
MPRI course 2-4-2

“Functional programming languages”

Answers to the exercises

Xavier Leroy

Part I: Operational semantics

Exercise I.1 Note that terms that can reduce are necessarily applications a = a1 a2. This is
true for head reductions (the βv rule) and extends to reductions under contexts because non-trivial
contexts are also applications. Since values are not applications, it follows that values do not reduce.

Now, assume a = E1[a1] = E2[a2] where a1 and a2 reduce by head reduction and E1, E2 are
evaluation contexts. We show E1 = E2 and a1 = a2 by induction over the structure of a. By the
previous remark, a must be an application b c. We argue by case on whether b or c are applications.

• Case 1: b is an application. b is not a λ-abstraction, so a cannot head-reduce by βv, and
therefore we cannot have Ei = [] for i = 1, 2. Similarly, b is not a value, therefore we cannot
have Ei = b E′i. The only case that remains possible is Ei = E′i c for i = 1, 2. We therefore
have two decompositions b = E′1[a1] = E′2[a2]. Applying the induction hypothesis to b, which
is a strict subterm of a, it follows that a1 = a2 and E′1 = E′2, and therefore E1 = E2 as well.

• Case 2: b is not an application but c is. b cannot reduce, so the case Ei = E′i c is impossible.
c is not a value, so the case Ei = [] is also impossible. The only possibility is therefore that b
is a value and Ei = b E′i. The result follows from the induction hypothesis applied to c and
its two decompositions c = E′1[a1] = E′2[a2].

• Case 3: neither b nor c are applications. The only possibility is E1 = E2 = [] and a1 = a2 = a.

Exercise I.2 For each proposed rule a→ b, we expand the derived forms in a (written ≈ below),
perform reductions with the rules for the core constructs, then reintroduce derived forms in the
result when necessary. For the let rule, this gives:

(let x = v in a) ≈ (λx.a) v → a[x← v]

by βv-reduction. For if/then/else:

if true then a else b ≈ match True() with True()→ a | False()→ b

→ a

if false then a else b ≈ match False() with True()→ a | False()→ b

→ match False() with False()→ b

→ b

1

by match-reduction. Note that the second rule actually corresponds to two reductions in the base
language. Finally, for pairs and projections:

fst(v1, v2) ≈ (match Pair(v1, v2) with Pair(x1, x2)→ x1) → x1[x1 ← v1, x2 ← v2] = v1
snd(v1, v2) ≈ (match Pair(v1, v2) with Pair(x1, x2)→ x2) → x2[x1 ← v1, x2 ← v2] = v2

again by match reductions.

Exercise I.3 Assume 1 2 ⇒ v for some v. There is only one evaluation rule that can conclude
this:

1⇒ λx.c 2⇒ v′ c[x← v′]⇒ v

1 2⇒ v

but of course 1 evaluates only to 1 and not to any λ-abstraction.
Now, assume that we have a derivation a′ ⇒ v. By examination of the rules that can conclude

this derivation, it can only be of the following form:

λx.x⇒ λx.x λx.x⇒ λx.x

...

(x x)[x← λx.x] = a′ ⇒ v

(λx. x x) (λx. x x)⇒ v

Therefore, any derivation D of a′ ⇒ v contains a sub-derivation D′ of a′ ⇒ v that is strictly smaller
than D. Since derivations for the ⇒ predicate are finite, this is impossible.

The difference between these two examples is visible on their reduction sequences: a is an
erroneous evaluation (it is a value that does not reduce), while a′ reduces infinitely. The evaluation
relation does not hold in these two cases.

Exercise I.4 The base case for the induction is a = (λx.c) v′ → c[x← v′] = b. We can build the
following derivation of a⇒ v from that of b⇒ v:

