Titre

Modèles des langages de programmation Domaines, catégories, jeux

Paul-André Melliès

Master Parisien de Recherche en Informatique Cours M2.2

www.pps.jussieu.fr/~mellies/master.html

Programme de cette séance:

Modèle ensembliste du lambda-calcul ; Catégories cartésiennes fermées

Plan de la séance

- 1— le λ -calcul simplement typé,
- 2— le modèle ensembliste du λ -calcul simplement typé,
- 3— la structure catégorique de Ens: catégories et foncteurs,
- 4— la structure catégorique de Ens: ccc,
- 5— interprétation du λ -calcul simplement typé dans une ccc,
- 6— exemples de cccs.

I. Le λ -calcul simplement typé

Curry 1958: le λ -calcul simplement typé

Il est possible de typer certaines expressions du λ -calcul au moyen de types simples A,B construits par la grammaire:

$$A, B ::= \alpha \mid A \Rightarrow B.$$

On appelle contexte de typage Γ une suite finie $\Gamma = (x_1 : A_1, ..., x_n : A_n)$ où x_i est une variable et A_i est un type simple, pour tout $1 \le i \le n$.

On appelle séquent un triplet:

$$x_1: A_1, ..., x_n: A_n \vdash P: B$$

où x_1 : $A_1,...,x_n$: A_n est un contexte de typage, P est un λ -terme et B est un type simple.

Curry 1958: le λ -calcul simplement typé

Propriétés remarquables du fragment simplement typé

Un λ -terme P est appelé simplement typé lorsqu'il existe un contexte de typage Γ et un type simple A tels que:

$$\Gamma \vdash P : A$$

On démontre que l'ensemble des λ -termes simplement typés est clos par β -réduction:

Subject Reduction: Si $\Gamma \vdash P : A \text{ et } P \longrightarrow_{\beta} Q$, alors $\Gamma \vdash Q : A$.

Un λ -terme P est appelé fortement normalisable lorsque tous les chemins de β -réduction:

$$P \longrightarrow_{\beta} P_1 \longrightarrow_{\beta} P_2 \longrightarrow_{\beta} \cdots \longrightarrow_{\beta} P_n \longrightarrow_{\beta} \cdots$$

terminent.

Normalisation forte: Si P est simplement typé alors P est fortement normalisable.

En particulier, le λ -terme $\Delta\Delta$ qui boucle n'est pas simplement typé.

Curry-Howard (1)

Logique minimale intuitioniste

Variable	$A \vdash A$
Abstraction	$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B}$
Application	$\frac{\Gamma \vdash A \Rightarrow B \qquad \Delta \vdash A}{\Gamma, \Delta \vdash B}$
Affaiblissement	$\frac{\Gamma \vdash B}{\Gamma, A \vdash B}$
Contraction	$\frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B}$
Permutation	$\frac{\Gamma, A, B, \Delta \vdash C}{\Gamma, B, A, \Delta \vdash C}$

Curry-Howard (1)

 λ -calcul simplement typé

Variable	$\overline{x:A \vdash x:A}$
Abstraction	$\frac{\Gamma, x : A \vdash P : B}{\Gamma \vdash \lambda x . P : A \Rightarrow B}$
Application	$\frac{\Gamma \vdash P : A \Rightarrow B \qquad \Delta \vdash Q : A}{\Gamma, \Delta \vdash PQ : B}$
Affaiblissement	$\frac{\Gamma \vdash P : B}{\Gamma, \mathbf{x} : A \vdash P : B}$
Contraction	$\frac{\Gamma, x : A, y : A \vdash P : B}{\Gamma, z : A \vdash P[x, y \leftarrow z] : B}$
Permutation	$\frac{\Gamma, x : A, y : B, \Delta \vdash P : C}{\Gamma, y : B, x : A, \Delta \vdash P : C}$

Isomorphisme de Curry-Howard (2)

 λ -calcul simplement typé \simeq logique minimale intuitioniste

Une remarque qui pourrait n'avoir qu'une portée mineure... pourtant:

Logique constructive: L'assistant de démonstration CoQ développé à l'INRIA est basé sur un langage de type extrêmement raffiné, avec des types polymorphes et dépendants. Permet de certificier une démonstration et d'en extraire un programme OCaml.

