consists of the formula 1,

3.11.10 Rightintroduction of the linear implication (with low priority)

The proof
T2
1 .
o B,Tl,A,Tz +C nght—o
'rA rr]_,A,‘Y’zl-B—OC Cut
TLT.T2rB—oC u
is transformed into the proof
T T2
'rA B,Tl,A,TQI-C cut
B, T1,I, T2+ C Right —o

T,I,TorB—oC
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4 Monoidal categories and duality

After recalling the usual definition of a monoidal category, we describe two alterna-
tive ways to duality and the notion efautonomous category (read star-autonomous).
On one hand, a-autonomous category may be seen as a symmetric monoidal closed
category equipped with a dualizing object. This is developed along Sections 4.1—4.7
according to the topography below.

Monoidal

Left closed Symmetric monoidal Right closed

Symmetric monoidal closed

*-autonomous

On the other hand, &autonomous category may be seen as a symmetric linearly dis-
tributive category equipped with a duality. The notion of linearly distributive category
and its connection te-autonomous categories are developed in Sections 4.8—4.11
following the topography below.

Monoidal

Linearly distributive

Left duality Symmetric linearly distributive Right duality

\/

*-gutonomous

4.1 Monoidal categories

A monoidal categoryC is a category with a bifuncta : C x C — C associative up
to a natural isomorphism

apgc  (A®B)®C — A®(B®C)
and with an objece unit of the bifunctor, up to natural isomorphisms

An e A— A pa-A®e— A
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The structure maps, 1, p must satisfy two commutativity axioms. First, the pentago-
nal diagram

(A®B)® (C® D)

/ \>

(AeB)®C)®D A® (B® (C® D))
a®Dl/ TA@@
(A®(B®C))®D e A® (B®C)®D)

should commute for every objects B, C, D of the category. Then, the triangular dia-
gram

(A®e)®B A® (e® B)
p®Bl \LA@)
A®B = A®B

should commute for every objectsandB of the category. Note that for clarity’s sake,
we generally drop the indices on the structure maps p in our diagrams, and write
Ainstead ofid, in compound morphisms likA® a = ida ® a.

The pentagon and triangle axioms ensure that any such diagram made of structure
maps, does commute in the categ@ryThis property is called theoherence property
of monoidal categories. It implies among other things that the structure morphisms
le: e®e — eandpe : e® e —> ecoincide. This point is worth stressing, since the
equality of the two maps is often given as a third axiom of monoidal categories. The
equality follows in fact from the pentagon and triangle axioms. We clarify this point in
Proposition 2, after the preliminary Proposition 1.

Proposition 1 The triangles

(eeAeB—r —>ex(A®B)
A@Bl i
A®B = A®B
and
(A®B)ee——— > A®(B®€)
pi -
A®B = A®B

commute in any monoidal categaty

Proof. The proof is based on the observation that the furetor : C — Cis full and
faithful, becausd is a natural isomorphism from this functor to the identity functor. So,
two morphismsf, g : A — B coincide if the morphisme® f,e®g: e® A— e®B
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coincide as well. In particular, the first triangle of the proposition commutabe
triangle
eRa

ex((e®A)®B) —————=e®(e®(A®B))
e@(&@B)l le@ﬂ
e®(A®B) = e® (A®B)

commutes. Now, this triangle commutébthe triangle obtained by adjoining a pen-
tagon on top of it

(e®e)®A®B—— > (e®e)® (A® B)
a®B
(e®(e®A)®B @
e®(e®A)®B) ea->e® (e® (A® B))
ex(AB) el
e® (A® B) = e®(A®B)

commutes as well — this comes from the fact thas an isomorphism. We leave as
exercise to the reader the elementary “diagram-chase” proving that this last triangle
commutes, with its two borders equal to:

(o®A)®B

(e®e) @A) B (e®A®B——>e® (A®B).

This establishes that the first triangle of the proposition is commutative. The second
triangle is proved commutative in a similar way.

Proposition 2 The two morphismg, andpe coincide in any monoidal categofy.

Proof. Naturality of 2 implies that the diagram

e®(e® B)—‘>e®B

e®B B

commutes. From this follows that the two structure morphisms

e®(e®B)—”>e®B e®(e®8)$>e®8

coincide — because the morphisin e® B — B is an isomorphism. This is the crux
of the proof. Then, one instantiates the objadty the unit object in the first triangle
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of Proposition 1, and replaces the morphigrby the morphisme ® 2, to obtain that
the triangle

(e®e)®B———>e®(e®B)
A@Bl lem
e®B = e®B

commutes for every objed® of the categoryC. The triangular axiom of monoidal
categories indicates then that the two morphisms:

e «®B
(e®e)®BA%QB>e®B (e®e)®BL>e®B

coincide for every objedB, and in particular for the obje® = e. This shows that the
two morphismsle ® e andpe ® e coincide. Just as in the proof of Proposition 1, we
conclude from the fact that the functer® e : C — C is full and faithful: the two
morphismsie andpe coincide.o

One is generally interested in combining objests..., A, of a monoidal category
C using the “monoidal structure” or “tensor product” of the category, in order to obtain
an object likeX); A;. Unfortunately, the tensor product is only associative up to natural
isomorphism. Thus, there are generally several candidat@(dki. Typically, (A1 ®
Ar) @ Az and A; ® (A, ® Ag) are two isomorphic objects of the category, candidates
for the tensor product o4y, Ay, As. This is the reason why the coherence property is
so useful: it enables to “identify” the various candidatesr A in acoherentway.

One may thus proceed “as if” the isomorphismg, p were identities.

This aspect of coherence is important. It may be expressed in a quite elegant and
conceptual way. A monoidal categoryssict when its structure maps, 1 andp are
identities. So, in a strict monoidal category, there is amie candidate f0|®i A.

The coherence theorem states that every monoidal categequisalentto a strict
monoidal category. Equivalence of monoidal categories is expressed conveniently in
the 2-category of monoidal categories, monoidal functors, and monoidal natural trans-
formations. We come back to this point, and provide all definitions, in Chapter 5.

Exercise. Show that in every monoidal catego@y the set of endomorphisms of the
unit objecte defines &ommutativenonoid for the composition, in the sense thag =
g o f for every two morphismd,g : e — e Show moreover that composition
coincides with tensor product up to the isomorphjs e, in the sense that® g =

peto(fog)ope m

4.2 Braided monoidal categories

A braided monoidal categor§ is a monoidal category equipped with a braiding. A
braiding is a natural isomorphism

vap: A®B— B®A
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making the hexagonal diagrams

/’A@(B@C)*YAB@C)@A\

(A®B)®C B (CoA)
AN Pas

WC\,(B®A)®C4”>B®(A®C)%

and

/;ﬁ//>M®&®C’“?C®m®@~\\<;\

A® (B®C) (CoA)®B

AN
M>A®(C®B)”*1>(A®C)®B%v

commute. Note that the second hexagon is just the first one in which the morphism
has been replaced by its inverge.
The braiding and the unit of the monoidal category are related in the following way.

Proposition 3 The triangles

Age——>e®A eRA———— > Age
commute in any braided monoidal categary

Proof. The main idea is to fill the first commutative hexagon with five smaller com-
mutative diagrams:

A®(e®C)— > (e®C)®A

(@) A1 (b) /lTA (©
(Ave)®C 08C AgC ¥ CRA<—12 e®(CoA)
(®  asc \/l (d)
y&C © eny

e®rAeC—">e®(A®C)

In clockwise order, these diagrams commudg lfy the triangle axiom of monoidal
categories, lf) by naturality ofy, (c) by Proposition 1, d) by naturality of4, (e) by
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Proposition 1. From this and the fact thats an isomorphism, follows that diagram
(e) commutes.

Now, one instantiates diagram) with C = e. Just as in the proofs of Proposition 1
and 2, one takes advantage of the fact that the furater: C — Cis full and faithful,
to deduce that the first triangle of the proposition commutes. The second triangle of
the proposition is proved commutative in a similar way.

4.3 Symmetric monoidal categories

A symmetric monoidal catego§ is a braided monoidal category whose braiding is a
symmetry. A symmetry is a braiding satisfyinga = y;}B for every objectsA, B of

the category. Note that, in that case, the second hexagonal diagram may be dropped in
the definition of braiding, since this diagram commutesyfgg iff the first hexagonal
diagram commutes fofg s = y;}B.

4.4 Monoidal closed categories

A left closed structurén a monoidal category(, ®, €) is the data of
e an objectA — B,
e amorphisnevahg : A® (A — B) — B,

for every two objectsA and B of the categoryC. The morphisnevalg is called the
left evaluationmorphism. It must satisfy the following universal property. For every
morphism

f:A®X—B

there exists a unique morphism
h:X— A-—-B

making the diagram
A® X

A®hl \ (28)

ADA—-B) — =8

commute.

A monoidal closed categor§ is a monoidal category equipped with a left closed
structure. There are several alternative definitions of a closed structure, which we re-
view here.

It follows from the universality property (28) that every objécdf the categoryC
defines an endofunctor

B~ (A— B) (29)

of the categoryC. Besides, for every objeé, this functor is right adjoint to the functor

B+ (A® B). (30)
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This means that there exists a bijection between the sets of morphisms
C(A®B,C) = C(B,A—-C) (31)

natural inB andC. This provides an alternative definition of a left closed structure: a
right adjoint to the functor (30), for every objest The reader interested in the notion
of adjunction will find a comprehensive study of the notion in Chapter 5.

The parameter theorem (see Theorem 3 in Chapter IV, Section 7 of MacLane’s
book [31]) enables then to structure the family of functors (29) indexed by objects of
A, as a bifunctor

(A,B)>A—-B: C"xC—C. (32)

contravariant in its first argument, covariant in its second argument. This bifunctor is
defined as the unique bifunctor making the bijection (31) naturd, iB andC. This
provides yet another alternative definition of left closed structure: a bifunctor (32) and
a bijection (31) natural i\, B andC.

Exercise. Show that in a monoidal closed categatywith monoidal unite, every
object A is isomorphic to the objeat — A. Show moreover that the isomorphism
betweerA ande — Ais natural inA. m

4.5 Monoidal biclosed categories

A monoidal biclosed category is a monoidal category equipped with a left closed struc-
ture as well as a right closed structure. By definitiorrjgiat closed structurén a
monoidal category(, ®, €) is the data of

e an objectA o— B,
e amorphismevang : (Bo— A)®@ A— B,

for every two objectsA and B of the categoryC. The morphismevar, g is called
theright evaluationmorphism. It must satisfy a similar universal property as the left
evaluation morphism in Section 4.4, that for every morphism

f:X®A— B
there exists a unique morphism

h:X— Bo A
making the diagram below commute:

X®A

h@Al \\\\\\\i\\\\\& (33)

(B A®A———>B

evamng

As for the left closed structure in Section 4.4, this is equivalent to the property that the
endofunctor
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B~ (B A)
has a right adjoint
B (Bo— A)

for every objectA of the category. The parameter theorem ensures then that this family
of functors indexed by the objeétdefines a bifunctor

— : C’xC—C
and a family of bijections
C(B®A,C) = C(B,C o A) (34)

natural in the object8, B andC.

4.6 Symmetric monoidal closed categories

A symmetric monoidal closed categofy is a monoidal category equipped with a
symmetry and a left closed structure. It is noffidult to show that every symmet-

ric monoidal closed category is also equipped with a right closed structure, defined as
follows:

e the objectB o— Ais defined as the objeét — B,

o the right evaluation morphisevara g is defined as

YA-BA evahp

(A-B®A A(A—-B)————=B

Symmetric monoidal closed categories provide the necessary structure to interpret the
formulas and proofs of thenultiplicative and intuitionistic fragment of linear logic.

The symmetry interpretsxchangethe operation of permuting formulas in a sequent,
while the tensor product and closed structure interpret the multiplicative conjunction
and implication of the logic, respectively.

This logical perspective on categories with structure is often enlightening, both on
logic and on categories. By way of illustration, there is a famous principle in intuition-
istic logic that every formula implies its double negation—A. This principle holds
also in intuitionisticlinear logic. In that case, the negation of a formélas given by
the formulaA — L, where. stands for the multiplicative formulealse— or in fact,
when there exists no such formalse available, for any formula of the logic. So,
there is a proofr in intuitionistic linear logic that every formul& implies its double
negation A — 1) —o L.

Exactly the same phenomenon happens in any symmetric monoidal closed cate-
gory, and in fact in any monoidaliclosedcategoryC. Like in linear logic, any object
of the category can play the role af— understood intuitively as the formukalse
One shows that there exists a morphism

on : A — Lo-(A—ol)
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for every objectA of the monoidal biclosed catego@; and that this morphism is nat-
ural in A. This does not come by chance: when the cate@ois/symmetric monoidal
closed, the two objects o— (A — 1) and (A — 1) — L coincide, and the map

on : A — (Aol1l)—o1
is precisely the interpretation of the praofthat every formulaA implies its double
negation A — 1) —o L in intuitionistic linear logic.
The morphisnd, is constructed by a series of manipulations on the identity mor-

phism:
idao, : (A= 1) — (A—1).

First, one applies the bijection (31) associated to the left closed structure, from right to
left, in order to obtain the morphism:

AR(A—o 1) — L (35)

Then, one applies the bijection (34) associated to the right closed structure, from left
to right, in order to obtain the morphism:

opn i A— Lo (A—o ).