λx.c⇒ λx.c v′ ⇒ v′ c[x← v′] = b⇒ v

a = (λx.c) v′ ⇒ v

using the fact that v′ ⇒ v′ for all values v′ (check it by case over v′).
The first inductive case is a = a′ c → b′ c = b where a′ → b′. The evaluation derivation for

b⇒ v is of the following form:

b′ ⇒ λx.d c⇒ v′ d[x← v′]⇒ v

b′ c⇒ v

Applying the induction hypothesis to the reduction a′ → b′ and the evaluation b′ ⇒ λx.d, it follows
that a′ ⇒ λx.d. We can therefore build the following derivation:

a′ ⇒ λx.d c⇒ v′ d[x← v′]⇒ v

a′ c⇒ v

2

which concludes a⇒ v as claimed.
The second inductive case is a = v′ a′ → v′ b′ = b where a′ → b′. The evaluation derivation for

b⇒ v is of the following form:

v′ ⇒ λx.c b′ ⇒ v′′ c[x← v′′]⇒ v

v′ b′ ⇒ v

Applying the induction hypothesis to the reduction a′ → b′ and the evaluation b′ ⇒ v′′, it follows
that a′ ⇒ v′′. We can therefore build the following derivation:

v′ ⇒ λx.c a′ ⇒ v′′ c[x← v′′]⇒ v

v′ a′ ⇒ v

which concludes a⇒ v as claimed.

Exercise I.5 For question 1, define I = λx.x and take a = (I I) (I I). We can reduce on the
left of the top-level application to a1 = I (I I). But we can also reduce on the right, obtaining
a2 = (I I) I.

For question 2, the reduction sequences built during the proof of theorem 3 happen to use only
left-to-right reductions, but remain valid with non-deterministic reductions. Concerning theorem 4,
the proof of the second inductive case (see exercise I.4) never uses the hypothesis that the left part
of the application is a value, therefore it remains valid if the reduction rule (app-r) is replaced by
(app-r’). We therefore have the following equivalences:

a
∗→ v with the left-to-right evaluation strategy

if and only if a⇒ v

if and only if a
∗→ v with the non-deterministic evaluation strategy.

Question 3: in light of question 2, we must look for a term that does not evaluate to a value,
but instead diverges or causes an error. An example is a = (1 2) ω, where ω is a term that reduces
infinitely. With left-to-right reductions, a cannot reduce and is not a value, therefore its evaluation
terminates immediately on an error. With non-deterministic reductions, we can choose to reduce
infinitely often in the argument part of the top-level evaluation, therefore observing divergence.

Part II: Abstract machines

Exercise II.1

N (n) = ACCESS(n); APPLY
N (λ.a) = GRAB;N (a)
N (a b) = CLOSURE(N (b));N (a)

We represent function arguments and values of variables by zero-argument closures, i.e. thunks.
The ACCESS instruction of Krivine’s machine is simulated in the ZAM by an ACCESS (which fetches
the thunk associated with the variable) followed by an APPLY (which jumps to this thunk, forcing
its evaluation). The GRAB ZAM instruction behaves like the GRAB of Krivine’s machine if we never
push a mark on the stack, which is the case in the compilation scheme above. Finally, the PUSH
instruction of Krivine’s machine and the CLOSURE instruction of the ZAM behave identically.

3

Exercise II.2 Quite simply:

C(n, k) = ACCESS(n); k
C(λ.a, k) = CLOSURE(T (a)); k

C(let a in b, k) = C(a, GRAB; C(b, ENDLET; k))
C(a a1 . . . an, k) = PUSHRETADDR(k); C(an, . . . C(a1, C(a, APPLY; k)))

The T schema is adjusted accordingly:

T (λ.a) = GRAB; T (a)
T (let a in b) = C(a, GRAB; T (b))
T (a a1 . . . an) = C(an, . . . C(a1, C(a, TAILAPPLY)))

T (a) = C(a, RETURN) (otherwise)

Exercise II.3 At the level of the instruction set, we can add a COND(c1, c2) instruction that tests
the boolean value at the top of the stack and continues execution with one of two possible instruction
sequences, c1 if the boolean is true, c2 otherwise. The transitions for this new instruction can be:

Machine state before Machine state after

Code Env Stack Code Env Stack

COND(c1, c2); c e true.s c1 e s

COND(c1, c2); c e false.s c2 e s

In the compilation scheme, the translation of if/then/else in tail-call position is straightforward:

T (if a then a1 else a2) = C(a, COND(T (a1), T (a2))

An if/then/else in non-tail-call position is more delicate. The naive approach just duplicates the
continuation code k in both arms of the conditional:

C(if a then a1 else a2, k) = C(a, COND(C(a1, k), C(a2, k)))

