TD 12 : théorie des ensembles

Thomas Chomette

09/01/04

1. Somme ordinale

Soit I un ensemble ordonné par une relation de d'ordre $<_{\rm I}$, et $(\alpha_i)_{i\in {\rm I}}$ une famille d'ensembles ordonnés (on note $<_{\alpha_i}$ la relation d'ordre sur α_i).

On définit l'union disjointe
$$\bigcup_{i\in I} \alpha_i$$
 de la famille $(\alpha_i)_{i\in I}$ par : $\bigcup_{i\in I} \alpha_i = \bigcup_{i\in I} (\alpha_i \times \{i\})$

1 Montrer que cet ensemble est bien défini (*i.e.* que c'est bien un ensemble, que l'on peut construire par les axiomes de ZF).

On munit alors cet ensemble de l'ordre lexicographique : (a, i) < (b, j) si et seulement si « $i <_{\mathbf{I}} j$ ou (i = j et $a <_{\alpha_i} b$ ».

2 Montrer que ceci définit bien une relation d'ordre sur l'union disjointe de la famille $(\alpha_i)_{i\in I}$. Montrer que si $<_I$ est un bon ordre, ainsi que tous les ordres $<_{\alpha_i}$, alors l'ordre construit est aussi un bon ordre.

Dans le cas où $(\alpha_i)_{i\in I}$ est une famille d'ordinaux (et I un ordinal), on appelle somme ordinale de la famille $(\alpha_i)_{i\in I}$, et on note $\sum_{i\in I} \alpha_i$ l'unique ordinal isomorphe au bon ordre ainsi construit. Si I=2, on le note $\alpha_0+\alpha_1...$

- 3 Montrer que l'addition ordinale est associative, non commutative, que 0 est élément neutre, que pour tout ordinal α , $\alpha + 1$ est le successeur $\alpha \cup \{\alpha\}$ de α .
- 4 Montrer la monotonie à droite : $\beta < \beta' \Longrightarrow \alpha + \beta < \alpha + \beta'$ En déduire la régularité à gauche : $\alpha + \beta = \alpha + \beta' \Longrightarrow \beta = \beta'$ Enfin, montrer que la somme ordinale n'est ni monotone à gauche (au sens strict) ni régulière à droite, mais que l'on a : $\alpha \le \alpha' \Longrightarrow \alpha + \beta \le \alpha' + \beta$
- 5 Montrer que la somme est la seule opération binaire sur les ordinaux vérifiant :

$$\begin{array}{l} \alpha+0=\alpha \ ; \quad \alpha+s(\beta)=s(\alpha+\beta) \quad (s \ {\rm est \ la \ fonction \ successeur.}) \\ \alpha+\sup_{\gamma<\beta} \ \gamma=\sup_{\gamma<\beta}(\alpha+\gamma) \ {\rm si} \ \beta \ {\rm est \ un \ ordinal \ limite.} \end{array}$$

2. Axiome de l'infini

Pour tout ordinal α , on appelle successeur de α l'ordinal $\alpha \cup \{\alpha\}$. On dit que β a un pr'edecesseur s'il existe un ordinal α tel que β est le successeur de α . Un ordinal α est fini si tout ordinal $\beta \leq \alpha$, $\beta \neq \emptyset$ a un pr\'edecesseur.

- 1 Comment s'écrit l'énoncé " α est un ordinal fini"?
- 2 Montrer que dans la théorie ZF privée de l'axiome de l'infini, les deux énoncés suivants sont équivalents :

- i) il existe un ordinal infini;
- ii) il existe un ensemble a et une injection de a dans une partie propre de a.

3. Axiome du choix

L'axiome du choix peut s'énoncer sous la forme suivante :

(AC) « Pour tout ensemble a dont les éléments sont non-vides et disjoints deux à deux, il existe un ensemble b dont l'intersection avec chacun des éléments de a est un singleton. »

Une fonction de choix sur un ensemble a est une application φ de l'ensemble des parties non-vides de a dans a telle que $\varphi(x) \in x$ pour tout x dans $dom(\varphi)$.

Montrer que (AC) est équivalent, dans ZF, à chacun des énoncés suivants :

- 1 Pour tout ensemble a, il existe au moins une fonction de choix sur a.
- 2 Si $(a_i)_{i\in I}$ est une famille d'ensembles non vides, alors $\prod_{i\in I} a_i$ est non vide.
- (3 Quels que soient les ensembles x et y et l'application surjective g de x dans y, il existe une application h de y dans x telle que $g \circ h$ soit l'application identique de y dans y.)

4. Retour sur Cantor-Bernstein

On se place dans la théorie ZF+AC. On rappelle qu'un cardinal est un ordinal qui n'est équipotent à aucun ordinal strictement plus petit.

- 1 Montrer que si A est une partie d'un ordinal ω , alors la relation d'appartenance sur A est un bon ordre, qui est isomorphe à un ordinal plus petit que ω .
- 2 Montrer que, si le cardinal α s'injecte dans le cardinal β , alors $\alpha \leq \beta$.
- 3 En déduire le théorème de Cantor-Bernstein.

5. Axiome de fondation, bis

Dans un univers \mathcal{U} modèle de ZF, on définit par induction une relation fonctionnelle $y = V_{\alpha}$ de domaine On en posant, pour tout ordinal α , $V_{\alpha} = \bigcup_{\beta < \alpha} \mathcal{P}(V_{\beta})$.

1 Pour tout α , montrer que $V_{\alpha+1} = \mathcal{P}(V_{\alpha})$, et $V_{\alpha} = \bigcup_{\beta < \alpha} V_{\beta}$ pour α limite.

V est alors la collection qui est la réunion (au sens intuitif) des V_{α} , c'est-à-dire la collection définie par l'énoncé $\exists \alpha (On(\alpha) \land x \in V_{\alpha})$.

- 2 Montrer qu'un ensemble a est dans V si et seulement si tous ses éléments sont dans V. Montrer que tout ordinal est dans V.
- 3 Montrer que V est une sous-structure de \mathcal{U} qui satisfait encore ZF, ainsi que l'axiome de fondation. En déduire que l'axiome $\forall x V(x)$ entraı̂ne l'axiome de fondation.

6. Ordinaux

- 1 Montrer que si A est un ensemble d'ordinaux, alors $\beta = \bigcup_{\alpha \in A} \alpha$ est un ordinal, qui est la plus petite borne supérieure de A.
- 2 En déduire que On n'est pas un ensemble.