
Semantics of Interaction
Samson Abramsky

Abstract
The “classical” paradigm for denotational semantics models data types as domains,
i.e. structured sets of some kind, and programs as (suitable) functions between do-
mains. The semantic universe in which the denotational modelling is carried out is
thus a category with domains as objects, functions as morphisms, and composition
of morphisms given by function composition. A sharp distinction is then drawn
between denotational and operational semantics. Denotational semantics is often
referred to as “mathematical semantics” because it exhibits a high degree of math-
ematical structure; this is in part achieved by the fact that denotational semantics
abstracts away from the dynamics of computation—from time. By contrast, op-
erational semantics is formulated in terms of the syntax of the language being
modelled; it is highly intensional in character; and it is capable of expressing the
dynamical aspects of computation.
The classical denotational paradigm has been very successful, but has some

definite limitations. Firstly, fine-structural features of computation, such as se-
quentiality, computational complexity, and optimality of reduction strategies, have
either not been captured at all denotationally, or not in a fully satisfactory fashion.
Moreover, once languages with features beyond the purely functional are con-
sidered, the appropriateness of modelling programs by functions is increasingly
open to question. Neither concurrency nor “advanced” imperative features such as
local references have been captured denotationally in a fully convincing fashion.
This analysis suggests a desideratum of Intensional Semantics, interpolating

between denotational and operational semantics as traditionally conceived. This
should combine the good mathematical structural properties of denotational se-
mantics with the ability to capture dynamical aspects and to embody computational
intuitions of operational semantics. Thus we may think of Intensional semantics
as “Denotational semantics + time (dynamics)”, or as “Syntax-free operational
semantics”.
A number of recent developments (and, with hindsight, some older ones) can

be seen as contributing to this goal of Intensional Semantics. We will focus on the
recent work on Game semantics, which has led to some striking advances in the
Full Abstraction problem for PCF and other programming languages (Abramsky
et al. 1995) (Abramsky and McCusker 1995) (Hyland and Ong 1995) (McCusker
1996a) (Ong 1996). Our aim is to give a genuinely elementary first introduction;
we therefore present a simplified version of game semantics, which nonetheless

1

2 Abramsky

contains most of the essential concepts. The more complex game semantics in
(Abramsky et al. 1995) (Hyland and Ong 1995) can be seen as refinements of
what we present. Some background in category theory, type theory and linear logic
would be helpful in reading these notes; suitable references are (Crole 1994)(Gir-
ard et al. 1989)(Girard 1995) (which contain much more than we will actually
need).

Acknowledgements I would like to thank the Edinburgh interaction group (Ko-
hei Honda, Paul-André Melliès, Julo Chroboczek, Jim Laird and Nobuko Yoshida)
for their help in preparing these notes for publication.

Contents

1 Game Semantics 472

2 Winning Strategies 483

3 Polymorphism 488

4 Relational Parametricity 495

Notation

If is a set, is the set of finite sequences (words, strings) over . We use
, , , to denote sequences, and , , , , , to denote elements of these
sequences. Concatenation of sequences is indicated by juxtaposition, andwe won’t
distinguish notationally between an element and the corresponding unit sequence.
Thus denotes the sequence with first element and tail .
If then is the unique monoid homomorphism

extending . We write for the length of a finite sequence, and for the th
element of , .
Given a set of sequences, we write , for the subsets of even- and

odd-length sequences respectively.
If and , we write for the sequence obtained by deleting all

elements not in from . We write if is a prefix of , i.e. for some
.
We write for the disjoint union of sets , .

is the set of prefixes of elements of . is prefix-closed if
.