However, this can cause code size explosion if many conditionals are nested. Another approach
uses PUSHRETADDR and RETURN to share the continuation code k between both branches:

C(if a then a1 else a2, k) = PUSHRETADDR(k); C(a, COND(C(a1, RETURN), C(a2, RETURN)))

Yet another solution modifies the dynamic semantics (the transition rule) for COND, so that the
code c that follows the COND is not discarded, but magically appended to whatever arm is taken:

Machine state before Machine state after

Code Env Stack Code Env Stack

COND(c1, c2); c e true.s c1.c e s

COND(c1, c2); c e false.s c2.c e s

4

In this case, compilation without code duplication is straightforward:

C(if a then a1 else a2, k) = C(a, COND(C(a1, ε), C(a2, ε)); k)

However, it looks like the machine is generating new code sequences on the fly during execution,
which is not very realistic. To address this issue, “real” abstract machines (like Caml’s or Java’s)
introduce conditional and unconditional branch instructions that skip over a given number of in-
structions.

Exercise II.4 Since the machine state decompiles to a, the machine state is of the form

code = C(a′)
env = C(e′)

stack = C(a1[e1] . . . an[en])

and a = a′[e′] a1[e1] . . . an[en]. We now argue by case over a′:

1. a′ is a variable m. Since a can reduce, it must be the case that a′ ε→ e′(m), i.e. the m-th
element of e′ is defined. The machine code is C(a′) = ACCESS(m). The machine can perform
an ACCESS transition.

2. a′ is an abstraction λ.a′′. In this case, n > 0, otherwise a could not reduce. The code is
C(a′) = GRAB; C(a′′) and the stack is not empty, therefore the machine can perform a GRAB
transition.

3. a′ is an application b c. The code is C(a′) = PUSH(C(b)); C(c). The machine can perform a
PUSH transition.

Exercise II.5 We write D(c, S) = a to mean that the symbolic machine, started in code c and
symbolic stack S, stops on the configuration (ε, a.ε). By definition of the transitions of the symbolic
machine, this partial function D satisfies the following equations:

D(ε, a.ε) = a

D(CONST(N).c, S) = D(c,N.S)
D(ADD.c, b.a.S) = D(c, (a+ b).S)
D(SUB.c, b.a.S) = D(c, (a− b).S)

By definition of decompilation, the concrete machine state (c, s) decompiles to a iff D(c, s) = a.
We start by the following technical lemma that shows the compatibility between symbolic

execution and reduction of one expression contained in the symbolic stack.

Lemma 1 (Compatibility) Let s be a stack of integer values, a an expression and S a stack
of expressions. Assume that D(c, S.a.s) = r and that a → a′. Then, there exists r′ such that
D(c, S.a′.s) = r′ and r → r′.

5

Proof: By induction on c and case analysis on the first instruction and on S. The interesting case
is c = ADD; c′.

If S is empty, we have s = n.s′ for some n and s′, and r = D(ADD; c′, a.n.s′) = D(c′, (n+ a).s′).
Note that n+ a→ n+ a′. By induction hypothesis, it follows that there exists r′ such that r → r′

and D(c′, (n+a′).s′) = r′. This is the desired result, since D(ADD; c′, a′.n.s′) = D(c′, (n+a′).s′) = r′.
If S = b.ε is empty, we have r = D(ADD; c′, b.a.s) = D(c′, (a + b).s′). Note that a + b → a′ + b.

The result follows by induction hypothesis.
If S = b1.b2.S

′, we have r = D(ADD; c′, b1.b2.S′.a.s) = D(c′, (b2 + b1).S′.a.s′). The result follows
by induction hypothesis. 2

Lemma 2 (Simulation) If the HP calculator performs a transition from (c, s) to (c′, s′), and
D(c, s) = a, there exists a′ such that a ∗→ a′ and D(c′, s′) = a′.

Proof: By case analysis on the transition.

Case CONST transition: (CONST(N); c, s)→ (c, N.s). We haveD(CONST(N); c, s) = D(c, N.s) since
the symbolic machine can perform the same transition. Therefore by definition of decompilation,
the two states decompile to the same term. The result follows by taking a′ = a.

