S. Le Roux et V.Nesme Le 8 décembre 2004

Logique – TD n°10

Modèles

Rappels de cours : Modèles

On considère un *langage* \mathcal{L} , *i.e.* un couple $\langle \mathcal{F}, \mathcal{R} \rangle$, où \mathcal{F} est un ensemble de symboles fonctionnels d'arités définies et \mathcal{R} est un ensemble de symboles relationnels d'arités définies.

Sur ce langage, on peut définir des \mathcal{L} -termes et des \mathcal{L} -formules par la grammaire suivante, où \mathcal{X} est un ensemble infini de variables ($R \in \mathcal{R}$; $f \in \mathcal{F}$; $x \in \mathcal{X}$):

$$\varphi, \psi ::= \bot \mid R(t_1, \dots, t_k) \mid \neg \varphi \mid \varphi \rightarrow \psi \mid \varphi \land \psi \mid \varphi \lor \psi \mid \forall x(\varphi) \mid \exists x(\varphi) \quad \text{(formule)}$$

$$t_1, \dots, t_k ::= x \mid f(t_1, \dots, t_k) \quad \text{(terme)}$$

On appelle \mathcal{L} -structure tout couple $\mathcal{M}=\langle M,I\rangle$ où M est un ensemble appelé domaine et I une interprétation, i.e. une fonction qui à chaque symbole d'arité k de \mathcal{F} associe une fonction k-aire totale de M et à chaque symbole d'arité k de \mathcal{R} associe une partie de M^k .

Étant donné un contexte $\gamma: \mathcal{X} \longrightarrow M$, on peut étendre l'interprétation aux termes :

```
- I_{\gamma}(x) = \gamma(x); 
- I_{\gamma}(f(t_1, \dots, t_k)) = I(f)(I_{\gamma}(t_1), \dots, I_{\gamma}(t_k)).
```

La *valeur de vérité* d'une \mathcal{L} -formule dans une \mathcal{L} -structure \mathcal{M} avec le contexte γ est un booléen (0 ou 1) défini comme suit :

```
\begin{array}{l} -\ V_{\gamma}(\bot) = 0\,; \\ -\ V_{\gamma}(R(t_1,\ldots,t_k)) = 1\,\,\text{si et seulement si}\,\,(I_{\gamma}(t_1),\ldots,I_{\gamma}(t_k)) \in I_{\gamma}(R)\,; \\ -\ V_{\gamma}(\neg\varphi) = 1\,\,\text{si et seulement si}\,\,V_{\gamma}(\varphi) = 0\,; \\ -\ V_{\gamma}(\varphi \rightarrow \psi) = 1\,\,\text{si et seulement si}\,\,V_{\gamma}(\varphi) = 0\,\,\text{ou}\,\,V_{\gamma}(\psi) = 1\,; \\ -\ V_{\gamma}(\varphi \land \psi) = 1\,\,\text{si et seulement si}\,\,V_{\gamma}(\varphi) = 1\,\,\text{et}\,\,V_{\gamma}(\psi) = 1\,; \\ -\ V_{\gamma}(\varphi \lor \psi) = 1\,\,\text{si et seulement si}\,\,V_{\gamma}(\varphi) = 1\,\,\text{ou}\,\,V_{\gamma}(\psi) = 1\,; \\ -\ V_{\gamma}(\forall x(\varphi)) = 1\,\,\text{si et seulement si pour tout}\,\,m \in M\,,\,V_{\gamma[x \mapsto m]}(\varphi) = 1\,; \\ -\ V_{\gamma}(\exists x(\varphi)) = 1\,\,\text{si et seulement si il existe}\,\,m \in M\,\,\text{tel que}\,\,V_{\gamma[x \mapsto m]}(\varphi) = 1\,. \end{array}
```

Si φ est une formule close, sa valeur de vérité dans \mathcal{M} ne dépend pas de l'environnement. Si cette valeur est 1, l'on dit que \mathcal{M} est un $\mathit{mod\`ele}$ de φ , ou encore que \mathcal{M} satisfait φ , ce que l'on note $\mathcal{M} \vDash \varphi$. Sinon, l'on dit que \mathcal{M} est un $\mathit{contre-mod\`ele}$ de φ .

Une formule est appelée *théorème* si toute \mathcal{L} -structure en est un modèle. Un ensemble de formules est dit *cohérent* s'il existe une \mathcal{L} -structure qui satisfait toutes ses formules.

Exercice 1: Interprétation

On considère le langage $\langle \emptyset, \{R\} \rangle$, où R est un symbole de relation binaire. Pour chacune des formules et des structures ci-dessous, dire si la structure est un modèle ou un contremodèle de la formule.

```
1. \forall x \forall y \forall z (\neg R(x,x) \land (R(x,y) \rightarrow \neg R(y,x)) \land (R(x,y) \land R(y,z) \rightarrow R(x,z)))
2. \exists x \forall y (R(x,y) \lor x = y)
```

3.
$$\exists x \forall y (R(y,x) \lor x = y)$$

4.
$$\forall x \exists y (R(x,y) \land \forall z (R(x,z) \rightarrow (z=y \lor R(y,z))))$$

5.
$$\forall x \forall y (R(x,y) \rightarrow \exists z ((R(x,z) \land R(z,y))))$$

- 1. $\langle \mathbb{N}, R \mapsto \langle \rangle : \mathbb{N}$ où R est interprété par $\langle \rangle$.
- 2. $\langle \mathbb{Q}, R \mapsto < \rangle : \mathbb{Q}$ où R est interprété par <.
- 3. $\langle \mathfrak{PN}, R \mapsto \subsetneq \rangle$: les parties de \mathbb{N} où R est interprété par \subsetneq .