When the categor¢ is symmetric monoidal closed, the morphignis alternatively
constructed by precomposing the morphism (35) with the symmetry

Yasrsr - (Ao L)®A — AQ(A— 1)
S0 as to obtain the morphism
Ao L1)®A — L.
then the bijection (31) from left to right:

opn ' A— (A—ol)—o L.

Exercise. Show that the morphisiéi is natural inA. m

4.7 =-autonomous categories

A =x-autonomous category is a symmetric monoidal closed category equipped with a
dualizing object. A dualizing object is an object of the categofy making the natural
morphism constructed in Section 4.6:

opn: A— (A—o1)—o 1L

an isomorphism, for every objeétof the categong.

The notion of dualizing object may be given a logical flavour. There is a governing
principle in classical logic that the disjunction of a forméland of its negatiorA is
necessarily true. This principle call@értium non Datutis supported by the idea that
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a formula is either true or false. This principle may be formulated in this other way:
every formulaA is equivalent to its double negatier-A. This principle does not hold

in intuitionistic logic: a formulaA implies its double negation—A, but the converse

is not necessarily true. Indeed, the existence of a dualizing obj@tta symmetric
monoidal closed category enables to intergtassicalmultiplicative linear logic and

its involutive negation, instead of justtuitionistic multiplicative linear logic.

Exercise. Show that the object. — L is isomorphic to the unit objeat in any
x-autonomous categorm

4.8 Linearly distributive categories

A linearly distributive categor{ is a monoidal category twice: once for the bifunctor
® : C x C — C with unit eand natural isomorphisms

appc (A®B)®C — A (B®C),
A e®@A— A PhiAge— A
another time for the bifunctar : C x C — C with unitu and natural isomorphisms
@ppc ' (AeB)eC — Ae(Be (),
ApiUueA— A pa Aeu— A
In order to distinguish them, the operationsand e are called “tensor product” and

“cotensor product” respectively. The tensor product is required to distribute over the
cotensor product by natural morphims

Sppc A®(BeC) — (A®B)eC,

oRpc:(AeB)®C — Ae(BRC).

These structure maps must satisfy a series of commutativity axioms: six pentagons and
four triangles, which we review below.

The pentagons relate the distributiaftsand s to the associativity laws, and to
themselves. We were careful to draw these pentagons in a uniform way. This presenta-
tion emphasizes the fact that the distributions are (@sepciativity lawdetween the
tensor and the cotensor products. Consequently, each of the pentagonal diagram below
is a variant of the usual pentagonal diagram for monoidal categories. Note that there
are exactly 2 = 8 different ways to combine four objeats B, C, D by a tensor and a
cotensor product. The two extremal cases (only tensors, only cotensors) are treated by
the requirement that the tensor and cotensor products define monoidal categories. Each
of the six remaining cases is treated by one pentagon below.

(AeB)® (C®D)

a® \R

((AeB)®C)®D Ae (B® (C® D))
6R®D\L TAW@
(Ae (B®C))®D o Ae((B®C)® D)
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(AeB)eC)®D

a*®D

(AeB)e (C®D)
Ae(Be (C®D))

T AesR
5R

(Ae(BeC))®D

(AeB)®C)eD
a®eD

(A (B®C))eD

Ae((BeC) D)

(A®B)®(CeD)
A®(B®(CeD))
iA@&L

A®((B®C)eD)

st

/

((A®B)eC)eD

6LODT

(A B) o (C o D)

<\L

A®(Be (CeD))

b

st

(A (BeC))eD

((AeB)®C)eD
5R.D\L
(Ae(BC))eD

A® ((BeC)e D)

(AeB)®(CeD)

Ae(B®(CeD))
\LA-(SL
L Ae((B®C)e D)

(A®B)e (C®D)

\

((A®B)eC)®D A® (Be (C® D))
6L®DT TA@&R
(A® (BeC))®D o A® ((BeC)®D)

The triangles relate the distributions to the units. Again, each triangle is a variant

of the familiar diagram in monoidal categories, analyzed in Proposition 1.

e®(AeB) — 2 > (e®A)eB

J{ 1oeB o° i \LA-p®

AeB

v

AeB =

A®(Bel) — >~ (A®B)eu

ol k

A®B

Azp* l/

A®B

(AeB)oe— 2 = Ae(B®E)

AeB = AeB
(UOA)®BL>UO(A®B)

A®B

A®B
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Exercise. Show that every monoidal category defines a linearly distributive category
in which the tensor and cotensor products coincle.

4.9 Duality in linearly distributive categories

Let C be a linearly distributive category, formulated with the same notations as in
Section 4.8. A right duality i€ is the data of:

e an objectA’,
e two morphisms§ : e — A* e Aandcuf? : A A" — u

for every objectA of the categoryC. The morphisms are required to make the diagrams

A®eLaXR>A®(A*oA) e®A*ﬂ>(A*oA)®A*
| |
o° (A A*) e A Je Ao (A® AY)
icutRoA iA*oculR
A r Ue A A" a Ao

commute. To every morphismh : A — B in the categoryC, one associates the
morphismf* : B* — A" constructed in the following way:

*o i *ecut’
B A*-(A®B*)w>A*o(B®B*)Ai>A*ou

(/1®)—1l/ ERT T(SR ip.
afeB* (Ao f)®B*

e®B — > (A e A)® B’ (A" e B)®B" A

The coherence diagrams ensure that this operation on morphisms defines a contravari-
ant functor
(A AY) : C?—C.

Besides, one shows that

Proposition 4 In any linearly distributive categor¢ with a right duality,
e the functor(A® -) is left adjoint to the functo(A* e —),
o the functor(— e B) is right adjoint to the functof- ® B¥),

for every objects AB of the category. In particular, any such category is monoidal
closed.

There is also a notion of left duality in a linearly distributive categbryvhich is given
by the data of:

e an objectA,
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e two morphismsax; : e — Ae*Aandcut; : "A® A — u

for every objectA of the categoryC. Just as in the case of a right duality, the morphisms
are required to make the coherence diagrams

eaA— " (AeA) @A Ase— 2 Ag(AeA)
| I+
2 Ae (A® A) n° (A®A) e A
lA-cutL lcuﬂ-o*A
A a Aeu A 2 Ue A

commute.

Proposition 5 In any linearly distributive categor{ with a left duality,
¢ the functor(— ® B) is left adjoint to the functo(— e *B),
e the functor(A e —) is right adjoint to the functo(A® -),

for every objects AB of the category.

Exercise. Show that there is a natural isomorphism betwAet{A*) and (A)* in any
linearly distributive category with a left and right duality. Hint: show that the bijections

C(A,B) = C(e,A" e B) = C((A"),B)

are natural im@A andB. Deduce that there exists a natural isomorphism betwegmd
(A"). Proceed similarly to establish the existence of a natural isomorphism befween
and (A)". m

Exercise. Suppose that is a linearly distributive category with a right duality. Deduce
from the previous exercise, and some diagrammatic inspection, that there exists at most
one left duality in the categor§, up to the expected notion of isomorphism between
left dualities.m

4.10 Symmetric linearly distributive categories

A symmetric linearly distributive categofyis a linearly distributive category in which
the two monoidal structures are symmetric, with symmetries given by natural isomor-
phisms:

Yap A®B— B®A, Yap: AeB-— BeA

The symmetries and the distributions must make the diagram

A@(BeC)— " L Ag(CeB— L -~ (CeB)A

% léR
. Cey®

(A®B)eC—— >~ Ce(A®B) — > Ce(B®A)
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commute.

Exercise. Show that every symmetric monoidal category defines a symmetric linearly
distributive category in which the tensor and cotensor products coinside.

4.11 =-autonomous categories as linearly distributive categories

In a symmetric linearly distributive category, any right dualiéy-> A*) induces a left
duality (A — *A) given by*A = A* and the structure morphisms:

g = Va0 Ay, Cuty = CUty o ¥Ya A

We have seen in Section 4.9 (last exercise) that this defines the unique left duality in
the categonC, up to the expected notion of isomorphism between left duality. In fact,
Cockett and Seely prove that this provides another formulation

Proposition 6 (Cockett-Seely) The three notions below coincide:
e x-autonomous categories,
e symmetric linearly distributive categories with a right duality,

e symmetric linearly distributive categories with a left duality.

4.12 Notes and references

The notion of linearly distributive is introduced by Robin Cockett and Robert Seely
in [15]. A coherence theorem for linearly distributive categories has been established
by these two authors, in collaboration with Rick Blute and David Trimble [11]. The
construction of the free linearly distributive category over a given categdoy more
generally, a polygraph) is described in full details. The approach is based on the proof-
net notation introduced by Jean-Yves Girard in linear logic [21]. The mdiculity is

to describe properly the equality of proof-nets induced by the free linearly distributive
category. An interesting conservativity result is established there: the canonical functor
from a linearly distributive category to the freeautonomous category over it, is a full

and faithful embedding.

67



5 Adjunctions between monoidal categories

In this chapter and in the last one, we discuss one of the earliest and most debated
question of linear logic: what is a categorical model of linear logic? This topic is
surprisingly subtle and interesting. A few months only after the introduction of linear
logic, there was already a general agreement among specialists

o that the category of denotatiohshould be symmetric monoidal closed in order
to interpret intuitionistic linear logic,

¢ that the categori. should bes-autonomous in order to interpret classical linear
logic,

o that the categori. should be cartesian in order to interpret the additive connec-
tive &, and cocartesian in order to interpret the additive connestive

But difficulties (and possible disagreements) arose when people started to axiomatize
the categorical properties of the exponential modality These categorical properties
should ensure that the categdrgefines a modular invariant of proofs for the whole of
linear logic. Several alternative definitions were formulated, each one adapted to a par-
ticular situation or philosophy: Seely categories, Lafont categories, Linear categories,
etc.

Today, nearly twenty years after the formulation of linear logic, it seems that a
consensus has finally emerged between these various definitions — around the notion
of symmetric monoidal adjunctiorit appears indeed that each of the axiomatizations
of the exponential modality ! implements a particular recipe to produce a symmetric
monoidal adjunction between the category of denotatiorad a specific cartesian
categonM, as depicted below.

(Lm)

T TTAL
(M, x, €) 1 (L,®,1)
\._/
(M,n)

Our presentation in Chapter 7 of the categorical models of linear logic is thus regulated
by the theory of monoidal categories, and more specifically, by the notion of symmetric
monoidal adjunction. For that reason, we devote the present chapter to the elementary
theory of monoidal categories and monoidal adjunctions, with an emphasis on the 2-
categorical aspects of the theory:

e Sections 5.1— 5.6: we recall the notions of lax and colax monoidal functor,
including the symmetric case, and the notion of monoidal natural transformation
between such functors,

e Section 5.7— 5.8: after recalling the definition of a 2-category, we construct the
2-categontaxMonCat with monoidal categories as objects, lax monoidal func-
tors as horizontal morphisms, and monoidal natural transformations as vertical
morphisms,
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e Sections 5.9— 5.13: the 2-categorical definition of adjunction is formulated in
three diferent ways, and applied to the 2-categioaxMonCat in order to define
the notion of monoidal adjunction,

e Section 5.14— 5.15: the notion of monoidal adjunction is characterized as an ad-
junctiond, 4 3* between monoidal categories, in which the left adjoint functor
(%, m) is strong monoidal.

e Section 5.16: in this last section, we explicate the notiosyofimetrianonoidal
adjunction, and characterize it as a monoidal adjunction in which the left adjoint
functor (., m) is strong and symmetric.

The various categorical axiomatizations of linear logic: Lafont categories, Seely cate-
gories, Linear categories, and their relationship to monoidal adjunctions, are discussed
thoroughly in the final Chapter 7.

5.1 Lax monoidal functors

A lax monoidal functo(d, m) between monoidal categorieS,, €) and D, e, u) is a
functord : C — D equipped with natural transformations

Mg FAeFB — F(A®B), m’:u— Fe,

making the three diagrams

(FAeTB)e FC——= -~ FAe (TBe IC)
m.gcl lm.m
F(A® B) e FC FAe F(B®C)
ml lm
F(A®B)®C) — 2~ - F(A® (B®C))
FAeu—— = FA UeFB—— L - 9B
FAe Fe i FA®e) Fe® FB a F(e® B)

commute in the categoi®, for every object®\, B, C of the categor{.

A strong monoidal functors defined as a lax monoidal functor whose mediating
mapsn? andm® are isomorphisms. Atrict monoidal functoris a strong monoidal
functor whose mediating maps are identities.

Remark. Here, we take the terminology advocated by Lack, which is based on the idea
that lax monoidal functors are lax morphisms between algebras for a particular strict
monad in the 2-category of categories: the monad which associates to a category its
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free symmetric monoidal category. But at the same time, we are careful tstreaily
monoidalfunctor what Lack would simply call monoidal functor.

Remark. We will encounter in Section 6.2, Chapter 7, one of the original motivations
for the definition of lax monoidal functor, discussed by Je@n&bou in [5]. The
categoryl with one object and its identity morphism defines a monoidal category in a
unique way. It appears then that a lax monoidal functor from this monoidal catégory

to a monoidal categorg is essentially the same thing as a monoid in the cateGory

As we will see, this has the remarkable consequence that monoids are preserved by lax
monoidal functors, in a very strong sense.