Semantics of Interaction 3

1 Game Semantics
We give a first introduction to game semantics. We will be concerned with 2-
person games. Why the number 2? The key feature of games, by comparison with
the many extant models of computation (labelled transition systems, event struc-
tures, etc. etc.) is that they provide an explicit representation of the environment,
and hence model interaction in an intrinsic fashion. (By contrast, interaction is
modelled in, say, labelled transition systems using some additional structure, typ-
ically a “synchronization algebra” on the labels.) One-person games would degen-
erate to transition systems; it seems that multi-party interaction can be adequately
modeled by two-person games, in much the same way that functions with multiple
arguments can be reduced to one-place functions and tupling. We will use such
games to model interactions between a System and its Environment. One of the
players in the game is taken to represent the System, and is referred to as Player or
Proponent; the other represents the Environment and is referred to as Opponent.
Note that the distinction between System and Environment and the corresponding
designation as Player or Opponent depend on point of view:

If Tom, Tim and Tony converse in a room, then from Tom’s point
of view, he is the System, and Tim and Tony form the Environment;
while from Tim’s point of view, he is the System, and Tom and Tony
form the Environment.

A single ‘computation’ or ‘run’ involving interaction between Player and Oppon-
ent will be represented by a sequence of moves, made alternately by Player and
Opponent. We shall adopt the convention that Opponent always makes the first
move. This avoids a number of technical problems which would otherwise arise,
but limits what we can successfully model with games to the negative fragment of
Intuitionistic Linear Logic (This is the , , , , fragment).
A game specifies the set of possible runs (or ‘plays’). It can be thought of as a

tree

where hollow nodes represent positionswhere Opponent is to move; solid nodes
positions where Player is to move; and the arcs issuing from a node are labelled
with the moves which can be made in the position represented by that node.
Formally, we define a game to be a structure , where

is the set of moves of the game;

4 Abramsky

is a labelling function designating each move as by
Player or Opponent;

, i.e. is a non-empty, prefix-closed subset of , the
set of alternating sequences of moves in .

More formally, is the set of all such that

i.e.

Thus represents the game tree.
For example,

represents the tree

We are using games to represents types (objects in the semantic category). A
game can be seen as specifying the possible interactions between a System and its
Environment. In the traditional interpretation of types as structured sets of some
kind, types are used to classify values. By contrast, games classify behaviours.
Programs will be modelled by strategies, i.e. rules specifying how the System
should actually play.
Formally, we define a (deterministic) strategy on a game to be a non-empty

prefix-closed subset (i.e. a sub-tree) , satisfying:

(1.1)

To understand this definition, think of

as a record of repreated interactions with the Environment following . It can be
read as follows:

Semantics of Interaction 5

If the Environment initially does ,
then respond with ;

If the Environment then does ,
then respond with ;

...
If the Environment finally does ,

then respond with .

This can be seen as generalizing the notion of graph of a relation, i.e. of a set of
ordered pairs, which can similarly be read as a set of stimulus-response instruc-
tions. The generalization is that ordinary relations describe a single stimulus-
response event only (giving rules for what the response to any given stimulus
should be), whereas strategies describe repreated interactions between the Sys-
tem and the Environment. We can regard as saying: ‘when given the
stimulus in the context , respond with ’. Note that, with this reading, the con-
dition (1.1) generalizes the usual single-valuedness condition for (the graphs of)
partial functions. Thus a useful slogan is:

“Strategies are (partial) functions extended in time.”

(cf. interaction categories (Abramsky, Gay and Nagarajan 1996b)).

Notation 1.1 Firstly, means:

Also, we write , and then by (1.1) we have a
well-defined partial function, which we shall also write as ():

Example 1.1 Let be the game

6 Abramsky

This game can be seen as representing the data type of booleans. The opening
move is a request by Opponent for the data, which can be answered by either
or by Player. The strategies on are as follows:

The first of these is the undefined strategy (‘ ’), the second and third corres-
pond to the boolean values and . Taken with the inclusion ordering, this ‘space
of strategies’ corresponds to the usual flat domain of booleans:

Constructions on games

We will now describe some fundamental constructions on games.

Tensor Product

Given games , , we describe the tensor product .