Logique classique: La logique classique est aussi constructive! à condition d'ajouter un opérateur de contrôle call-cc à la syntaxe du λ -calcul. L'opérateur permet de mettre en mémoire l'environnement du λ -terme (= la pile, la continuation) et d'y revenir plus tard dans l'évaluation.

Théorie des ensembles: Jean-Louis Krivine (PPS) interprète tous les axiomes de la théorie des ensembles (sauf l'axiome du choix) dans un modèle de réalisabilité fondé sur le λ -calcul avec contrôle.

Encore, et encore, et encore...

II. L'interprétation ensembliste du λ -calcul

Interprétation ensembliste

On associe un ensemble X_{α} à chaque type atomique α . Ensuite, on étend l'interprétation à tous les types:

$$\llbracket \alpha \rrbracket = X_{\alpha} \qquad \llbracket A \Rightarrow B \rrbracket = \llbracket B \rrbracket^{\llbracket A \rrbracket} = \operatorname{Hom}_{\operatorname{Ens}}(\llbracket A \rrbracket, \llbracket B \rrbracket)$$

Un séquent $x_1:A_1,...,x_n:A_n\vdash M:B$

est interprété comme une fonction

$$[\![A_1]\!] \times \cdots \times [\![A_n]\!] \longrightarrow [\![B]\!]$$

Propriété remarquable: "soundness" pour les règles β et η

— Si
$$\Gamma \vdash (\lambda x.M) : A \Rightarrow B$$
 et $\Delta \vdash N : A$, alors

$$\llbracket \Gamma, \Delta \vdash (\lambda x.M)N : B \rrbracket = \llbracket \Gamma, \Delta \vdash M[x := N] : B \rrbracket$$

— Si
$$\Gamma$$
 \vdash M : A \Rightarrow B alors

$$\llbracket \Gamma \vdash (\lambda x. Mx) : A \Rightarrow B \rrbracket = \llbracket \Gamma \vdash M : A \Rightarrow B \rrbracket$$

III. La structure catégorique des ensembles

Catégories et foncteurs

Catégories

Une catégorie C est la donnée

- d'une classe d'objets,
- d'un ensemble $\mathbf{Hom}(A, B)$ de morphismes pour tout couple d'objets (A, B),
- d'une loi de composition \circ : $\operatorname{Hom}(B,C) \times \operatorname{Hom}(A,B) \longrightarrow \operatorname{Hom}(A,C)$
- d'un morphisme identité $id_A \in \mathbf{Hom}(A,A)$ pour tout objet A,
- 1— tel que o soit associative

$$\forall (f,g,h) \in \mathbf{Hom}(A,B) \times \mathbf{Hom}(B,C) \times \mathbf{Hom}(C,D), \qquad f \circ (g \circ h) = (f \circ g) \circ h$$

2— tel que les morphismes id soient éléments neutre de o

$$\forall f \in \mathbf{Hom}(A, B), \qquad f \circ id_A = f = id_B \circ f$$

Notation: on écrit $f: A \longrightarrow B$ quand $f \in \mathbf{Hom}(A, B)$.

Exemples

- 1. La catégorie Ens des ensembles et fonctions.
- 2. Tout ensemble ordonné (X, \leq) définit une catégorie par:

$$x \longrightarrow y \text{ ssi } x \leq y.$$

- 3. La catégorie des domaines et fonctions continues,
- 4. La catégorie dont les objets sont les jeux alternés A où Opposant commence, et les flèches les stratégies séquentielles de $A \multimap B$,
- 5. Un grand nombre d'autres exemples en sémantique.

Catégorie duale

Prendre une catégorie \mathcal{C} , et changer la direction de toutes les flèches: voilà définie la catégorie duale \mathcal{C}^{op} .