5.2 Colax monoidal functors

The definition of a lax monoidal functor is based on a particular orientation of the
mediating maps: from the objeftA ¢ FB to the objectF (A ® B), and from the object
uto the objectFe. Reversing the orientation leads to another notion of “lax” monoidal
functor, explicated now. &olax monoidal functo(J, n) between monoidal categories
(C,®,€) and D, e, u) consists of a functa¥ : C — D and natural transformations

Mg F(A®B) — FAeTB n:Fe—u
making the three diagrams

F(A®B)®C) — 2 ~ F(A® (B®C))

F(A® B) e FC FAe F(B®C)

n-?Ci l?A-n

(FAeTB)e TC — L~ FAe (TBe IC)

FAce — g FeoB) — X . gp
T
FAeFe—2" -~ FAeu Fee FB— "% > 1o FB

commute in the categoi, for every object#, B, C of the categoryC.
The notion of colax monoidal functor is slightly less familiar than its lax counter-
part. It may be justified by the following observation.

Exercise. Show that every functd¥ : C — D between cartesian categories defines a
colax monoidal functord, n) in a unique waym

The definition of colax monoidal functor leads to an alternative definition of strong
monoidal functor, defined now asamlax monoidal functor whose mediating maps
n? andn® are isomorphisms. We leave the reader prove in the next exercise that this
definition of strong monoidal functor is equivalent to the definition given in Section 5.1.
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Exercise. Show that every colax monoidal functdf,(n) whose mediating morphisms
n?> andn® are isomorphisms, defines a lax monoidal functdynf) with mediating
morphismang  andm’ the inverse ofj ; andn®. m

5.3 Natural transformations
Suppose thaf and§ are two functors between the same categories:
C — D.
We recall that a natural transformation
0:F=G:C—D

between the two functor§ and§ is a family @a)aconc) of morphisms of the cate-
goryD indexed by the objects of the categ@yand making the diagram

FA—" 5 GA

ml lgf

FB— = -~ GB

commute in the categoi, for every morphisnf : A — B in the categon.

5.4 Monoidal natural transformations (between lax functors)

We suppose here thaff(m) and @, n) are lax monoidal functors between the same
monoidal categories:
(C,®,8) — (D, o, u).

A monoidal natural transformation
0:(F,m=(9,n):(C,®,€ — (D,e,u)
between the lax monoidal functor$,(m) and G, n) is a natural transformation
6:F=G:C—D

between the underlying functors, making the two diagrams

FAeFB— 2" . GAeGB u = u
m n m n

e
FA®B) — " . G(A® B) Fe———>Ge

commute, for every objecs andB of the categoryC.
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5.5 Monoidal natural transformations (between colax functors)

The definition of monoidal natural transformation formulated in Section 5.4 for lax
monoidal functors is easily adapted to the colax situatioorma@xoidal natural trans-
formation

0:(F,m=(9,n:(C,®,e — (D,e,u)

between two colax monoidal functor®,(m) and @, n) is a natural transformation
0:F=G:C—D

between the underlying functors, making the two diagrams

F(A®B) — . G(A®B) Je— " . ge
m n m n
FAeTB— 2" . GAeSB u = u

commute, for every objecs andB of the categoryC. We have seen in Section 5.2 that
every functord between cartesian categories is colax in a canonical way. We leave the
reader establish as exercise below that natural transformations between such functors
are themselves monoidal.

Exercise. Suppose thad : ¥ = G : C — D is a natural transformation between two
functorsF andg acting on cartesian categori€sandD. Show that the natural trans-
formationd is monoidal between the functofsand§ understood as colax monoidal
functors.m

5.6 Symmetric monoidal functors (lax and colax)

We suppose here that the two monoidal categofieg(€) and [, e, U) are symmetric,
with symmetries noteg® andy* respectively. A lax monoidal functor

F.,m): (C,®,€ — (D,e,U)
is calledsymmetriavhen the diagram

Y

FAe TB—— > FBe FA
mi lm
FASB) — -~ FBeA)

commutes in the categofy for every objectd, B of the categoryC. Similary, a colax
monoidal functor
(F,n): (C,®,8) — (D, o, U)
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is calledsymmetriavhen the diagram

FAeB) — . FBeA

n n

FAeFB— > FBe FA

commutes in the categofy for every objectd\, B of the categoryC.

Exercise. We have seen in Section 5.2 that every funétdbetween cartesian cate-
gories lifts to a colax monoidal functoff(n) in a unique way. Show that this colax
monoidal functor is symmetriaa

5.7 The language of 2-categories

In order to define the notion ehonoidal adjunctiorbetween monoidal categories, we
proceed in three stages:

¢ In this section, we recall the notion of 2-category,

e In Section 5.8, we construct the 2-categdigxMonCat with monoidal cate-
gories as objects, lax monoidal functors as horizontal morphisms, and monoidal
natural transformations as vertical morphisms,

e In Section 5.10, we define what one means bpdjunctionin a 2-category, and
apply the definition to the 2-categobpxMonCat in order to define the notion
of monoidal adjunction.

Basically, a 2-categor{ is a category in which the clag¥A, B) of morphisms be-
tween two object® andB is not a set, but a category. In other words, a 2-category
is a category in which there exist morphisrhs A — B between objects, and also
morphismsx : f = g between morphism$é : A — Bandg : A — B with same
source and target. The underlying category is n@gdThe morphismg : A— B

are calledhorizontal morphismsand the morphisma : f = g are calledvertical
morphismr cells. They are generally represented2adimensional arrowdetween
the1-dimensional arrows f A— Bandg: A — B of the underlying categor§:

Cells may be composed “vertically” and “horizontally”. We write

Brxa:f>=h
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for thevertical compositef two cellsa : f = gandg : g = h, which is represented
diagrammatically as:

/\/’\

A—3>——B = UB*a
\M/ \‘/
h
h

ﬁoa: f20f1=>gzog]_

for the horizontal compositef two cellsa; : f; = g1 anda, : f, = g, represented
diagrammatically as:

We write

f1 fa foofy

NN 7N

A Jay B laz CcC = A Jazoay C
A g \/4 \\,/
g1 92 92001

The vertical and horizontal composition laws are required to define categories: they are
associative and have identities:

e the vertical composition has an identity cell1f = f for every morphisnt of
the underlying categor§,

¢ the horizontal composition has an identity cell:lida = ida for every objectA
and associated identity morphisdy : A — A of the underlying categor§y.

The interchange law asks that composing four cells
o h=0 Brith= M a2 =0 B2 %= hy
vertically then horizontally as
(B2xaz)o(Brxa1): faofr=hyohy

or horizontally then vertically as

(B20B1) % (az0ay): oo fy = hyohy
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in the diagram below

SN\
VAN

Baxaz)oBrxa1) = (Bz20p1)*(a20a1)

Finally, two coherence axioms are required on the identities:

is equivalent:

e 120 1% = 1%°% for every pair of morphismé; : A— Bandf, : B— C of
the underlying categor§y,

o the vertical identity {j, associated to the identity morphisay : A — A of
the underlying categorgg coincides with the horizontal identitya1for every
objectA.

Exercise. Show that every pair of morphisnig : A — Bandh, : C — Dina
2-categonyC defines a functor from the categdtyB, C) to the categor{ (A, D) which
transports every cell

to the cell
hyo fohy
A 1"20001M D
hpogohy
| |

5.8 The 2-category of monoidal categories and lax functors
We start by recalling a well-known property of category theory:

Proposition 7 Categories, functors and natural transformations define a 2-category,
notedCat
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Proof. The vertical composité = ¢ of two natural transformations
(:F=G:C—D and 0:G=>H:C—D
is defined as the natural transformation
0% F=>H:C—D
with components

4N On

@) : FA——=GA HA.

The horizontal composit@o ¢ of two natural transformations
(:F1=2G,:C—D and 0:9,=>G,:D—E
is defined as the natural transformation
0ol :3F20F;=G,0G,:.C—E
with componentsd o ¢)a the diagonaf,F;A — §,G:1A of the commutative square

F2la

F2F1A

F2G1A

O5,A 0g,A

ISPYY
GoF 1A — > GG, A

We leave the reader check as exercise that the constructions just defined satisfy the
axioms of a 2-categoryz

The whole point of introducing the notion of 2-category in Section 5.7 is precisely that:
Proposition 8 Monoidal categories, lax monoidal functors and monoidal natural trans-
formations between lax monoidal functors define a 2-category, na@edlonCat
Proof. The composite of two lax monoidal functors

(F,m: (C,®,6) — (D,e,u) and G,n): (D,e,u) — (E,-,i)

is defined as the composifeo F of the two underlying functor§ and§, equipped
with the mediating maps:

GFA-GFB—" > G(FAe TB) — "> GF(A® B)

and
n Sm

i Su FGe.
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The vertical and horizontal composition of monoidal natural transformations are de-
fined just as in the 2-categofat. We leave the reader check as exercise that the ver-
tical and horizontal composites of monoidal natural transformations deformidal
natural transformations, and from this, that the constructions satisfy the axioms of a
2-categoryn

It is not difficult to establish in the same way that

Proposition 9 Symmetric monoidal categories, symmetric lax monoidal functors and
monoidal natural transformations between lax monoidal functors define a 2-category,
notedSymMonCat

Proposition 10 Symmetric monoidal categories, symmetric colax monoidal functors
and monoidal natural transformations between colax monoidal functors define a 2-
category, notedymColaxMonCat

5.9 Adjunctions between functors
By definition, an adjunction is a tripl€f(, *, ¢) consisting of two functors
F.:C—D F:D—C
and a family of bijections
éag . C(AF"B) = D(J.AB)

indexed by the objecta of the categoryC, and the objectB of the category. In that
case, the functdF. is calledleft adjointto the functor¥*, and one writes

F. 4T

The family ¢ is required to be natural iA andB. This point is sometimes misunder-
stood, or simply forgotten. For that reason, we explain it briefly here. Suppose given a
morphism

h:A— 3B

in the categoryC, and a pair of morphismbs : A — A’ in the categoryC and

hg : B — B in the categoryD. The two morphisméis andhg should be understood
asactionson the morphisni, in the group-theoretic sense. Naturality means that the
bijection ¢ preserves the actions by the morphisms of the categ@rimsdD on the
families of sets<C(A, F*B) andD(F.A, B). More precisely, let the morphism

W =F(hg)ohohs: A — FB

denote the result of the action Iy, andhg on the morphisnh. The morphismty is
thus chosen to make the diagram

A IJB
hAT ig*hg
h
A FB
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commute in the categoi. Naturality inA andB means that the equality
¢am(N') = hg o gap(h) o F.(ha)
is satisfied, or equivalently, that the diagram

dag(h
FA as(h) B
fﬂhAT lhg
P
F A e () B

commutes in the categofy.

5.10 Adjunctions in the language of 2-categories

The definition of adjunction between functors given in Section 5.9 may be reformulated
using the language of 2-categories, in the following way. The translation is based on
the observation:

o that an objectA in the categonC is the same thing as a functot][from the
categoryl (the category with one object equipped with its identity morphism) to
the categoryC,

e that a morphisnh : A — B in the categon(C is the same thing as a natural
transformationti] : [A] = [B] between the functors representing the objécts
andB,

e that the functorf] : 1 — C composed with the functd¥. : C — D coincides
with the functor f.A] : 1 — D

F.o[Al = [F.A

for every objectA of the categoryC. And similarly, that
Fo[B] = [F°B]

for every objecB of the categoryD.

All this put together, the adjunctiafn g becomes a bijection between the natural trans-
formations

[A]l=>F0[B] : 1—C
and the natural transformations
F.o[Al=>[B] : 1—C.

Diagrammatically, the bijectiopa g defines a one-to-one relationship between the cells
% C
1 i} I+

&»D
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and the cells

in the 2-categonyCat. Interestingly, it is possible to replace the categripy any
categoryE in the bijection below. We leave the proof as exercise to the reader.

Exercise. Show that for every adjunctior#(, 3, ¢) the family ¢ extends to a family
(also noteds) indexed by pairs of coinitial functors

AE—C B:E—D
whose componera g defines a bijection between the natural transformations
A=3FoB : E—C
and the natural transformations
F.oA=B : E-—C.

Formulate accordingly the naturality condition on the extended famiiy

The discussion (and exercise) leads us to a very pleasant definition of adjunction in
a 2-category. From now on, we suppose given a 2-categorn adjunctionin the
2-categonyC is defined as a triplef(, f*, ¢) consisting of two morphisms

f.:C—D f*:D—C
and a family of bijections
#ap : C(E,C)a f*ob) = C(E,D)(f. o ab)
indexed by pairs of coinitial morphisms
a:E—C b:E— D

in the 2-categorn. In that case, the morphist is calledleft adjointto the mor-
phismf* in the 2-category, and one writes

fo4fn

The family ¢ is required to be natural ia andb, in the following sense. Suppose that
the bijectiong,, transports the cell to the cellf = ¢,,(0) — as depicted below.

a/—>c a/—>C
Pab

E ue f — E U f.