Case ADD transition: (ADD; c, n2.n1.s) → (c, n.s) where the integer n is the sum of n1 and n2.
We have a = D(ADD; c, n2.n1.s) = D(c, b.s) where b is the expression n1 + n2. Since b → n, the
compatibility lemma therefore shows the existence of a′ such that a→ a′ and D(c, n.s) = a′. This
is the desired result.

Case SUB transition: similar to the previous case. 2

Lemma 3 (Progress) If D(c, s) = a and a can reduce, the machine can perform one transition
from the state (c, s).

Proof: By case on the code c. If c is empty, by definition of decompilation we must have s = n.ε
and a = n for some integer n, which contradicts the hypothesis that a reduces. If c starts with a
CONST(N) instruction, the machine can perform a CONST transition. If c starts with an ADD or SUB
instruction, the stack s must contain at least two elements, otherwise the symbolic machine would
get stuck and the decompilation of (c, s) would be undefined. Therefore, the concrete machine can
perform an ADD or SUB transition. 2

Lemma 4 (Initial state) The state (C(a), ε) decompiles to a.

Proof: We show by induction on a that the symbolic machine can perform transitions from
(C(a).k, S) to (k, a.S) for all codes k and symbolic stack S. (The proof is similar to that of
theorem 10 in lecture II.) The result follows by taking k = ε and S = ε. 2

Lemma 5 (Final state) The state (ε, n.ε) decompiles to the expression n.

Proof: Obvious by definition of decompilation. 2

6

Exercise II.6 We show that for all n and a, if a⇒∞, there exists a reduction sequence of length
≥ n starting from a. The proof is by induction over n and sub-induction over a. By hypothesis
a⇒∞, there are three cases to consider:

Case a = b c and b ⇒ ∞. By induction hypothesis applied to n and b, we have a reduction
sequence b ∗→ b′ of length ≥ n. Therefore, a = b c

∗→ b′ c is a reduction sequence of length ≥ n.

Case a = b c and b ⇒ v and c ⇒ ∞. By theorem 3 of lecture I, b ∗→ v. By induction hypothesis
applied to n and c, we have a reduction sequence c ∗→ c′ of length ≥ n. Therefore, a = b c

∗→ v c
∗→

v c′ is a reduction sequence of length ≥ n.

Case a = b c and b ⇒ λx.d and c ⇒ v and d[x ← v] ⇒ ∞. By theorem 3 of lecture I, a ∗→ λx.d
and b

∗→ v. By induction hypothesis applied to n− 1 and d[x← v], we have a reduction sequence
d[x← v] ∗→ e of length ≥ n− 1. Therefore,

a = b c
∗→ (λx.d) c ∗→ (λx.d) v → d[x← v] ∗→ e

is a reduction sequence of length ≥ 1 + (n− 1) = n.

Part III: Program transformations

Exercise III.1 The translation rule for λ-abstraction needs to be changed:

[[λx.a]] = tuple(λc, x. let x1 = field1(c) in
. . .
let xn = fieldn(c) in
[[a]],

x1, . . . , xn)

so that the variables x1, . . . , xn are not just the free variables of λx.a, but all variables currently
in scope. To do this, the translation scheme should take the list of such variables as an additional
argument V :

[[x]]V = x

[[λx.a]]V = tuple(λc, x. let x1 = field1(c) in
. . .
let xn = fieldn(c) in
[[a]]x.V ,

x1, . . . , xn)
where V = x1 . . . xn

[[a b]]V = let c = [[a]]V in field0(c)(c, [[b]]V)
[[let x = a in b]]V = let x = [[a]]V in [[b]]x.V

Exercise III.2 For a two-argument function λx.λx′.a, the two-argument method apply2 will
be defined as return [[a]]. The one-argument method apply will build an intermediate closure
(corresponding to λx′.a) which, when applied, will call back to apply2.

7

Symmetrically, for a one-argument function λx.a, we define apply as return [[a]] and apply2
as calling apply on the first argument, then applying again the result to the second argument.