Catégorie produit

Le produit de deux catégories C et D est la catégorie $C \times D$

- dont les objets sont les couples (A, B) d'objets de \mathcal{C} et \mathcal{D} ,
- dont les morphismes $(A, B) \longrightarrow (A', B')$ sont les couples de morphismes (f, g)

$$f:A\longrightarrow A'$$
 $g:B\longrightarrow B'$

avec composition et identités définis de la manière attendue:

$$(A,B) \xrightarrow{id_{(A,B)}} (A,B) = (A,B) \xrightarrow{(id_A,id_B)} (A,B)$$

$$(A,B) \xrightarrow{(f,g)} (A',B') \xrightarrow{(f',g')} (A'',B'') = (A,B) \xrightarrow{(f'\circ f,g'\circ g)} (A'',B'')$$

Foncteur

Un foncteur F d'une catégorie C vers une catégorie D est la donnée:

- d'un objet FA de \mathcal{D} pour tout objet A de \mathcal{C} ,
- d'une fonction $F: \mathbf{Hom}_{\mathcal{C}}(A,B) \longrightarrow \mathbf{Hom}_{\mathcal{D}}(FA,FB)$ pour tout couple d'objets (A,B) de \mathcal{C} .

On demande que F préserve les identités:

$$FA \xrightarrow{Fid_A} FA = FA \xrightarrow{id_{FA}} FA$$

et préserve la composition:

$$FA \xrightarrow{Ff} FB \xrightarrow{Fg} FC = FA \xrightarrow{F(g \circ f)} FC$$

Exemple de catégorie et foncteur (1)

Un monoïde (M, \cdot, e) est un ensemble M muni d'une loi produit et d'un élément neutre, tels que:

Associativité
$$\forall x,y,z\in M, \quad (x\cdot y)\cdot z=x\cdot (y\cdot z)$$
 Unité $\forall x\in M, \quad x\cdot e=x=e\cdot x.$

Un homomorphisme f de (M, \cdot, e) dans (N, \bullet, u) est une fonction f: $M \longrightarrow N$ qui préserve les identités:

$$f(e) = u$$

et préserve les produits:

$$\forall x, y \in M, \quad f(x \cdot y) = f(x) \bullet f(y).$$

exo. Identifier tout monoïde (M, \cdot, e) à une catégorie $[M, \cdot, e]$ à un seul objet. Etablir une bijection entre les homomorphismes de (M, \cdot, e) dans (N, \bullet, u) et les foncteurs de $[M, \cdot, e]$ dans $[N, \bullet, u]$.

Exemple de catégorie et foncteur (2)

La catégorie Mon a pour objets les monoïdes et pour flèches les homomorphismes entre monoïdes.

On définit un foncteur

$$U: \mathbf{Mon} \longrightarrow \mathbf{Ens}$$

qu'on appelle foncteur d'oubli, comme suit:

- à chaque mono (M,\cdot,e) on associe son support $U(M,\cdot,e)=M$,
- à chaque homomorphisme f de (M,\cdot,e) vers (N,\bullet,u) , on associe la fonction sous-jacente $f:M\longrightarrow N$.

exo. Montrer que U définit un foncteur.

Isomorphisme

Supposons donnée une catégorie C.

Un morphisme

$$f:A\longrightarrow B$$

est appelé isomorphisme lorsqu'il existe un morphisme

$$g: B \longrightarrow A$$

vérifiant

$$g \circ f = id_A$$
 et $f \circ g = id_B$.

exo. Montrer que f; $g:A\longrightarrow C$ est un isomorphisme lorsque $f:A\longrightarrow B$ et $g:B\longrightarrow C$ sont des isomorphismes.

exo. Montrer que tout foncteur $F:\mathcal{C}\longrightarrow\mathcal{D}$ transporte les isomorphismes de \mathcal{C} en isomorphismes de \mathcal{D} .