\b\?D \b\,D
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Suppose given a morphism F — E and two cells
a:ad @>aoh:F—C B:boh=b:F—D

represented diagrammatically as:

Naturality ina andb means that the bijectiop,, preserves the actions of the cells
andg, in the following sense: the bijectiony 1y transports the cel’ obtained by
pasting together the three cellss, 6 to the cell” obtained by pasting together the
three cellsy, 8, { — as depicted below.

o
/a\>
o

Fooo>E W

B

C
)| bat by

* — Foos
D

R

b

Exercise. Show that the definition of adjunction given in Section 5.9 coincides with
the definition of adjunction in the 2-categoGat. Show moreover that the original
formulation of naturality is limited to the instance in whi€h= F is the categoryl
with one object, anth : F — E is the identity functor on that categomy.

5.11 Another formulation: the triangular identities

Asjust defined in Section 5.10, suppose given an adjuncfioff, ¢) in a 2-categorg.
The two cells
niidc= f o f, e:f,of"=idp

are defined respectively as the cells related to the vertical identity detimd 1~ by
the bijectionspiy..r, ande¢s- jg, — as depicted below.
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id

'C/—> C C/—> C
Pide, f

C Un f* — Cc - f,

t&)
f/—> C /—> C
N . Ptidp

This leads to a more concise (and equivalent) definition of adjunction in the 2-cat&gory
An adjunction is alternatively defined as a quadrudig f(*, n, €) consisting of two
morphisms:

f..C—D f*:D—C

and two cells
n:idc = f o f, e: f,of*"=idp
satisfying the so-callettiangular identities
(eof)x(foy) = 1" : C—D
and
(ffroe)x(nof?) = 1" bD—C
The morphismd* o f, andf, o f* are called respectively thmonadand thecomonad
of the adjunction. The cellgande are called respectively thenit of the monadf* o f,

and thecounitof the comonad, o f*.
Diagrammatically, the two triangular identities are represented as:

idc |dC
m /\

C—ft—>=D f >C—f—>D = C—f—->D wu* C—*t—>D

W

idp

idc |dC
m

D—f—=C f=D—F—=C = D—f—=C u" D——=C
W \/
idD IdD
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We leave to the reader (exercise below) the proof that this formulation of adjunction
coincides with the previous one.

Exercise. Show that the definition of adjunction based on triangular identities is equiv-
alent to the definition of adjunction in a 2-categ@ryormulated in Section 5.1Ga

5.12 A dual definition of adjunction

The definition of adjunction formulated in Section 5.11 is not only remarkable for
its concision; it is also remarkable for its self-duality. Notice indeed that an adjunc-
tion (f,, f*,n, €) in a 2-categor® induces an adjunction

(£.)°P 4 (£7)°P
between the morphisms
(f)°*:D—C (f)°P:C—D

in the 2-categon€®P in which the direction of every morphism is reversed (but the
direction of cells is maintained.)

From this follows mechanically that the original definition of adjunction formulated
in Section 5.10 may be dualized! An adjunction in a 2-cate@biy thus alternatively
defined as a triplef(, f*, ) consisting of two morphisms

f.:C—D f*:D—C
and a family of bijections
Yap : C(C,E)abof,) = C(D,E)ao f*,b)
indexed by pairs of cofinal morphisms
a:C — E, b:D—E

in the 2-categorg. The familyy of bijections should be natural @andbin a dualized
sense of Section 5.10. Suppose that the bijeatigntransports the cef to the cell
{ = Yapn(f) — as depicted below.

C‘\a C"\a{
Yab M

Suppose given a morphism E — F and two cells

a:ad =>hoa:C—F B:hob=b:D—F
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represented diagrammatically as:

—h—F

Just as in Section 5.10, naturalityarandb means that the bijectiop,, preserves the
actions of the celler andg. Namely, the bijectioy 1y transports the cet’ obtained
by pasting together the three cellgs, 8 to the cell/” obtained by pasting together the
three cellsy, 8, { — as depicted below.

It is thus possible to define an adjunction as a trifle (*, ¢) as in Section 5.10, or
as a triple §., f*, %) as just done here. Remarkably, the two bijectiprendy are
compatiblein the following sense. Suppose given two cells

fOc’il:}b]_ E1—>D 6> : azof =>b2 D—>E2

depicted as follows:

E, e f and fi 162 E,
X—) D D —/bz{
The equality
Wan(02) 0 17) x (12 061) = (1% 0 gayp, (61)) * (B2 0 1%)

between cells, o a; = b, o by is then satisfied; diagrammatically speaking:
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TN SN

f,* Uy(62) E, = E. Uep(61) f,*

Nt N

Exercise. Deduce the triangular identities of Section 5.11 from the compatibility just
mentioned between the bijectionsandy. m

5.13 Monoidal adjunctions

Basically, the notion ofnonoidal adjunctioris defined by applying one of the three
equivalent definitions of adjunction in Section 5.10, Section 5.11 or Section 5.12 to the
2-categornjLaxMonCat (defined in Section 5.8). However, starting from Section 5.10
and its definition based on triangular identities leads to a particularly simple definition,
which we will use in Section 5.15. Suppose given a pair of lax monoidal functors:

(F.,m) : (C,®,€) — (D, e, ) (F*,n): (D,e,u) — (C,®,€).
Then, a monoidal adjunction between the lax monoidal functors
(F.,m) 4 (F7,n)
is simply an adjunction®., 3*, n, €) between the underlying functors
F.:C—D F:D—C
whose natural transformations
niidc=>3F o, €. F.0F =idp
are monoidalin the sense of Section 5.4. We characterize the notion of monoidal

adjunction another time in Section 5.15.

5.14 A duality between lax and colax monoidal functors

Suppose given a pair of monoidal categori€sg, €) and D, e, u) and a functor¥, :
C — D left adjoint to a functoff* : D — C. Diagrammatically:

In that situation,

Proposition 11 Every lax monoidal structurgd™, p) on the functo#* induces a colax
monoidal structurdd,, n) on the functoi¥., defined as follows:
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Mg : 7.(A®B) F.AeTF.B
i?i(r]@r])l Te
F.(F*F.A® FF.B) P F,5(F.Ae F.B)
o : F.e o F.9°u : u,

Conversely, every colax monoidal structyfg,, n) on the functord, induces a lax
monoidal structur€d*, p) on the functo¥*, defined as follows:

Pas: FA®TB F.Ae5.B
Wl T?*(EOE)
F*F.(FA® FB) SAl F*(F.5"Ae F.5°B)
O e ! FF,e SAL Fu.

Besides, the two functiorip — n) and(n — p) are inverse, and thus define a one-to-
one relationship between the lax monoidal structures on the furittand the colax
monoidal structures on the funct6t..

Note that the colax monoidal structuremay be defined alternatively from the lax
monoidal structurg as the unique family of morphisms making the diagrams

n n

AB— ' > 5F,(A®B) e— " S 5Te
nen F*n p F*n
FFAQTF.B— > F(F.Ae T.B) Fu = F*u

commute for every object8 andB of the categoryC. Conversely, the lax monoidal
structurep may be defined from the colax monoidal structaies the unique family of
morphism making the diagrams

F(F'AQ FB) ——> F,F*Ae F, 5B F.e = F.e
F.p Qe F.p n
F. 5 (AeB) — > AeB F.9u—>u

commute for every objects andB of the categonp.
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5.15 A characterization of monoidal adjunctions

Here, we suppose given two monoidal categori&s(€) and D, e, u) and a monoidal
functor
(F..m) : (C,®,68) — (D, o, U).

We suppose moreover that, just as in Section 5.14, the fufictas left adjoint to a
functord* : D — C. We investigate now when the adjunction

F. 4 F
may be lifted to a monoidal adjunction

Obviously, this depends on the lax structyrechosen to equip the functd. By
Proposition 11 (Section 5.14) every such lax structpris associated biunivoquely
to a colax structure on the functord,.. Hence, the question becomes: when does
a pair of lax and colax structureas and n on the functor¥, define a monoidal ad-
junction @.,m) 4 (F*, p) by the bijectionn — p ? The answer to this question is
remarkably simple. We leave the reader establish as exercise that:

Exercise. Show that

e the colax structura is right inverse to the lax structura iff the natural trans-
formationn is monoidal from the identity functor on the categ@to the lax
monoidal functor §*, p) o (¥., m), and

e the colax structure is left inverse to the lax structuma iff the natural trans-
formatione is monoidal from the lax monoidal functo#(, m) o (3%, p) to the
identity functor on the categoi.

By the colax structura is right inverse to the lax structura, we mean that the mor-
phisms

mgomy: F.(A®B) — > F,AeF.B—" > F,(A® B)

n m

mPonP: F.e u F.e

coincide with the identity for every pair of objecfésand B of the categoryC. Simi-
larly, by the colax structure is left inverse to the lax structuma, we mean that the
morphisms

N3goMg: F.AeF.B—"—>F.(A®B) — > F.AeF.B
nlomP: u T >Je—" u

coincide with the identity for every pair of objectésandB of the categoryC. m

This leads to the following characterization of monoidal adjunctions, originally noticed
by Max Kelly.
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Proposition 12 Suppose given two monoidal categor{€s®, €) and (D, e,u) and a
lax monoidal functor
(F.,m : (C,®,€) — (D, o, U).

Suppose that the funct6, is left adjoint to a functor
F:D—C.

Then, the adjunction
F. 43

lifts to a monoidal adjunction
(Fe.m) 4 (57, p)

iff the lax monoidal functofF., m) is strong. In that case, the lax structure p is associ-
ated by the bijection of Proposition 11 to the colax structure m* provided by the
inverse of the lax structure m.

In particular, the left adjoint functord{., m) is strongly monoidal in every monoidal
adjunction ¢., m) 4 (F*, p).

5.16 A characterization of symmetric monoidal adjunctions

A symmetric monoidal adjunctida defined in the same way as a monoidal adjunction,
by applying the 2-categorical definition of adjunction to the 2-cate@myMonCat
formulated in Proposition 9 (Section 5.13). We explain briefly how the characterization
of monoidal adjunctions formulated in Section 5.15 may be adapted to the symmetric
case.

The 2-categonsymMonCat hassymmetrianonoidal categories as objectym-
metric monoidal functors as horizontal morphisms, and monoidal natural transforma-
tions as vertical morphisms. So, a symmetric monoidal adjunction is simply a monoidal
adjunction

(.. m) 4 (3%, p)

between two lax monoidal functors
F.,m): (C,®,6) — (D, e, ) (F*,p): (D,e,u) — (C,®,€)
in which:

e the two monoidal categorie€(®,€) and D, e, u) are equipped with symme-
triesy® andy®,

¢ the two lax monoidal functors¥, m) and *, p) are symmetric in the sense of
Section 5.6.

Symmetric monoidal adjunctions may be characterized in the same way as monoidal
adjunctions, by observing that in Proposition 11, the lax monoidal fun8tamyj is
symmetric if the colax monoidal functord,, n) is symmetric. This leads to the fol-
lowing variant of Proposition 12.
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Proposition 13 Suppose given two symmetric monoidal categdfies, €) and(D, e, u)
and a symmetric lax monoidal functor

(Fe,m) : (C,®,8) — (D, o, u).
Suppose that the funct6, is left adjoint to a functor
F:D—C.
Then, the adjunction
F AT
lifts to a symmetric monoidal adjunction
(Fe.m) 4 (57, p)

iff the lax monoidal functofF., m) is strong. In that case, the lax structure p is associ-
ated by the bijection of Proposition 11 to the colax structure m* provided by the
inverse of the lax structure m.

5.17 Notes and references

The notion of adjunction was formulated for the first time in 1958 in an article by
Daniel Kan [27]. The 2-categorical definition of adjunction was introduced by Ross
Street in [35]. We do not introduce the notion of Kan extension in this chapter, al-
though the trained reader will immediately recognize them hidden in our treatment of
adjunctions performed in Section 5.10. The relationship between adjunctions and Kan
extensions appears already in the original paper by Daniel Kan, as well as in Chapter
10 of Saunders MacLane’s book [31].
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6 Monoids and monads

In this chapter, we recall the definitions and main properties of monoids and monads.
Once dualized and transformed as comonoids and comonads, the two notions play a
central role in the definition of the various categorical models of linear logic exposed
in the next Chapter 7 of the survey.

6.1 Monoids

A monoidin a monoidal category(d, ®, 1) is defined as a triple’& m, u) consisting of
an objectA and two morphisms

u m

1 A A®A

making theassociativitydiagram

mMeA

(A®A) QA A®A
Ag (A A) — " A®A— A
and the twaunit diagrams
1oA——2 s pAgA<— A1
| I I
A = A = A
commute. Amonoid morphism
f : (Amaus) — (B ,mg,Ug)

between monoidsA, ma, ua) and B, mg, ug) is defined as a morphism
f : A— B

between the underlying objects in the categBrynaking the two diagrams

_ fof
1 = 1 ARA——>B®B
N
f f
A———>B

A—— B
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commute. A monoid defined in a symmetric monoidal categ6rw(1) is calledcom-
mutativewhen the diagram
A®A

A®A
commutes.

Exercise.Show that one retrieves the usual notions of monoid, of commutative monoid
and of monoid morphism when one applies the definitions to the monoidal category
(Set x,1) with sets as objects, functions as morphisms, cartesian product as tensor
product, and terminal object as uni.