We can think of as allowing play to proceed in both the subgames and
in an interleaved fashion. It is a form of ‘disjoint (i.e. non-communicating or

interacting) parallel composition’.
A first hint of the additional subtleties introduced by the explicit representation

of both System and Environment is given by the following result.

Proposition 1.1 (Switching condition)
In any play , if successive moves , are in different subgames (i.e.
one is in and the other in), then , .
In other words, only Opponent can switch from one subgame to another; Player

must always respond in the same subgame that Opponent just moved in.

To prove this, consider for each the ‘state’

We will write for even parity, and for odd parity, since e.g. after a play of
even parity, it is Opponent’s turn to move. Initially, the state is .

Semantics of Interaction 7

Note that O can move in either sub-game in this state. If O moves in , then the
state changes to . P can now only move in the first component. After he
does so, the state is back to . Thus we obtain the following ‘state transition
diagram’:

We see immediately from this that the switching condition holds; and also that
the state can never be reached (i.e. for no is).

Linear Implication

Given games , , we define the game as follows:

when
when

This definition is almost the same as that of . The crucial difference is the
inversion of the labelling function on the moves of , corresponding to the idea
that on the left of the arrow the rôles of Player and Opponent are interchanged.
If we think of ‘function boxes’, this is clear enough:

Input Output

On the output side, the System is the producer and the Environment is the con-
sumer; these rôles are reversed on the input side.
Note that , and hence , are in general quite different to ,

respectively. In particular, the first move in must always be in ,
since the first move must be by Opponent, and all opening moves in are labelled
by .
We obtain the following switching condition for :

If two consecutive moves are in different components, the first was
by Opponent and the second by Player; so only Player can switch
components.

8 Abramsky

This is supported by the following state-transition diagram:

Example 1.2 The copy-cat strategy.
For any game , we define a strategy on . This will provide the identity

morphisms in our category, and the interpretation of logical axioms .
To illustrate this strategy, we undertake by the power of pure logic to beat either

Kasparov or Short in chess. To do this, we play two games, one against, say,
Kasparov, as White, and one against Short as Black. The situation is as follows:

Kasparov Short

B

W

W

B

We begin with the game against Short. He plays his opening move, and we play
his move in our game against Kasparov. After Kasparov responds, we play his
move as our response to Short. In this way, we play the same game twice, but once
as White and once as Black. Thus, whoever wins, we win one game. Otherwise
put, we act as a buffer process, indirectly playing Kasparov off against Short.
This copy-cat process can be seen as a ‘dynamic tautology’, by contrast with

classical propositional tautologies, which are vacuous static descriptions of states
of affairs. The logical aspect of this process is a certain ‘conservation of flow of
information’ (which ensures that we win one game).

Semantics of Interaction 9

In general, a copy-cat strategy on proceeds as follows:

...

(Here, we write , to index the two occurrences of in for ease of
reference. Note also that we write rather than . We will continue
with both these notational ‘abuses’).

We indicate such a strategy briefly by , alluding to axiom links in the
proof nets of Linear Logic.

Example 1.3 Application (Modus Ponens).

This is the conjunction of two copy-cat strategies

Note that and each occur once positively and once negatively in this for-
mula; we simply connect up the positive and negative occurrences by ‘copy-cats’.

To understand this strategy as a protocol for function application, consider the
following play:

ro — request for output
ri — request for input
id — input data
od — output data

The request for output to the application function is copied to the output side of
the function argument; the function argument’s request for input is copied to the

10 Abramsky

other argument; the input data provided at the second argument is copied back to
the function argument; the output from the function argument is copied back to
answer the original request. It is a protocol for linear function application since
the state of both the function and the argument will change as we interact with
them; we have no way of returning to the original state. Thus we “consume” our
“resources” as we produce the output. In this way there is a natural match between
game semantics and linear logic.

The Category of Games

Objects: Games

Morphisms: are strategies on .

Composition: interaction between strategies.

This interaction can be described as “parallel composition plus hiding”.