Bifoncteur

Un bifoncteur F de deux catégories C et D vers une catégorie E est la donnée:

- d'un foncteur F(A, -) de \mathcal{D} vers \mathcal{E} pour tout objet A de \mathcal{C} ,
- d'un foncteur F(-,B) de \mathcal{C} vers \mathcal{E} pour tout objet B de \mathcal{D} ,

tels que pour tous morphismes $f:A\longrightarrow A'$ de $\mathcal C$ et $g:B\longrightarrow B'$ de $\mathcal D$, le diagramme suivant

$$F(A,B) \xrightarrow{F(A,g)} F(A,B')$$

$$F(f,B) \qquad \qquad | F(f,B') \qquad \qquad | F(A',B) \xrightarrow{F(A',g)} F(A',B')$$

$$(1)$$

commute.

Notation: $F: \mathcal{C} \times \mathcal{D} \longrightarrow \mathcal{E}$,

Remarque. Le diagramme (1) permet d'écrire $F(f,g): A \times B \longrightarrow A' \times B'$.

exo. Montrer que bifoncteur de \mathcal{C} et \mathcal{D} vers \mathcal{E} et foncteur de $\mathcal{C} \times \mathcal{D}$ vers \mathcal{E} sont deux notions équivalentes. Ce qui justifie la notation.

IV. La structure catégorique des ensembles

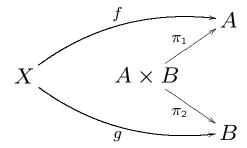
Catégories cartésiennes fermées

Produits

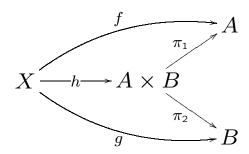
Le produit de deux objets A et B dans une catégorie C, est un objet $A \times B$ muni de deux morphismes

$$\pi_1: A \times B \longrightarrow A \quad \pi_2: A \times B \longrightarrow B$$

tel que pour tout diagramme



il existe un et un seul morphisme $h: X \longrightarrow A \times B$ faisant commuter le diagramme



exo. Montrer que la définition caractérise $A \times B$ à isomorphisme près. (Cela est vrai plus généralement de toute définition universelle: limite, colimite, etc...)

Exemples de produits

- 1. Le produit cartésien dans la catégorie Ens,
- 2. La borne inférieure dans un ensemble ordonné (X, \preceq) ,
- 3. Le produit A&B de deux jeux alternés, dans la catégorie de jeux sus-mentionnée.

Objet terminal

Un objet 1 est terminal dans la catégorie \mathcal{C} lorsque $\mathbf{Hom}(A, \mathbf{1})$ est singleton, pour tout objet A.

On peut considérer que 1 est le produit "vide" de C.

Exemple 1. Le singleton {*} dans la catégorie Ens,

Exemple 2. Le maximum dans un ensemble ordonné (X, \preceq)

Exemple 3. Le jeu \perp avec $M_{\perp}=\varnothing$ dans les jeux alternés où Opposant commence.

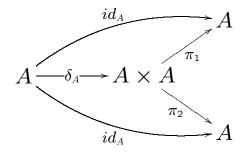
exo. Montrer que dans une catégorie qui contient un objet terminal 1, tout objet est produit de 1 et de lui-même.

Catégorie cartésienne

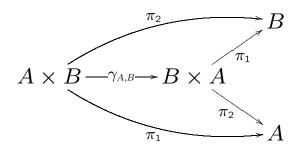
Une catégorie cartésienne $(\mathcal{C}, \times, \mathbf{1})$ est une catégorie \mathcal{C} équipée d'un produit $A \times B$ pour tout couple d'objets, et d'un objet terminal 1.

Dans toute catégorie cartésienne,

- effacement $\epsilon_A:A\longrightarrow 1$,
- diagonale $\delta_A:A\longrightarrow A\times A$ obtenue par



— symétrie $\gamma_{A,B}: A \times B \longrightarrow B \times A$ obtenue par



exo. Montrer que $(-\times -)$ définit un bifoncteur $\mathcal{C} \times \mathcal{C} \longrightarrow \mathcal{C}$ unique.