6.2 The category of monoids

One reason invoked by Jea@mabou for introducing the notion of lax monoidal func-
tor in [5] is its remarkablefainity with the traditional notion of monoid. Thidfnity is
witnessed by the followingjfting property. To every monoidal catego,®, 1), one
associates the category M@, 1)

e with objects the monoids,
e with morphisms the monoid morphisms.
Then, every lax monoidal functor
(F,n) : (C,®€ — (D,e,u)
induces a functor
Mon(F,n) : Mon(C,®,€ — Mon(D, e, u)

which transports a monoidA(ma, Us) to the monoid A, mga, uga) defined as fol-
lows:

2 T

Mya © FARFA— > FARA) — 2 - FA
n? Ua

Usp - u Fe FA

We leave the reader check that MBn() defines indeed a functor. This may be estab-
lished directly by a simple diagram chasing, or more conceptually by completing the
exercise below.

Exercise. Show that the categorly consisting of one object and its identity morphism
is monoidal. Show that a lax monoidal functor from the monoidal catedory a
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monoidal categoryC = (C,®, 1) is the same thing as a monoid in this category; and
that the category.axMonCat(1,C) coincides with the category Mo@(®, 1) with
monoids as objects and monoid morphisms as morphisms. Deduce the existence of
the functor Mong, n) from 2-categorical consideratiorns.

Note that the category MoB(®, 1) is not monoidal in general. However, the cat-
egory becomes monoidal, and even symmetric monoidal, when the underlying cate-
gory (C,®,1) is symmetric monoidal.

Proposition 14 Every symmetric monoidal categdqf¥, ®, 1) induces a symmetric monoidal
categoryMon(C, ®, 1) with the monoid

idy A=p

1 1 11

as monoidal unit, and the monofé\ ® B, Magp, Uass) defined below

-1_y-1
Unss 1— 2 11— . AgB
mMa®mMmg
Mass : (A®B)®(A®B) (A®A)®(B®B) — A®B.
ay b
A® (B (A® B)) A® (A® (B® B))
A®rf1¢ ¢A®a

A®((B®A® B)M>A®((A® B) ® B)

as tensor product of two monoid8, ma, up) and (B, mg, ug). Moreover, the forgetful
functor

Uu : MonC,®,1) — (C,®,1)

which transports a monoi@A, m, u) to its underlying object A is symmetric and strict
monoidal (that is, its coercion maps are provided by identities.)

We have noted at the beginning of the section that every lax monoidal functor between
monoidal categories
F.n) : (C,®€ — (D,e,u)

lifts as a functor
Mon(@,n) : Mon(C,®,e) — Mon(D, e, u).

We have seen moreover in Proposition 14 that when the monoidal categar& )
and D, e, u) are symmetric, they induce symmetric monoidal categories Ela(€).
In that situation, and when the lax monoidal functt f) is symmetric, the functor
Mon(&, n) lifts to a symmetric lax monoidal functor — equipped with the coercians
This induces a commutative diagram of symmetric lax monoidal functors:

Mon(&,n)

Mon(C, ®, €) Mon(D, e, u)
(., Sk (D, o, )
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Exercise. Show that every commutative monoid in a symmetric monoidal category
(C, ®, 1) lifts to a commutative monoid in the category M@n®, 1). Conversely, show
that every monoid in the category M@, 1) is obtained in such a way. Conclude
that the category Mon(Mofi ®, 1), ®, 1) is isomorphic (as a symmetric monoidal cat-
egory) to the full subcategory of Mofi(®, 1) with commutative monoids as objects,
equipped with the same monoidal structure as the surrounding categorZMoayj.

|

6.3 Comonoids

Every categon defines an opposite categdff}P obtained by reversing the direction
of every morphism in the categof. The resulting categor§°P has the same objects
as the categorg, and satisfies

CP(A,B) = C(B,A

for every pair of objectA and B. A remarkable aspect of the theory of monoidal
categories is its self-duality. It appears indeed that every monoidal categaye)
defines a monoidal categorg{®, ®, €) on the opposite categof§PP, with same tensor
product and unit as in the original categdry

From this follows that every notion formulated in the theory of “monoidal cate-
gories” may be dualized by reversing the direction of morphisms in the definition. This
principle is nicely illustrated by the notion of comonoid, which is dual to the notion of
monoid formulated in Section 6.1. Hencez@monoidn a monoidal categoryd, ®, 1)
is defined as a tripleA; d, €) consisting of an objech and two morphisms

e d
1 A A®A

making theassociativitydiagram

d deA

A A®A (A®RA)®A
A®A hed A®(A®A)
and the twaunit diagrams
oA~ ARA——= s A1
A = A = A
commute. Acomonoid morphism
f : (Adaen) — (Bdses)

is defined as a morphism
f : A— B

between the underlying objects in the categBrynaking the two diagrams
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A—f>B A—— B

ok Lk
fof
1 = 1 ARA——— B®B
commute. A comonoid defined in a symmetric monoidal categorw(1) is called

commutativavhen the diagram

d
A—ARA

A—AQRA

commutes.

6.4 Cartesian categories among monoidal categories

In a cartesian category, every object defines a comonoid. Conversely, it is useful to
know when a monoidal categor(®, 1) in which every object defines a comonoid, is
a cartesian category. This is precisely the content of the next proposition.

Proposition 15 Let (C,®, 1) be a monoidal category. The tensor unit is a terminal
object and the tensor product is a cartesian product if and only if there exists two
natural transformations d and e with components

da:A— AR®A ea:A—1
such that:

1. (A, da, en) is a comonoid for every object A,

2. the diagram
A®B—" . (A®B)®(A®B)

I (Aces)®(ea®B) (37)

A®B<~—""  (Ael)®(1eB)
commutes for every pair of objects A and B,
3. the componente 1 — 1 coincides with the identity morphism.
Proof. The direction £) is nearly immediate, and we leave it as exercise to the reader.

We prove the other moreftiicult direction ¢&). We show that for every pair of objects
A andB, the morphisms
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AR
m : A®B ® s A®l—2 A

ea®B A

. A®B 1®B B

define the two projections of a cartesian product. To that purpose, we need to show that
for every two morphisms

f @ X—A g : X—B

there exists a unique morphism

(f,g9 : X— A®B
making the diagram
f
A
o /47
X—2>AgB (38)
x
B

commute in the categor§. Existence follows easily from the definition of the mor-
phism(f,g) as

f
gy @ X—% xex— . AeB

One establishes by an elementary diagram chasing that Diagram (38) commutes. Typ-
ically, the equalityr; o (f,g) = f holds because the diagram

f
X—% o xex—" . AsB

X®ex (b) Ages

(a) property of the comonoii,
[| @ X@l—fel— A1 (b) gis a comonoid morphism,
(c) p is natural.

P (©) P

X = X———>A
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commutes. We prove uniqueness. Suppose that a morphistn— A® B makes the
diagram

X—' > A®B (39)

commutes. In that case, a simple diagram chasing shows that the two diagrams below
commute in the categoi§.

X & X®X
h @ heh
A®B—" - (A2 B)& (A B) (8) naturality ofd,
(b) Diagram (37).
Il (b) (A®es)®(en®B)

A®B<L(A®1)®(1® B)

dx
X X® X

(© hoh

(c) definition of(f, g)

(f.g 55 (A®B)® (A® B) (d) Diagram (39)

and definition ofr; andr,.

@ (Azes)®(er®B)

AeB<—"" _(A®1)®(1®B)

From this follows that the two morphisnisand(f, g) coincide. We conclude that the
tensor product is a cartesian product.

There only remains to show that the tensor unit is a terminal object. For every
object A, there exists the morphisen : A — 1. We claim thate, is the unique
morphism from the objecA to the object 1. Suppose that: A — 1 is any such
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morphism. By naturality o&, the diagram

f
A——>B

1
commutes. From this and the hypothesis #at the identity morphism follows that
the morphismf necessarily coincides with the morphigm The tensor unit 1 is thus
a terminal object of the catego: This concludes the proof of Proposition 15.

Note that we do not need to suppose that the cate@Oy, (1) is symmetric monoidal

in Proposition 15, nor that every objegtdefines acommutativeeomonoid. However,

the situation becomes slightly more conceptual when the cateGogy {) is symmet-
ric monoidal. In that case, indeed, the two endofunctors

X X®X X—1

on the categoryC may be seen as lax monoidal endofunctors of the monoidal cate-
gory (C,®,1). The coercionsn of the functorX — X ® X are defined in a similar
fashion as the product of two monoids in Proposition 14:

m 11— e
Mg : (A® B)a? (A® B) (A® A ?n(B ® B) (40)
A® (B® (A® B)) A® (A® (B® B))
A®af1¢ ¢A®a

A3(y®B
A®((B®A)®B)ﬂ>

A® ((A®B)® B)

The coerciom of the functorX 1 is defined as the identity’ : 1 — 1 and the
morphism? = 1; = p; : 181 — 1. Note that the endofuncto¥s— X®X andX — 1

are strong and symmetric, but that we do not care about this additional property here.
The following result is folklore:

Corollary 16 Let (C,®,1) be a symmetric monoidal category. The tensor unit is a
terminal object and the tensor product is a cartesian product if and only if there exists
two monoidal natural transformations d and e with components

da:A— ARQA ea:A—1

defining a comonoidA, da, ea) for every object A.

Proof. The direction &) is easy, and left as exercise to the reader. The other di-
rection () established by applying Proposition 15. To that purpose, we show that
Diagram (37) commutes for every pair of objeétsandB, and that the componert
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coincides with the identity. This is deduced by an elementary diagram chasing in which
the monoidality ofd ande s only used to ensure thet = id and that the diagram

AsB—2*%® . (AeA)®(B®B)

A®(A®(B® B))
¢/A®(f1

A® ((A®B)®B)

id ¢,A®(7®B)

A®((B®A)®B)
¢/A®a

A® (B® (A® B))

izofl

A@B—"" . (A®B)®(A® B)

commutes for all objectd andB. o

Remark. Note that we do not require that the comonaidda, ea) is commutative in
Corollary 16, and that we do not use in the proof the equdlity 15, nor the property
that the diagram

11l

e

A®B A=p

€asB

1

commutes for all objecA and B, although these two facts hold by monoidality cf
ande.
6.5 The category of commutative comonoids
To every symmetric monoidal categofy, &, 1), we associate the category CoM@ng, 1)
e with commutative comonoids as objects,
e with comonoid morphisms as morphisms.

The category CoMoif, ®, 1) is symmetric monoidal with the monoidal structure de-
fined in Proposition 14 in Section 6.2 dualized. We establish below that the tensor
product is a cartesian product, and that the tensor unit is a terminal object in the cate-
gory CoMon(, ®, 1). This folklore property is deduced from Proposition 15.

Corollary 17 The categoryfCoMon(C, ®, 1) is cartesian.
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Proof. Once dualized, Proposition 14 in Section 6.2 states that the category CGMo @]
is symmetric monoidal. By definition, every objekiof the category CoMor, ®, 1)

is a commutative comonoil = (A, da, ea) of the underlying symmetric monoidal cat-
egory C,®,1). This commutative comonoid lifts to a commutative comonoid in the
symmetric monoidal category CoMdry®, 1). This is precisely the content (once du-
alized) of the exercise appearing at the end of Section 6.2. Similarly, every morphism

f:A— B
in the category CoMo, ®, 1) defines a comonoid morphism
f (A da,€a) — (B,dg, €g)

in the underlying monoidal categorZ(®, 1). From this follows thaf is a comonoid
morphism
f (A da,er) — (B,ds, €g)

in the monoidal category CoMo@i(®, 1) itself. This proves thatl and e are natu-

ral transformations in the category CoM@ng, 1). Finally, the construction of the
monoids 1 andA ® B in Proposition 14 in Section 6.2 implies that, once dualized,
Diagram (37) commutes for every pair of objeét@and B, and that the morphisrg
coincides with the identity. We apply Proposition 15 and conclude that in the cate-
gory CoMon(C, ®, 1), the tensor product is a cartesian product, and the tensor unit is a
terminal objecto

Corollary 18 A symmetric monoidal catego(f, ®, 1) is cartesian jf the forgetful
functor
U : CoMon(C,®,1) — C

defines an isomorphism of category.

Exercise. By isomorphism of category, we mean a fundtbwith an inverse, that is,

a functorV such that the two composite functdgso V andV o U are the identity.
Suppose that the functod(m) is strong monoidal and symmetric between symmetric
monoidal categories — as this is the case in Corollary 18. Show that the inverse functor
V lifts as a strong monoidal and symmetric functdrr() such that\J, m) o (V, n) and

(V,n) o (U, m) are the identity functors, with trivial coercions. [Hint: use the fact that

V is at the same time left and right adjoint to the fundtbrwith trivial unit » and
counite, and apply Proposition 13 in Section 5.16, Chaptemb.]

