
MPRI course 2-4-2

“Functional programming languages”

Exercises

Xavier Leroy

Part I: Operational semantics

Exercise I.1 (*) Prove theorem 2 (the unique decomposition theorem). Hint: use the fact that
a value cannot reduce.

Exercise I.2 (*) Check that the reduction rules for derived forms (let, if/then/else, fst,
snd) are valid.

Exercise I.3 (*) Consider a = 1 2. Does there exist a value v such that a⇒ v? Same question
for a′ = (λx. x x) (λx. x x). Do you see anything different between these two examples?

Exercise I.4 (**) As claimed in the proof of theorem 4, show that if a → b and b ⇒ v, then
a⇒ v. Hint: proceed by induction on the derivation of a→ b in SOS and by case analysis on the
last rule used to derive b⇒ v.

Exercise I.5 (**) We relax the (app-r) reduction rule as follows:

b→ b′
(app-r’)

a b→ a b′

That is, we allow reductions to take place on the right of an application, even if the left part of the
application is not yet reduced to a value.

1. Show by way of an example that the reduction relation is no longer deterministic: give three
terms a, a1, a2 such that a→ a1 and a→ a2 and a1 6= a2.

2. Check that theorems 3 and 4 (a ⇒ v if and only if a ∗→ v) still hold for this relaxed, non-
deterministic reduction relation. Conclude that the left-to-right evaluation order makes no
difference for terminating terms.

3. Give an example of a term that evaluates differently under the two reduction strategies (left-
to-right and non-deterministic).

1

Part II: Abstract machines

Exercise II.1 (**) A Krivine machine is hidden in the ZAM. Can you find it? More precisely,
define a compilation scheme N from λ-terms to ZAM instructions that implements call-by-name
evaluation of the source term.

Exercise II.2 (*) The C compilation schema for the ZAM is not mathematically precise: in the
application case, it is not 100% clear what the k in PUSHRETADDR(k) is, exactly. Reformulate the
compilation schema more precisely as a 2-argument function C(a, k), which should prepend to the
code k the instructions that evaluate the expression a and deposit its value on the top of the stack.

Exercise II.3 (**/***) How would you extend the ZAM and its compilation scheme to handle
if/then/else conditional expressions?

Exercise II.4 (**) Prove lemma 5 (the Progress lemma for Krivine’s machine).

Exercise II.5 (***) State and prove the analogues of the Simulation, Progress, Initial state
and Final state lemmas (lemmas 4–7 in the case of Krivine’s machine) for the HP calculator. Use
the notion of decompilation defined in the lecture notes and the following reduction semantics for
arithmetic expressions:

N1 +N2 → N (if N = N1 +N2) N1 −N2 → N (if N = N1 −N2)

a→ a′

a op b→ a′ op b

b→ b′

N op b→ N op b′

Exercise II.6 (**) Complete the proof of theorem 14 (if a⇒∞ then a reduces infinitely).

2

Part III: Program transformations

Exercise III.1 (*) How would you modify closure conversion so that it builds full closures rather
than minimal closures?

Exercise III.2 (***) Consider again closure conversion targetting a class-based object-oriented
language such as Java. (Slide 14.) How would you extend this transformation to efficiently handle
curried applications to 2 arguments? Hint: each closure becomes an object with 2 methods, apply
and apply2, performing applications to 1 and 2 arguments respectively.

Exercise III.3 (*) It has been proposed that Caml should be extended with a construct

lettry x = a in b with y → c

that behaves not at all like try (let x = a in b) with y → c, but as follows:

(lettry x = v in b with y → c) ε→ b[x← v]
(lettry x = raise v in b with y → c) ε→ c[y ← v]

In other terms, the exception handler with y → c catches exceptions arising during the evaluation
of a, but not those arising during evaluation of b. Extend the exception-returning conversion to
deal with this lettry construct.

Exercise III.4 (**) Give a natural semantics for references. Hint: the evaluation predicate has
the form a/s ⇒ v/s′ where s is the initial store at the beginning of evaluation and s′ is the final
store at the end of evaluation.

Exercise III.5 (**) What function is computed by the following expression?

let fact = ref (λn. 0) in
fact := (λn. if n = 0 then 1 else n * (!fact) (n-1));
!fact

Define a translation scheme from a functional language with recursive functions µf.λx.a to a func-
tional language with only plain functions λx.a and references. Hint: a fixpoint combinator would
do the job, but please use references instead.

Exercise III.6 (*) Define the CPS conversion of arithmetic operations a op b, constructor ap-
plications C(a1, . . . , an) and pattern-matchings match a with p1 | . . . | pn.

Exercise III.7 (***) Define a translation from exceptions to references + continuations. Hint:
use an imperative stack containing continuations corresponding to the with part of active try. . . with
constructs.

3

Part IV: Monads

Exercise IV.1 (**) Complete the proof of theorem 3 for a source language that includes ex-
ceptions (raise and try. . . with). To this end, you should prove that if a ⇒ raise v, then
[[a]] ≈ raise [[v]]v. (The first raise corresponds to an exception result in the natural semantics
for exception; the second raise is the corresponding operation of the exception monad.) What
additional hypotheses do you need on the ≈ relation? Are they satisfied?

Exercise IV.2 (**) Implement (without using monad transformers) a monad that combines
exceptions and continuations. Use the following representation for computations:

type α mon = (α→ answer)→ (exn→ answer)→ answer

That is, each computation takes two continuations as arguments: one to be called when the com-
putation terminates normally, the other to be called when it terminates early because an exception
is raised.

Exercise IV.3 (***) Extend the Concur monad transformer with synchronous communications
over channels, in the style of CCS. For simplicity, channels will be identified by strings and the
values exchanged over channels will be integers. Implement two additional operations

type channel = string
send: channel -> int -> unit mon
receive: channel -> int mon

A process doing send c n blocks until another process executes receive c for the same channel c.
Then, both processes restart; the send returns () while the receive returns the integer n coming
from the send.

4