Catégories cartésienne fermée

Première définition

Exponentiation cartésienne

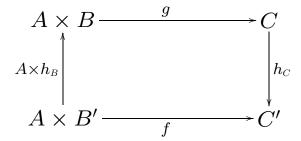
Soit B un objet dans une catégorie cartésienne $(C, \times, 1)$.

On appelle exponentiation cartésienne de A le couple formé par un foncteur $(A \Rightarrow -)$: $\mathcal{C} \longrightarrow \mathcal{C}$ et une famille $(\phi_{A,B,C})_{B,C}$ de bijections indexée par des objets B,C de \mathcal{C} :

$$\phi_{A,B,C}: \mathbf{Hom}(A \times B, C) \longrightarrow \mathbf{Hom}(B, A \Rightarrow C)$$

naturelle en B et C.

Naturelle en B et C signifie que la famille de bijections $(\phi_{A,B,C})_{B,C}$ transforme tout diagramme commutatif



en un diagramme commutatif:

$$B \xrightarrow{\phi_{A,B,C}(g)} A \Rightarrow C$$

$$\downarrow h_B \qquad \qquad \downarrow A \Rightarrow h_C$$

$$B' \xrightarrow{\phi_{A,B',C'}(f)} A \Rightarrow C'$$

Ccc

Une catégorie cartésienne close (ccc) est une catégorie cartésienne $(\mathcal{C}, \times, \mathbf{1})$ munie d'une exponentiation cartésienne

$$\frac{A \times B \longrightarrow C}{B \longrightarrow A \Rightarrow C} \quad \phi_{A,B,C} \tag{2}$$

pour tout objet A.

Théorème du paramètre

Nous avons vu que le produit $(-\times -)$ définit un bifoncteur $\mathcal{C} \times \mathcal{C} \longrightarrow \mathcal{C}$. De même:

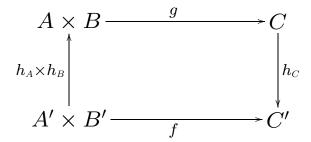
Théorème du paramètre [MacLane]

La famille d'exponentiations $(A \Rightarrow -)_A$ définit un unique bifoncteur

$$(- \Rightarrow -) : \mathcal{C}^{op} \times \mathcal{C} \longrightarrow \mathcal{C}$$

tel que les bijections $\phi_{A,B,C}$ soient naturelles en A, B et C.

Naturelle en A, B et C signifie que la famille de bijections $(\phi_{A,B,C})_{A,B,C}$ transforme tout diagramme commutatif



en un diagramme commutatif:

$$B \xrightarrow{\phi_{A,B,C}(g)} A \Rightarrow C$$

$$\downarrow h_{A} \Rightarrow h_{C}$$

$$B' \xrightarrow{\phi_{A',B',C'}(f)} A' \Rightarrow C'$$

Catégories cartésienne fermée

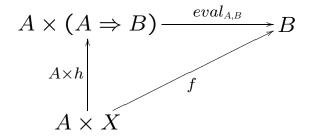
Deuxième définition

Ccc

Une catégorie cartésienne fermée est une catégorie cartésienne $(C, \times, 1)$ et la donnée pour tout objet A et B:

- d'un objet $A \Rightarrow B$ appelé espace fonctionnel de A vers B,
- d'un morphisme $eval_{A,B}: A \times (A \Rightarrow B) \longrightarrow B$ appelé morphisme d'évaluation,

vérifiant que pour tout objet X et morphisme $f: A \times X \longrightarrow B$, il existe un et un seul morphisme $h: X \longrightarrow A \Rightarrow B$ tel que le diagramme



commute.