Exercise. Establish the following universality property of the forgetful functar
above, understood as a symmetric and strict monoidal funtkge)(whose coercion
mapsp are provided by identities. Show that for every colax monoidal functor

Fm : (D,x,e) — (C,®,1)

from a cartesian categornp(x, €) to a symmetric monoidal categor(®, 1) there
exists a unique symmetric colax monoidal functor

(G,n) : (D,x,6) — CoMon(C,®,1)
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making the diagram of symmetric colax monoidal functors

g

O, %,6 — . coMon(C, ®, 1)

[ (u.p

(F.m

(D,x,6) ————— (C,®,1)

commutem

6.6 Monads and comonads
A monadT = (T, u,n) in a categoryC consists of a functor
T : C—C
and two natural transformations
u o ToT =T n 1 =T
making theassociativitydiagram

T3+>T2

uT H

TZ—ﬂ>T

and the twaunit diagrams

nT T
T ———>T2<—"—TI

commute, wheré is notation for the identity functor on the categ@ty
Exercise. Show that the categoi@at(C, C) of endofunctors on a catego@y/

e with functorsF : C — C as objects,
e with natural transformation®: F = G as morphisms,
defines a strict monoidal category in which

¢ the product ® G of two functors is defined as their composdite G,
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¢ the uniteis defined as the identity functor on the categBry

Show that a monad on the categd@tyis the same thing as a monoid in the monoidal
category Cat(C,C),o,1). m

Dually, a comonadk, d, €) in a categoryC consists of a functor
K : C€C—C
and two natural transformations
0 : K= KoK e : K=

making theassociativitydiagram

K—————>K?2

and the twaunit diagrams

eK Ke
IK K2 Kl

commute.

Exercise. Show that a comonad on a categ@rjs the same thing as a comonoid in its
monoidal categoryGat(C, C), o, I) of endofunctorsm

Exercise. Every objectA in a monoidal categoryd, ®, €) defines a functor
X AgX : C — C

Show that this defines a strong monoidal functor from the monoidal cateGogy €)

to its monoidal categoryGat(C, C), o, I) of endofunctors. Deduce that every monoid
(A, m, u) in the monoidal category, ®, €) defines in this way a monad (u, ) on the
categoryC; and dually, that every comonoid\(d, €) defines in this way a comonad
(K, 8, €) on the categorf. m

We have seen as exercise that a monad (resp. a comonad) over a catégeary
monoid (resp. a comonoid) in the monoidal categ@at(C, C) of endofunctors and
natural transformations. This leads to a generic notion of monad and comonad in a
2-category developed in Section 6.9.
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6.7 Monads and adjunctions

Every adjunction
C L D (41)

induces a monadr( u, ) on the categor{ and a comonad, ¢, €) on the categorp,
in which the functord andK are the composites:

T=F"0F, K=F,03"
and the two natural transformations
n:1le=>3" 07, €. F,oF =1y

are constructed as explained in Section 5.11 of Chapter 5. Here, we use the ngtation 1
for the identity functor of the catego§. The two natural transformatiopsands are
then deduced from ande by composition:

u=Fo€eo0d, : FoF,o0F oF.,=>TF o,
0=F,onoTF* . F,o0F =2F,0F 0F,0TF"

We leave the reader check that, indeed, we have defined a mdnad) and a
comonadKk, ¢, €). The proof follows from the triangular equalities formulated in Chap-

ter 5 (Section 5.11). It may be also performed at a more abstract 2-categorical level, as
will be explored in Section 6.9.

Conversely, given a monad (u,n) on the categoryC, does there exist an ad-
junction (41) whose induced monad on the categdrgoincides precisely with the
monad T, u,n). The answer happens to be positive, and positive twice: there exists
indeed two diferent canonical ways to construct such an adjunction, each one based
on a specific categor§r andC’ .

F. G
/«\ /"\
C L Cr C L CcT
\-_’/ \/
7 5"

The two categories are called:
o the Kleisli categonyCt of the monad,
o the Eilenberg-Moore categoy’ of the monad.

The interested reader will find the construction of the two categdtieandC' ex-
posed in any good textbook on category theory, like Saunders Mac Lane’s mono-
graph [31] and Francis Borceux’s Handbook of Categorical Algebra [13]. We will de-
fine them in turn here. Once dualized and adapted to comonads, the two cat€gories
andCT play indeed a central role in the semantics of proofs in linear logic, as will be
clear in Chapter 7.

The Kleisli categonCt has
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¢ the same objects as the categGry
e the morphism# — B are the morphismA — T B of the categoryC.

Composition is defined as follows. Given two morphisms
f : A—B g : B—C
in the categonCr, understood as morphisms
f : A—TB g . B—TC
in the categoryC, the morphism
gof : A—C
in the categonCr is defined as the morphism

f T
A TB ® .TTC - TC

The identity on the objed is defined as the morphism
nn . A—TA

in the category.

Exercise. Prove that the composition law defines indeed a cate@eryln order to
establish associativity of the composition law, one may consider the diagram

T3D
vy T i
T2C T2D
H H
B TC TD
A B C D

in the categon, and check that the two morphisms fréxto T D coincide. Note that
we write T2 andT? for the composite functor§? =T o T andT3=ToToT. m
The functor
Cr d C
transports every objeét of the Kleisli categoryCr to the objecfl Aof the categonfC,
and every morphism

f . A—B
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in the categoryCt understood as a morphism
f : A—TB

in the categoryC, to the morphism

* Tf
70 = 1A T2B————TB

in the categonyf.

The functor
C sh Cr
transports every objeét of categoryC to the same objea of the Kleisli categonCr;
and every every morphism

f : A—B
in the categoryC, to the morphism

. f B
T A B— " —TB

in the categoryC, understood as a morphisfn— B in the categoryr.

The categoryC' has
¢ the algebras of the monaii,(u, ) as objects,
e the algebra morphisms as morphisms.

An algebra of the monad(u, n) is defined as a paiy h) consisting of an objecdh of
the categoryC, and a morphism

h : TA—A
making the two diagrams

T2A—2 > TA

TA
7N
Th h
A = A .
TA—A
commute in the categor§. An algebra morphism

f © (Aha) — (B,hg)

is defined as a morphisin: A — B between the underlying objects in the categ0ry
making the diagram



commute. The functor
o
cT C

is called theforgetful functor It transports every algebr#&(h) to the underlying ob-
jectA, and every algebra morphism

f o (Aha) — (B,hg)

to the underlying morphisn : A— B. The functor

C > c’

is called thdree functor It transports every obje# to the algebra
un . TPA—TA

This algebraTA u,) is called theree algebraof the objectA.
Every morphismf : A — B of the categon( is transported to the algebra mor-
phism
Tf  (TAua) — (TBup).

Exercise.Check that the paifl{A ua) defines indeed an algebra of the monagd n);
and that the morphism f : TA— T Bdefines an algebra morphism between the free
algebrasTA ua) and (T B, ug). m

It is folklore in category theory that:

¢ the adjunctiort, 4 3* based on the Kleisli catego is initial among all the
possible “factorization” of the monad (8, €) as an adjunction,

e the adjunctiorG, 4+ §* based on the Eilenberg-Moore categ@ry is terminal
among all the possible “factorization” of the monddd, €) as an adjunction.

We will not develop this point here, although it is fundamental in this topic. The inter-
ested reader will find a nice exposition in Saunders Mac Lane’s monograph [31].
6.8 Comonads and adjunctions

Because we are mainly interested here in the categorical semantics of linear logic,
we will generally work with a comonadK(é, €) on a given categor{, instead of

a monad T, u,n). This does not matter really, since a comonad on the categasy
simply a monad on the opposite categ@ff. Hence, the two constructions of a Kleisli
categoryCr and of an Eilenberg-Moore categafy for a monad, dualize to:

e a co-Kleisli categoryCy,
¢ an Eilenberg-Moore categofyX,

for the comonadk, ¢, €), with the expected derived adjunctions:
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Ck L C cK L C
\_/ \/
F* S

The co-Kleisli categorZk has:
¢ the objects of the categofy as objects,
e the morphism&A — B as morphism#& — B.
The Eilenberg-Moore catego§X has
¢ the coalgebras of the comondd 6, €) as objects,
¢ the coalgebra morphisms as morphisms.

A coalgebra of the comona(¢, €) is defined as a pai# h) consisting of an objec
of the categoryC, and a morphism

h : A—KA

making the two diagrams

A" LKA

KA
/ \
h 6
A = A ‘h
KA———K?A
commute in the categor§. A coalgebra morphism

f © (Aha) — (B,hg)

is defined as a morphisin: A — B between the underlying objects in the categ0ry
making the diagram

A—— 8B

hAi lhg
Kf

KA—— KB

commute.

6.9 Symmetric monoidal comonads (lax and colax)

The notion of symmetric monoidal comonad plays a central role in the definition of
a linear category, the third axiomatization of linear logic presented in Section 7.4. In
order to introduce the notion, we proceed as in Chapter 5 and start by providing a
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generic definition of comonad,(s, €) over an objecC in a 2-categoryC. The 2-
categorical definition of comonad generalizes the definition of comonad developed pre-
viously: a comonad in the sense of Section 6.6 is the same thing as a comonad in the 2-
categoryCat of categories, functors, and natural transformations. From this follows by
analogy the definition of a (lax) symmetric monoidal comonad as a comonad in the 2-
categorySymMonCat of symmetric monoidal categories, lax monoidal functors, and
monoidal natural transformations introduced in Chapter 5, Section 5.8, Proposition 9.
Every objectC in a 2-category€ induces a strict monoidal catego€yC, C) with
objects the endomorphisnfs: C — C, with morphisms the cell§ = g: C — C
and with monoidal structure provided by horizontal composition in the 2-catéaky
comonadon the objecC is defined as a comonoid of this monoidal categd{g, C).
The definition may be explicated in the following way. A comonad on the okjest
defined as a triplek( €, §) consisting of a morphism

k:C—C

K C K
16 \
C k C
« P
\U e/
ide

and two cells ands:

satisfying coassociativity:
c ko
bs /
k
/ .
C

B
k

and the two unit laws:

k
k k k k
ide w ide

A monad on the objedT is defined in a similar fashion, as a monoid in the monoidal
categoryC(C, C).



Exercise. Show that every adjunctiof. 4 f* between morphisms§, : C — D and
f*: D — Cin a 2-categor induces a monad on the objé&etand a comonad on the
objectD. m

Conversely, we have seen in Section 6.6 that every comonad over a catergory
the comonad associated to two particular adjunctions:

1. an adjunction with the co-kleisli categatik,
2. an adjunction with the category of Eilenberg-Moore coalgeBfas

This well-known fact about a comonad in the 2-categBat is not true any more

(or only half-true) for a comonad in the 2-categ@ymMonCat. Let us explain this
point. There exists a forgetful 2-functor from the 2-categgyynMonCat to the 2-
categoryCat which transports every comon&din SymMonCat to a comonadJK

in Cat. This comonadJK generates an adjunction with each of the two categ@ligs
andCUK, It follows from a general 2-categorical argument developed by Stephen Lack
in [29] that only the adjunction with the catega@y¥ of Eilenberg-Moore coalgebras
lifts to an adjunction irSsymMonCat.

(Lm)
(CX,®,1) 1 (C,®,1)
(M.,n)

In this symmetric monoidal adjunction, the categ@¥¥ = CX is equipped with the
symmetric monoidal structure:

A®B
A B lh@hs 1
lm ® ihs - KA®KB lnp (42)
KA KB lmﬂw K1
K(A® B)

On the other, the adjunction betwe€rand its co-kleisli categor{, does not lift in
general to a symmetric monoidal adjunction.

Dually, we may define &olax symmetric monoidal comonad as a comonad in
the 2-categonpymColaxMonCat of symmetric monoidal categoriesplaxmonoidal
functors, and monoidal natural transformations introduced in Proposition 10 (Chap-
ter 5, Section 5.8). The same 2-categorical argument by Stephen Lack in [29] applies
by duality, and shows that in the previous case, only the adjunction with the co-kleisli
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categoryCy lifts to an adjunction irsymColaxMonCat.

(Lm)

R

(Ck.®x.1) i (C,®,1)

\’/

(M.n)

The monoidal structure of the categdtylifts to the co-kleisli categoryCk of the
colax symmetric monoidal comonadi((), 6, €) in the following way. Every pair of
morphisms

f:A—A and g: B— P

in the categoryCy is given by a pair of morphisms
f: KA— A and g: KB— B
in the categoryC; the morphismf ® g in the categoryCx is defined as the morphism

2
f oK g : KA®B) —° _~ (KA®KB) — %~ N oB

in the categon. This is precisely what happens in Section 7.3 with the colax symmet-
ric monoidal comonad ((h), ¢, €) whose associated co-kleisli categénjis symmetric
monoidal, and in fact in that case, cartesian.
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7 Categorical models of linear logic

We review here three alternative categorical semantics of linear logic: Lafont cate-
gories, Seely categories, and Linear categories. We show that, in each case, the axiom-
atization induces aymmetric monoidal adjunction

(L,m) 4 (M, n)

between the symmetric monoidal closed category of denotdtiamsl a specific carte-
sian categorW. The reader starting at this point will find the definition of a symmetric
monoidal adjunction in Section 5.16 at the end of Chapter 5.

Definition 19 A linear-non-linear adjunction is a symmetric monoidal adjunction be-
tween lax monoidal functors
(L.m)
(M, x, e)/j\(L, ®,1).
\(M_!r_{)/
in which the categoriv is equipped with a cartesian produetand a terminal object e.