.

This definition looks very symmetric, but the actual possibilities are highly con-
strained by the switching condition.

... ...

Initially, Opponent must move in (say with). We consider ’s response. If
this is in , then this is the response of to . If responds in , say with
, then a move by Player in in is a move by Opponent in .

So it makes sense to consider ’s response to . If it is in , this is the overall
response of to . If responds with in , then is a move by Opponent

Semantics of Interaction 11

in , and we consider ’s response. Continuing in this way, we obtain a
uniquely determined sequence.

If the sequence ends in a visible action in or , this is the response by the
strategy to the initial move , with the internal dialogue between and
in being hidden from the Environment. Note that and may continue their
internal dialogue in forever. This is “infinite chattering” in CSP terminology,
and “divergence by an infinite -computation” in CCS terminology.
As this discussion clearly shows composition in is interaction between strategies.

The following fact is basic to the analysis of composition.
The map induces a surjective map

Covering Lemma. is injective (and hence bijective) so for each there
is a unique such that .

If ,
then has the form

where , .

Exercise 1.1 Prove the Covering lemma by formalizing the preceding discussion.

Proposition 1.2 is a category.

In particular, is the copy-cat strategy described previously.

Exercise 1.2 Verify this Proposition.

Exercise 1.3 Define a strategy not: on the boolean game defined
previously to represent Boolean complement. Calculate explicitly the strategies

not not not

and hence show that this strategy does indeed represent the intended function. (For
this purpose, treat strategies on as strategies where

is the empty game, so that the above compositions make sense).

Exercise 1.4 Embed the category of sets and partial functions faithfully into .
Is your embedding full? What about the category of flat domains and monotone
maps?

12 Abramsky

Tensor structure of
We will now see (in outline) that is an “autonomous” symmetric monoidal
closed category, and hence a model for IMLL, Intuitionistic Multiplicative Linear
Logic.
We have already defined the tensor product on objects. Now we extend

it to morphisms:

even .

This can be seen as disjoint (i.e. non-communicating) parallel composition of
and .

Exercise 1.5 Check functoriality, i.e. the equations

.

.

The tensor unit is defined by:

The canonical isomorphisms are concatenations of copy-cat strategies.

Semantics of Interaction 13

The application (or evaluation) morphisms

have already been defined. For currying, given

define

by

where is the canonical isomorphism
in Set.

Exercise 1.6 Verify that the above definitions work! E.g. verify the equations
:

and for .

Exercise 1.7 Prove that is terminal in , i.e. for each there is a uniquemorph-
ism .

This shows that is really a model of Affine Logic, in which (unlike in Linear
Logic proper) the Weakening rule is valid. Indeed, tensor has “projections”:

Exercise 1.8 Given define by

Prove that is the product of and in , i.e. define projections

14 Abramsky

and pairing

and verify the equations

Exercise 1.9 Try to define coproducts in . What is the problem?

Exercise 1.10 A strategy on is history-free if it satisfies

.

.

Prove that , , , , , , , are
all history-free; and that if and are history free so are , , and .
Conclude that the sub-category hf, of history-free strategies is also a model of
IMLL. What about the pairing operation ? Does hf have binary products?

2 Winning Strategies
As we have seen, deterministic strategies can be viewed as partial functions exten-
ded in time. This partiality is appropriate when we aim to model programming lan-
guages with general recursion, in which the possibility of non termination arises.
However we would also like to use game semantics to model logical systems satis-
fying Cut Elimination or Strong Normalization. We would therefore like to find a
condition on strategies generalizing totality of functions. The obvious candidate is
to require that at each stage of play, a strategy on A has some response to every
possible move by opponent.

P

Call a strategy total if it satisfies this condition. However, totality as so defined
does not suffice ; in particular, it is not closed under composition.

Exercise 2.1 Find games and strategies and ,
such that

and are total

is not total.

(Hint: use infinite chattering in .)