We encapsulate this construction in the following generic classes, from which we will inherit
later:

abstract class Closure {
abstract Object apply(Object arg);
Object apply2(Object arg1, Object arg2) {

return ((Closure)(apply(arg1))).apply(arg2);
}

}
abstract class Closure2 extends Closure {
Object apply(Object arg) {

return new PartialApplication(this, arg);
}
abstract Object apply2(Object arg1, Object arg2);

}
class PartialApplication extends Closure {
Closure2 fn; Object arg1;
PartialApplication(Closure2 fn, Object arg1) {

this.fn = fn; this.arg1 = arg1;
}
Object apply(Object arg2) {

return fn.apply2(arg1, arg2);
}

}

Now, the class generated for a two-argument function λx.λy.a of free variables x1, . . . , xn is

class Cλx.λy.a extends Closure2 {
Object x1; ...; Object xn;
Cλx.λy.a(Object x1, ..., Object xn) {

this.x1 = x1; ...; this.xn = xn;
}
Object apply2(Object x, Object y) { return [[a]]; }

}

The class generated for a one-argument function λx.a of free variables x1, . . . , xn is

class Cλx.λy.a extends Closure {
Object x1; ...; Object xn;
Cλx.a(Object x1, ..., Object xn) {

this.x1 = x1; ...; this.xn = xn;
}
Object apply(Object x) { return [[a]]; }

}

8

Finally, the translation of expressions receives one additional case for curried applications to two
arguments:

[[a b c]] = [[a]].apply2([[b]], [[c]])

Exercise III.3 Quite simply,

[[lettry x = a in b with y → c]] = match [[a]] with V (x)→ [[b]] | E(y)→ [[c]]

Note that try a with x→ b can then be viewed as syntactic sugar for

lettry y = a in y with x→ b

Exercise III.4

N / s⇒ N / s λx.a / s⇒ λx.a / s

a / s⇒ λx.c / s1 b / s1 ⇒ v′ / s2 c[x← v′] / s2 ⇒ v / s′

a b / s⇒ v / s′

a / s⇒ v / s′

ref a / s⇒ ` / s′ + ` 7→ v

a / s⇒ ` / s′

!a / s⇒ s′(`) / s′

a / s⇒ ` / s1 b / s1 ⇒ v / s′

(a := b) / s⇒ () / s′ + ` 7→ v

Exercise III.5 After the assignment

fact := λn. if n = 0 then 1 else n * (!fact) (n-1)

the reference fact contains a function which, when applied to n 6= 0, will apply the current contents
of fact, that is, itself, to n − 1. Therefore, the function !fact will compute the factorial of its
argument.

More generally, a recursive function µf.λx.a can be encoded as

let f = ref (λx. Ω) in
f := (λx. a[f ←!f]);
!f

In an untyped setting, any expression Ω will do. In a typed language, Ω must have the same type
as the function body a. A simple solution is to define Ω as an infinite loop (of type ∀α.α) or as
raise of an exception (idem).

Exercise III.6

[[a op b]] = λk. [[a]] (λva. [[b]] (λvb. k(va op vb)))
[[C(a1, . . . , an)]] = λk. [[a1]] (λv1. . . . [[an]] (λvn. k(C(v1, . . . , vn))))

[[match a with C(x1, . . . , xn)→ b | . . .]]
= λk. [[a]] (λv. match v with C(x1, . . . , xn)→ [[b]] k | . . .

9

Exercise III.7 We use a global reference to maintain a stack of continuations expecting exception
values.

let exn_handlers = ref ([]: exn cont list)

let push_handler k =
exn_handlers := k :: !exn_handlers

let pop_handler () =
match !exn_handlers with
| [] -> failwith "abort on uncaught exception"
| k :: rem -> exn_handlers := rem; k

At any time, the top of this stack is the continuation that should be invoked to raise an exception.

let raise exn =
throw (pop_handler ()) exn

Now, we should arrange that the continuation at the top of the exception stack always branches
one way or another to the with part of the nearest try. . . with. We encode try. . . with as a call
to a library function trywith:

[[raise a]] = raise a

[[try a with x→ b]] = trywith (λ .a) (λx.b)

The tricky part is the definition of the trywith function. In pseudo-code:

let trywith a b =
push_handler <a continuation that evaluates b of its

argument and returns from trywith>;
let res = a () in
pop_handler ();
res

This way, if a () evaluates without raising exceptions, we push a continuation that will never
be called, compute a (), pop the continuation and return the result of a (). If a () raises an
exception e, the continuation will be popped and invoked, causing b e to be evaluated and its value
returned as the result of the trywith.