The notationd. and M are mnemonics fokinearizationand Multiplication. Infor-
mally, the functorM transports dinear proof — which may be used exactly once as
hypothesis in a reasoning — tavaultipleproof — which may be repeated or discarded.
Conversely, the functo transports anultiple proof to alinear proof — which may
then be manipulated as a linear entity inside the symmetric monoidal closed cdtegory

The exponential modality ! of linear logic is then interpreted astiraonacdn the
categoryL defined by composing the two functors of the adjunction:

' = LoM

This factorization is certainly one of the most interesting aspects of the categorical
semantics of linear logic; we will see in Section 7.1 one of its most remarkéelet®

It appears that each categorical semantics of linear logic provides a particular recipe to
construct the cartesian categoly,(x, €) and the monoidal adjunctioh.{m) 4 (M, n)

from the symmetric monoidal categorly, , €):

o Lafont category: the categoiy is defined as the category CoM@ng, €) with
commutative comonoids of the categoly ®, €) as objects, and comonoid mor-
phisms between them as morphisms,

e Seely category: the categd¥yis defined as the co-kleisli categdtyassociated
to the comonad ! which equips the categbriy the definition of a Seely category
(here, one needs to replace Seely’s original definition by the definition of a new-
Seely category advocated by Bierman in [9]).

e Linear category: the categol is defined as the categaty of Eilenberg-Moore
coalgebras associated to the symmetric monoidal comonad ! which equips the
categonyL in the definition of a Linear category.
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We recall that by Proposition 13 (Chapter 5, Section 5.16) an adjunction between func-
tors
L4M

lifts to a symmetric monoidal adjunction
(L,m) 4 (M, n)
iff the monoidal functor
(L,m) : (M, x,€) — (L,®,1)

is symmetric and strong monoidal. The purpose of each axiomatization of linear logic
is thus to provide what is missing (not much!) to be in such a situation.

o Lafont category: the categoiyl = CoMon(L, ®, €) associated to a given sym-
metric monoidal categoryl(®, €) is necessarily cartesian; and the forgetful
functor L from CoMon({., ®, €) to (L,®,€) is strict monoidal and symmetric.
Thus, the only task of Lafont’s axiomatization is to ensure that the forgetful
functorL has a right adjoinM.

e Seely category: given a comonade(!s) on the category, there exists a canon-
ical adjunctionL 4 M between the categoflyand its co-kleisli categoryl = L.
Moreover, since the categotyis supposed to be cartesian in the definition of a
Seely category, its co-kleisli categaty is necessarily cartesian. The only task
of the axiomatization is thus to ensure that the funtt@ strong monoidal and
symmetric.

e Linear category: given a symmetric monoidal comonad, ¢, p) on the sym-
metric monoidal category{ ®, €), there exists a canonical symmetric monoidal
adjunction {,m) 4 (M, n) between the symmetric monoidal categoty &, €)
and its categorl = L' of Eilenberg-Moore coalgebras. The categbtyis
equipped with the symmetric monoidal structure induced frag®(e). The
only task of the axiomatization is thus to ensure that this symmetric monoidal
structure on the categofy defines a cartesian category.

The notions of symmetric monoidal comonad, co-kleisli category, category of Eilenberg-
Moore coalgebras, have been introduced in the course of Chapter 5 and Chapter 6.

7.1 The transmutation principle of linear logic

One fundamental principle formulated by Jean-Yves Girard in his original article on
linear logic [21] states that the exponential modality ! transportéréarsmutesn the
language of alchemy) the additive connective & and its omitito the multiplicative
connective® and its unit 1. This means formally that there exists a pair of isomor-
phisms

IA®!IB = (A& B) 1=IT (43)

for every formulaA andB of linear logic.
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Quite remarkably, the existence of these isomorphisms may be derived from purely
categorical principles, starting from the slightly enigmatic factorization of the expo-
nential modality as

I = LoM

We find useful to start the section on that topic, because it demonstrates the beauty and
elegance of categorical semantics. At the same time, this short discussion will provide
us with a categorical explanation (instead of a proof-theoretic one) for the apparition
of the isomorphisms (43) in arpartesiancategory of denotatioris— and will clarify
the intrinseque nature and properties of these isomorphisms.

In order to interpret the additive connective & and unibf linear logic, we suppose
from now on that the category of denotatidnss cartesian, with:

¢ the cartesian product of a pair of objeéteind B notedA& B,
¢ the terminal object noted.

We have seen in Chapter 5 (exercises at the end of Section 5.2, Section 5.5 and Sec-
tion 5.6) that

e every functord between cartesian categories lifts as a symmetric and colax
monoidal functor &, j) in a unique way,

e every natural transformation between two such symmetric colax monoidal func-
tors is monoidal.

From this follows that the adjunction
M L L

lifts as asymmetriandcolax monoidahdjunction:

(L)
A
(M, %, €) i L, &,T)
~_

(MK

By this, we mean an adjunction in the 2-categBynColaxMonCatdefined in Propo-
sition 10 (Chapter 5, Section 5.8). Such an adjunction is characterized by Proposi-
tion 13 (Chapter 5, Section 5.16) as an adjunction in whichridjet adjoint func-
tor (M, K) is strong monoidal and symmetric. By this slightly sinuous path, we get
the well-known principle that right adjoint functors preserve limits (in that case, the
cartesian products and the terminal object) modulo isomorphism.

Thus, taken separately, each of the two functors

(M.K) L,m)

(L.&,T) M8 —D - (Le e

is strong monoidal and symmetric. From this follows that their composite
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Lp = (L mo(MK) : (L,&, T)——(L,®,€)

is also strong monoidal and symmetric. By definition of such a functor, the monoidal
structurep defines a pair of isomorphisms

Pds : 'ARIB — I(A&B) P17

natural in the objectd andB of the categoryL, and satisfying the coherence conditions
formulated in Chapter 5, Sections 5.1 and 5.6.

7.2 Lafont categories

A Lafont categoryis defined as a symmetric monoidal closed categinw(1) in
which the forgetful functor

U : CoMonl,®,1) — L

has a right adjoint. The right adjunct functor ! is called a free construction, because it
associates thizee commutative comonoidA to any objectA of the categoryL.

Equivalently, a Lafont category is defined as a symmetric monoidal closed cate-
gory (L, ®, 1) in which there exists a commutative comonoid

1A = (lA, dA, e/_\)

and a morphism
en . 'A— A

for every objectA of the category, satisfying the following universality property: for
every commutative comonoid

X = (Xde)

and for every morphism
f = X—A

there exists ainiguecomonoid morphism
ff 1 (Xd,e) — (IAdaen)

making the diagram
IA

/

X €A
T
A

commute in the categorly, noted !. Once dualized and specialized to commutative
comonoids, Proposition 14 in Section 6.2 states that the forgetful fukkiserstrict
monoidal and symmetric. It follows from Proposition 13 in Chapter 5, Section 5.16,
that the adjunctioty 4! between the forgetful functor and the free construction lifts to
a symmetric monoidal adjunction:
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(Lm
(CoMon(L, ®,1),®, 1) L (L,®, 1)

(M.n)

in whichL is the forgetful functot) from the category CoMoii(, ®, 1) of commutative

comonoids to the underlying symmetric monoidal categbtrg(1). Finally, we apply

Corollary 17 in Section 6.5 and deduce that the category CoMan(l) is cartesian.
This establishes that

Proposition 20 Every Lafont category defines a linear-non-linear adjunction, and thus,
a model of intuitionistic linear logic.

Remark. One well-known limitation of this categorical axiomatization is that the ex-
ponential modality is necessarily interpreted as a free construction. This is often limita-
tive, especially in game semantics, where several exponential modality may coexist on
the same categoily, each of them expressing a particular duplication policy: repetitive
vs. non repetitive, uniform vs. non uniform, etc. It is thus useful to notice that the cat-
egory CoMonL, ®, 1) may be replaced by ariyll subcategory! closed under tensor
product and containing the unit comonoid 1. A Lafont category is then defined as a
symmetric monoidal closed category in which the (restriction of the) forgetful functor

Uu : M — L

has a right adjoint. As previously, this definition may be reformulated as a universality
property of the morphism
ea . 'A— A

in which, this time, only the commutative comonoidsd, €) in the subcategoryl are
considered. We leave the reader check that Proposition 20 adapts smoothly. We will
take advantage of this remark in Section 7.5, where we crossbreed the two definitions
of Lafont and of Seely category.

7.3 Seely categories

A Seely categorys defined as a symmetric monoidal closed categbr®(1) with
finite products (binary product noté& B and terminal object noted) together with

1. acomonad (b, ¢),

2. two natural isomorphisms

m

B 1A®!B =!(A&B) m’ o 1s=IT.
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One asks moreover that the five coherence diagrams below commute in the ctegory
for all objectsA, B, C:

m

1AR!B I(A&B)
OpeB
54865 I1(A&B) (44)
\L!(!m,!m)
AR!IB m I( A&! B)
(IARIB)®IC — % > 1A® (IBRIC)
me!C 1A®m
I(A&B)®!C I A®!(B&C) (45)
m m
I((A&B)&C) ——% > 1(A&(B&C))
IA®l—— > IA 19/B————>1B
!A@ml T!p mml Tu (46)
IARIT ——— I(A&T) I T®!B i I(T&B)
1A®!B IBRIA (47)

|

I(A&B) — > I(B&A)

By a general categorical fact explained in Sections 6.7 and 6.8, the comoaag) (!

generates an adjunction
L

N

Ly 1 L (48)

~_ 7

M

between the co-kleisli categoly of the comonad and the original categéry

We would like to show that the adjunction (48) defines a linear-non-linear adjunc-
tion. By definition, the categori is cartesian. We have seen in Chapter 5, Section 5.2,
that every functor ! between cartesian categories defines a colax monoidal fusrgtor (!
in a unique way. The coercion is provided by

(Imq,lm)

Mg : I(A&B) — "™ 5 1A&IB
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wherenr; andr, denote the two projections of the cartesian product, @nd) the
pairing bracket; and by the unique morphismfl :!T — T to the terminal object.
We will see in Section 6.9 that the comonagh(k) itself defines a (colax) symmetric
monoidal functor in the sense of Section 6.9. From all this follows that the co-kleisli
categoryL, is cartesian, with finite products (&) inherited from the categori. It

is worth explaining here how the cartesian product & lifts from a bifunctor on the
categonyL to a bifunctor on the categoilyi. Every pair of morphisms

f:A—A and g: B— B (49)
in the categoryL, may be seen alternatively as a pair of morphisms

f:'1A— A and g:'B— P
in the categoryL; the morphismf &g in the category, is then defined as the morphism

f&g : I(A&B) — ™ aagiB) — 0 L agw

in the categonL. Since the co-kleisli categoily, is cartesian, there only remains to
show that the adjunction (48) lifts to a symmetric monoidal adjunction

(Lm)

TN

Ly, &, T) 1 (L, ®,1)

~_

(M.n)

in order to obtain a linear-non-linear adjunction. By Proposition 13 of Section 5.16,
Chapter 5, this reduces to showing that the funttequipped with the family of iso-
morphismsm defines a strong monoidal functor. The maiffidulty to achieve that
purpose is to establish that the family of isomorphismmis natural with respect to the
categoryL,, and not only with respect to the categaryThe functor_ transports every
morphism

f: A—B

of the categoryL,, understood as a morphisi:!A — B of the categorny, to the
morphism

L(f) s1A-2na i
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of the categonf. Thus, naturality ofn with respect to the categoiy means that the
following diagram

IA®! B m I(A&B)
o
686 II(A&B)
Kl mo)
1 A!I B I(! A&! B)
1felg (f&g)
INQIB ——— |(A&B)

commutes in the categotily for every pair of morphisms (49). This follows from the
first coherence Diagram (47) of Seely categories, and from naturalityyith respect
to the category, by decomposing the diagram in the following way:

IA9IB—— T > I(A&B)

)
586 1) I(A& B)
rsinn (1) coherence Diagram (47),
e (2) naturality ofmwith respect td_.
1 AR B —— " I(! A&! B)
1felg (2 I(f&g)
INGIB — > (A'&B)

This establishes the naturality of with respect to the categoiyi. The last four co-
herence diagrams (45—47) of Seely categories ensure then thdtdefines a strong
monoidal functor from the cartesian categoly, &, T) to the symmetric monoidal
category (, ®, 1). From this follows that

Proposition 21 Every Seely category defines a linear-non-linear adjunction, and thus
a model of intuitionistic linear logic with additives.

Remark.Here, we call Seely category what Gavin Bierman calls a new-Seely category
in his work on categorical models of linear logic [9]. See the end of the chapter for a
discussion.

7.4 Linear categories

A linear categonyis defined as a symmetric monoidal closed categbyg(1) together
with

1. a symmetric monoidal comonad, (), 5, €),
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2. two monoidal natural transformatiodsande whose components
da : A — IAQIA e : 'A— 1

form a commutative comonoid and are coalgebra morphisms from the free coal-
gebra (A, 64),

3. wheneverf : (1A, 6a) — (!B, 6g) is a coalgebra morphism between free coal-
gebras, then it is also a comonoid morphism.

By a general categorical property explained in Section 6.9, the (lax) symmetric monoidal
comonad ((!m), 8, €) induces a symmetric monoidal adjunction

(Lm)
(L', ®,1) 1 (L,®,1)
(M.n)

In order to prove that every linear category defines a linear-non-linear adjunction, there
remains to show that the categdryof Eilenberg-Moore coalgebras equipped with the
tensor product inherited from the categdryis cartesian. The proof is elementary but
far from immediate. In particular, it does not seem to follow from general categorical
properties. The proof is alsofficult to find in the litterature, although it appears in
Gavin Bierman’s PhD thesis [8]. We give a variant of the proof here.