Exercice 2: Satisfaction

Soit $\mathcal{L} = \langle \{0,1,+,\times\}, \{=\} \text{ où } 0 \text{ et } 1 \text{ sont nullaires, } + \text{ et } \times \text{ sont binaires et } = \text{ est binaire.}$ Soient $\mathcal{M}_1 = \langle \mathbb{Z}, I_1 \rangle$, $\mathcal{M}_2 = \langle M_{2,2}(\mathbb{Z}), I_2 \rangle$, $\mathcal{M}_3 = \langle \mathbb{Z}[i], I_3 \rangle$, où I_1 , I_2 , I_3 interprètent de manière usuelle les symboles de \mathcal{L} .

Écrire des formules $\varphi_1, \varphi_2, \varphi_3$ telles que :

- 1. $\mathcal{M}_1 \models \varphi_1, \mathcal{M}_2 \not\models \varphi_1, \mathcal{M}_3 \not\models \varphi_1$.
- 2. $\mathcal{M}_1 \not\models \varphi_2$, $\mathcal{M}_2 \models \varphi_2$, $\mathcal{M}_3 \not\models \varphi_2$.
- 3. $\mathcal{M}_1 \not\models \varphi_3$, $\mathcal{M}_2 \not\models \varphi_3$, $\mathcal{M}_3 \models \varphi_3$.

Exercice 3 : Nombre d'éléments

Écrire des formules signifiant :

- 1. Le domaine de la structure a au moins n éléments.
- 2. Le domaine de la structure a au plus n éléments.
- 3. Le domaine de la structure a exactement n éléments.

Exercice 4 : Théorie des groupes

On considère les formules sur le langage \mathcal{L} $\langle \{\varepsilon,^{-1},*\}, \{=\}\rangle$, où ε , $^{-1}$, * sont respectivement nullaire, unaire et binaire et où = est binaire.

La théorie de l'égalité sur \mathcal{L} est constituée des axiomes suivants :

```
(réfl) : \forall x(x=x)
```

 $(sym) \quad : \quad \forall x \forall y (x = y \Rightarrow y = x)$

(trans) : $\forall x \forall y \forall z (x = y \land y = z \Rightarrow x = z)$

(cptb-⁻¹) : $\forall x \forall y (x = y \Rightarrow x^{-1} = y^{-1})$

(cptb-*) : $\forall x_1 \forall x_2 \forall y_1 \forall y_2 (x_1 = y_1 \land x_2 = y_2 \Rightarrow x_1 * x_2 = y_1 * y_2).$

La théorie des groupes est la théorie \mathcal{G} obtenue en ajoutant à cette théorie les trois axiomes :

```
(assoc) : \forall x \forall y \forall z (x*(y*z) = (x*y)*z)

(eltn) : \forall x (x*\varepsilon = x \land \varepsilon * x = x)

(inv) : \forall x (x*x^{-1} = \varepsilon \land x^{-1} * x = \varepsilon)
```

Pour la théorie des groupes abéliens \mathcal{GA} , on rajoute encore l'axiome :

```
(comm) : \forall x \forall y (x * y = y * x)
```

- 1°) Montrer que \mathcal{G} et \mathcal{GA} sont cohérentes.
- 2°) Montrer formellement dans \mathcal{G} que l'inverse à droite est unique.
- 3°) Montrer que $\mathcal{GA} \vdash \forall x \forall y ((x * y)^{-1} = x^{-1} * y^{-1}).$
- 4°) Montrer que tout modèle de $\mathcal{G} \cup \{ \forall x (x * x = e) \}$ satisfait \mathcal{GA} .

Exercice 5: *Skolemisation*

1°) À chaque formule φ du langage L avec $FV(\varphi) = \{x_1, \dots, x_n, y\}$, on associe un symbole de constante distinct de tous les autres f_{φ} et une phrase

$$\forall x_1 \dots x_n \ (\exists y \varphi(x_1, \dots, x_n, y) \to \varphi(x_1, \dots, x_n, f_{\varphi}(x_1, \dots, x_n)))$$

qui est nommée l'axiome de Skolem pour φ .

Partant d'une théorie T sur le langage L, on définit une théorie T^{sk} , la théorie skolémisée de T, définie sur un langage étendu, comprenant les axiomes de T et les axiomes de Skolem de toutes les formules du langage.

- 2°) Montrer que si $\mathfrak A$ est un modèle de T, alors il existe une structure $\mathfrak A^{sk}$ qui est un modèle de T^{sk} et telle que les interprétations de formules de L dans $\mathfrak A^{sk}$ soient les mêmes que les interprétations correspondantes dans $\mathfrak A$.
- 3°) En déduire que, si ψ est une formule du langage L prouvable dans T^{sk} , alors ψ est prouvable dans T.

Cours de P. Lescanne -3/3- ÉNS Lyon – L3

¹Effectivement, ca ne veut rien dire.