V. Interprétation du λ -calcul dans une CCC

Curry 1958: le λ -calcul simplement typé

Interprétation du λ -calcul

Variable: $A \xrightarrow{id_A} A$

Lambda: $A \times \Gamma \xrightarrow{f} B$ devient $\Gamma \xrightarrow{\phi_{A,\Gamma,B}(f)} A \Rightarrow B$

Application: $\Gamma \xrightarrow{f} A$ et $\Delta \xrightarrow{g} A \Rightarrow B$ deviennent

$$\Gamma \times \Delta \xrightarrow{f \times g} A \times (A \Rightarrow B) \xrightarrow{eval_{A,B}} B$$

Contraction: $A \times A \times \Gamma \xrightarrow{f} B$ devient $A \times \Gamma \xrightarrow{\delta_A \times \Gamma} A \times A \times \Gamma \xrightarrow{f} B$

Affaiblissement: $\Gamma \xrightarrow{f} B$ devient $A \times \Gamma \xrightarrow{\epsilon_A \times \Gamma} 1 \times \Gamma \xrightarrow{\sim} \Gamma \xrightarrow{f} B$

Permutation: $\Gamma \times A \times B \times \Delta \xrightarrow{f} B$ devient

$$\Gamma \times B \times A \times \Delta \xrightarrow{\Gamma \times \gamma_{A,B} \times \Delta} \Gamma \times A \times B \times \Delta \xrightarrow{f} B$$

Théorème de validité

Théorème ("soundness"):

L'interprétation du λ -calcul simplement typée est correcte dans toute ccc.

Autrement dit, si C est une C et [-] est son crochet d'interprétation,

— Si
$$\Gamma \vdash (\lambda x.M): A \Rightarrow B$$
 et $\Delta \vdash N: A$, alors
$$\llbracket \Gamma, \Delta \vdash (\lambda x.M)N: B \rrbracket = \llbracket \Gamma, \Delta \vdash M [x:=N]: B \rrbracket$$
— Si $\Gamma \vdash M: A \Rightarrow B$ alors

$$\llbracket \Gamma \vdash (\lambda x. Mx) : A \Rightarrow B \rrbracket = \llbracket \Gamma \vdash M : A \Rightarrow B \rrbracket$$

exo. Démontrer le théorème ci-dessus.

VI. Exemples de CCC — et linéarisation

Pourquoi introduire les cccs?

Disons que pour les ensembles et fonctions, c'était assez facile.

Mais, il est parfois difficile de savoir si une interprétation donne véritablement un modèle.

Exemples:

- domaines de Scott et fonctions continues,
- domaines de Berry et fonctions stables,
- structures de données concrètes, et algorithmes séquentiels (Berry+Curien),
- jeux alternés où Opposant commence, et stratégies séquentielles.

Aussi: permet ensuite d'analyser la logique par la voie catégorique!

Catégories symétriques monoïdales closes, comonades, construction de Kleisli...

Linéarisation

A l'origine de la logique linéaire (1986)...

La décomposition linéaire du modèle des fonctions stables de Berry.

Depuis, d'autres telles linéarisations ont été opérées:

dl-domaines avec cohérence Espace d'hypercohérence et fonctions fortement stables \Rightarrow Ehrhard 1993 Bucciarelli-Ehrhard 1991 **Bidomaines Bistructures** Curien-Plotkin-Winskel 1996 **Berry 1979** Structures Jeux de données concrètes \Rightarrow Lamarche 1992 Berry-Curien 1985

Bibliographie sommaire

J-Y. Girard. Advances in LL, Cambridge University Press, 1995. *Linear Logic: its syntax and its semantics.* Plus qu'une introduction à la logique linéaire.

S. Abramsky and G. McCusker. Computational Logic, Springer 1999. *Game Semantics.*

Présentation pédagogique des différentes classes de stratégie sur les jeux à arène, et les théorèmes de "full abstraction".

P-A. Melliès. A paraître dans TCS.

Categorical models of linear logic revisited

http://www.pps.jussieu.fr/~mellies/papers.html/

Expose les différentes définitions catégoriques de l'exponentielle.

S. MacLane. Springer Verlag, 1971. *Categories for the working mathematician.* Surtout pour les chapitres IV, VI et VII.