Proposition 22 In a linear categoryL, every coalgebra b : 'A — A defines a
retraction:

AZIA % A

making the diagram

ha

A—1A
ha
1A
da da (50)
IAQIA

EARE

ha®h
ARA—2 o 1ARIA
commute.
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Proof. Any comonad (!4, €) has the property that the diagram

A—2  ona

”AT)”!A

commutes. This says that the morphiggis coalgebraic from the free coalgebra !
to the free coalgebraAl. By Property 3. of linear categories, the morphiggis also
a comonoid morphism. This simply means that the diagram

IA——% S iAgIA

Sa l l5A®(5A

!!A—d> HARITA
A
commutes. The diagram

IA—— % L iAgIA

5Al TEA‘X’EA (51)

HA ————— AQIA
hA

is obtained by postcomposing the previous diagram with the morphisres and by
applying the identityep o 55 = id)a. It thus commutes.

From all this, and the commutative diagram below, we deduce that Diagram (50)
commutes for every coalgebhna in a linear category.

ha

A 1A = 1A
ha (@ Sa
1A Tha—> 11 A
da (b) dia ) da
TAQ!A thaglha—s 11 AQI A
EAREA (0) aa®en
A®A IAQ!A = IAQIA

hA®hA

(@) property of the coalgebtay, (b) naturality ofd,
() naturality ofe, (d) Diagram (51) commutes.

This concludes the proofi
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Proposition 23 Let(C, ®, 1) be a monoidal category, and suppose given a retraction
ALB LA = AfA (52)

between an object A and a comon{B]dg, eg). Then, the object A induces a comon@idda, €a)
in such a way that the morphism i becomes a comonoid morphism:

(A.da, €2) — (B.ds, €5) (53)
iff the following diagram commutes:
A— B
i
B
d ds (54)

Bo®B

rer

AeA—2 - BgB

In that case, the comonoi@, da, €a) is necessarily defined in the following way:

ds rer

A—2sA®A = A— B Bs B A®A (55)
A—2s1 = A—sB—2s1

Proof. The direction £) is nearly immediate. Suppose indeed thatda, e4) defines
a comonoid involved in a comonoid morphism (53). In that case, the two diagrams
B

A B A

dA dB €A €g

ARA— 2 . BeB 1 = 1

commute. The diagram below is then obtained by postcomposing the lefthand side
with the morphisnr ® r, and by applying the equalityo i = ida:

A—i>B



and is thus commutative. From this follows that the comoroisl necessarily defined
as in Equation (55). Moreover, Diagram (54) commutes simply because the moiphism
is a comonoid morphism.

We prove the more flicult direction ¢&) and suppose that Diagram (54) com-
mutes. We want to show that the tripld, €, €s) defined in Equation (55) satisfies
the properties (associativity, units) of a comonoid. The two diagrams below are ob-
tained by postcomposing part (a) of Diagram (55) with the morpHisgr and the
morphismr ® B, and by applying the equalityo i = ida:

A— ' .B A— ' B

i i
B dg B dg
dg dg (56)
B®B BB Be®B BeB
rer Bor rer reB
A

AA—  _BgA

AA——A®B

For that reason, they both commute. Coassociativity of the trifalda; ea) follows

from the commutative diagram below.

A— ' -8B e BeB— 2 > A®A

| \ ®) hai

B B & BeB— 2 -~ A®B
ds da © Bads ) Aedg
B®B @ B®Bﬂ>(B®B)®B;‘> B®(B®B)@A®(B®B)
rer Ber (e l(B@B)@nr (f) AR(rer)
AQA— = B®AM>(B® B)®AW(A®A)®AT>A®(A®A)

lefthand side of Diagram (56), b}
coassociativity ofig, (d)
bifunctoriality of®, (f)

(@)
(©
(€

120

righthand side of Diagram (56),
bifunctoriality of ®,
naturality ofe and bifunctoriality ofg.



Now, the diagram below commutes:

A—' -8 = B
i
B do ® I
ds (@
B®B B®B > 1gB—2>B
rer Bar © 1? e) lr
A®A i®A B®A ep®A 1®A Aa A

(@) lefthand side of Diagram (56), b unit law of the comonoidB, dg, eg),
() bifunctoriality of ®, (d) naturality ofa.

The series of equalities follows:

da ea®A A ida

A A® A 1A 2 >A = A—>B-TspA = A% p

This establishes one of the two unit laws of the tripdeda, €a). The other unit law is
established by a similar diagram chasing, involving this time the righthand side of Dia-
gram (56). From all this, we conclude that Equation (55) defines a comohald,€a)-

It is not difficult to check that the morphisinin the retraction (52) is a comonoid mor-
phism (53) since this is precisely what is stated by the commutative Diagram (54). This
concludes the proofa

We consider below the categoly of Eilenberg-Moore coalgebras equipped with
the monoidal structure defined in Equation (42) of Section 6.9. After the last two
Propositions 22 and 23, it follows from Corollary 15 that:

Proposition 24 Let(L,®, 1) be a linear category. The categaty of Eilenberg-Moore
coalgebras equipped with the monoidal structure inherited fbn®, 1) is cartesian.

Proof. Together, Proposition 22 and Proposition 23 imply that in a linear catdgory
every coalgebra
ha: A—IA

defines a comonoidX da, ea) equipped with the morphisms:

d h, d
A—LsA@A = A—sIA—2s1A0IA22A Ag A (57)
ea hA €ea
A—1 = A——IA——1

In order to apply Corollary 15 in Section 6.5, one needs to show fyals( ea) is not
only a comonoid in the categori.(®, 1), but also a comonoid in the categoly,(®, 1)
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of Eilenberg-Moore coalgebras. This is far from obvious, at least for the morghism
because the morphisea ® ea is not a coalgebra morphism in general. Establishing the
property amounts to showing that the two diagrams

A" A% L iaRIA— % L AgA
ihA(XJhA
ha TAQIA
im
IA—" s nA—% L iAsIA) 2PN (A A)
A" A% g
ha m
IA—™ jpa— o1

commute in the categoily. This is achieved by the following diagram pasting.

A—" oA % s agiA— 222 L AgA
\1\ @ LhA@)hA
IA—P s IAglA = IAQIA
ha SAB0A (d) 1
O @ agn AN L AgIA
m © Lm
IA— A% 10 AslA) Y (Ae A)
(@) Diagram (50), ) ha:A—!Aisacoalgebra,
(c) daisacoalgebra morphism, d)X (!,6,¢)isacomonad,
(e) naturality ofm.
A ha A ea 1
SECIE RN
1A ™ A ™ 11
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This establishes that the tripl&,(da, €x) defines a comonoid in the categdryy Now
we need to prove that every coalgebra morphism

f: A—B
is at the same time a comonoid morphism
f : (A da,es) — (B,dg, €p).

Consider the diagrams

A B

P e A— ' .8
I f

IA 1B hAl lhg

da ds 1A l—f) 1B
el f
IAZIA IB2!B \ /
€ea e
EAREA €pRep 1

A®AT> BoB

The top squares commute becatise a coalgebra morphism, and the other cells com-
mute by naturality ofd ande. This establishes that every coalgebra morphism is a
comonoid morphism, or equivalently, that

da : A — A®A en - A—1

are natural transformations in the categbhpf Eilenberg-Moore coalgebras.
There remains to show that the two natural transformatibasde are monoidal.
In fact, in order to apply Corollary 15 in Section 6.5, we only need to checkghat
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coindices with the identity, and that the diagram

A®B—"" . 1a9iB —22% . (1A%1A) ® (1B2!B) ) (Ae A) @ (Bo B)
1A® (A (!Bg!B)) A®(A® (B® B))
1At \l/ i/ Agat
IA® ((|A®!B)®!B) A® (A®B)® B)
1Ag(ys! B)\l/ ¢A®(y®B)
IA® (('B!A)R®!B) A®(B®A)®B)
id m !A®al/
IA® (IB® (|A”!B)) Asa
(IA2!B) ® (1A®!B) A® (B® (A® B))
mm (e®€)R(e®e€) at

AB——(A®B) ——— (A® B)Q!/(A® B) ——— (A® B) ® (A® B)
Nags daes Qe

commutes. In this diagram, the left rectangle commutes by Definition (42) of the tensor
producthpgg Of the two Eilenberg-Moore coalgebrhg andhg, the middle rectangle
commutes by monoidality af, the right trapezium by naturality of associativityand
symmetryy, and the triangle by monoidality ef

Now, the morphism

e = 1-51-%1

coincides with the identity because = m° by Equation (42) in Section 6.9, and

because the equality
hy

11 %1 = 1%
follows by monoidality ofe. This concludes the proof: the categdryof Eilenberg-
Moore coalgebras equipped with the monoidal structure of Equation (42) of Section 6.9
is cartesianc

Proposition 25 Every linear category defines a linear-non-linear adjunction, and thus
a model of intuitionistic linear logic.

7.5 Lafont-Seely categories

We introduce below a fourth axiomatization of intuitionistic linear logic as so-called
Lafont-Seelycategories, which cross-breeds Lafont categories and Seely categories.
The axiomatization is designed to be general and easy to check on concrete models
of linear logic. Of Lafont categories, Lafont-Seely categories retain the simplicity:
unlike Seely categories and linear categories, the axiomatization does not require that
the modality ! defines a comonad — a property which is sometinfésudt to check
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in full detail, for instance in game-theoretic models. Of Seely categories, Lafont-Seely
categories retain the generality: unlike Lafont categories, the axiomatization is not
limited to free exponential modalities.

A Lafont-Seely categoiig defined as a symmetric monoidal closed categorg (1)
with finite products (noted& B and T) together with the following data:

1. for every objecA, a commutative comonoid
IA = (A daen)
with respect to the tensor product, and a morphism
ea . 'A—A
satisfying the following universal property: for every morphism
f : 1A— B
there exists a unique comonoid morphism
f7 : (IA daen) — (IB,dg, €p)

making the diagram
B

1A

€

/j//
T

B
commute,

2. for every pair of object®\ and B, two comonoid isomorphisms between the
commutative comonoids:

P2g © (Adaen)® (B dses) — ((A&B),dags.eacs)

P (Lot =4k id) = (IT.drer)

Just like in the case of Lafont categories, every Lafont-Seely category defines a sym-
metric monoidal adjunction

(Lm)

TN

M, ®,1) i (L,®,1)

~_

(M.n)

in which:
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e M is the full subcategory of CoMol( ®, 1) whose objects are the commutative
comonoids isomorphic (as comonoids) to a commutative comonoid of the form
(!A, dA, eA).

o the functorlL is the restriction of the forgetful functdd from the cartesian cat-
egory CoMonL, ®, 1) of commutative comonoids to the underlying symmetric
monoidal categoryi(, ®, 1).

In addition, it follows easily from Corollary 17 in Section 6.5 that the categdry
equipped with the tensor produstand the tensor unit 1 is cartesian. This establishes
that:

Proposition 26 Every Lafont-Seely categobyinduces a linear-non-linear adjunction,
and thus a model of intuitionistic linear logic with additives.

7.6 Notes and references
In his original formulation, Seely definesGirard categoryas a«-autonomous categori(®, 1)
with finite products, together with

1. acomonad (¥, ¢),

2. for every object\, a comonoid (A, da, €a) With respect to the tensor product,

3. two natural isomorphisms

My IA®! B ~!(A&B) m o 1=lT

which transport the comonoid structulg (\a, ua) of the cartesian product to the comonoid
structure (A, da, €4) of the tensor product, in the sense that the diagrams

IAR!A 1
1A m A m
1AA lua
I(AZA) I

commute.

In Seely’s axiomatization, linear logic is explicitly reduced to a decomposition of intuitionistic
logic. To quote Seely in [34]: “what is really wanted [of a model of intuitionistic linear logic] is
that the kleisli category associated to [the comonad), €) be cartesian closed, so the question
is: what is the minimal condition on,{, €) that guarantees this — ie. can we axiomatize this
condition satisfactorily?”

A few years later, Nick Benton, Gavin Bierman, Valeria de Paiva and Martin Hyland [6, 26]
reconsider Seely’s axioms from the point of view of linear logic, instead of intuitionistic logic.
Surprisingly, they discover that something is missing in Seely’s axiomatization. More precisely,
Gavin Bierman points out in [8, 9] that the interpretation of proofs in a Seely category is not

126



necessarily invariant under cut-elimination. One main reason is that the diagram

r f 1A on A o B

da ds (58)

SA®SA 'gelg h
IARIA ——— IAQIA ———— IBRIB———>C

which interprets the duplication of a proof
lgoda!A—IB
inside a proof
hodgolgofpo f: T —IC

does not need to commute in Seely’s axiomatization. Gavin Bierman suggestsrievesdlieely
category any Seely category in which the adjunction between the original cafegom its
co-kleisli categoryL, is symmetric monoidal. This amounts precisely to our definition of Seely
category in Section 7.3. In that case, the category provides invariants of proofs, see Proposi-
tion 21. In particular, Diagram (58) is shown to commute by pasting the two diagrams below:

f N 'g

r 1A A B
da dI‘A dg
IASIA — 22 ipgA— . iggig —" c

The definition of linear-non-linear adjunction has been introduced by Nick Benton
in [7] after discussions with Martin Hyland and Gordon Plotkin. Interestingly, the
original definition by Nick Benton requires that the categdfyis cartesian-closed.
People realized only later that this additional condition is not necessary in order to
establish soundness: a cartesian catefybiy suficient to that purpose.
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