The really tricky part is to capture the right continuation to push on the stack. The only way
is to pretend we are going to apply b to some argument, and do a callcc in this argument:

b (callcc (fun k -> push_handler k; ...))

However, we do not want to evaluate this application of b if the continuation k is not thrown. We
therefore use a second callcc/throw to jump over the application of b in the case where a ()
terminates normally:

callcc (fun k1 -> b (callcc (fun k -> push_handler k; ...; throw k1 ...)))

10

We can now fill the ..., obtaining:

let trywith a b =
callcc (fun k1 ->

b (callcc (fun k2 ->
push_handler k2;
let res = a () in
pop_handler ();
throw k1 res)))

Part IV: Monads

Exercise IV.1 The precise statement of the theorem we are going to prove is

Theorem 1 If a⇒ r in the natural semantics for exceptions, then [[a]] ≈ [[r]]r, where [[r]]r is defined
by

[[v]]r = ret [[v]]v [[raise v]]r = raise [[v]]v

The proof is by induction on a derivation of a ⇒ r and case analysis on the last rule used. The
cases where a is a core language construct that evaluates to a value v have already been proved in
the generic proof given in the slides.

Case (try b with x→ c)⇒ v because b⇒ v: by induction hypothesis, [[b]] ≈ ret [[v]]v. We have:

[[try a with x→ b]] = trywith [[a]] (λx.[[b]])
≈ trywith (ret [[v]]v) (λx.[[b]])
≈ ret [[v]]v

assuming that trywith satisfies hypotheses similar to those of bind, namely

5 trywith (ret v) (λx.b) ≈ ret v

6 trywith a (λx.b) ≈ trywith a′ (λx.b) if a ≈ a′

Case (try b with x → c) ⇒ r because b ⇒ raise v and c[x ← v] ⇒ r. By induction hypothesis,
[[b]] ≈ raise v′ and [[c[x← v]]] ≈ [[r]]r.

[[try b with x→ c]] = trywith [[b]] (λx.[[c]])
≈ trywith (raise [[v]]v) (λx.[[c]])
≈ [[c]][x← [[v]]v] = [[c[x← v]]]
≈ [[r]]r

with one additional hypothesis:

7 trywith (raise v) (λx.b) ≈ b[x← v]

11

Case b c⇒ raise v because b⇒ raise v. By induction hypothesis, [[b]] ≈ raise v′.

[[b c]] = bind [[b]] (λvb. . . .)
≈ bind (raise [[v]]v) (λvb. . . .)
≈ raise [[v]]v

using the hypothesis

8 bind (raise v) (λx.b) ≈ raise v

Case b c⇒ raise v because b⇒ v′ and c⇒ raise v.

[[b c]] = bind [[b]] (λvb. bind [[c]] (λvc . . .))
≈ bind (ret [[v′]]v) (λvb. bind [[c]] (λvc . . .))
≈ bind [[c]] (λvc . . .))
≈ bind (raise [[v]]v) (λvc . . .))
≈ raise [[v]]v

Other exception propagation rules are similar. It is easy to check hypotheses 5–8 by inspection of
the definitions of trywith and bind.

Exercise IV.2

module ContAndException = struct
type answer = int
type α m = (α -> answer) -> (exn -> answer) -> answer
let return (x: α) : α m = fun k1 k2 -> k1 x
let bind (x: α m) (f: α -> ’b m) : ’b m =

fun k1 k2 -> x (fun vx -> f vx k1 k2) k2
let raise exn : α m =

fun k1 k2 -> k2 exn
let trywith (x : α m) (f: exn -> α m) : α m =
fun k1 k2 -> x k1 (fun e -> f e k1 k2)

type α cont = α -> answer
let callcc (f: α cont -> α m) : α m =

fun k1 k2 -> f k1 k1 k2
let throw (c: α cont) (x: α) : ’b m =

fun k1 k2 -> c x
let run (c: answer m) = c (fun x -> x) (fun _ -> failwith "uncaught exn")

end

Exercise IV.3 The teacher is still working on this one.

12

