
An informal guide to
picking fresh names

François Pottier

January 19, 2007

1 Introduction

These draft course notes provide the proofs of a few key lemmas concerning Damas and Milner’s type
system, and attempt to explain, clearly but informally, how to reason “up toα-conversion”, that is,
where and why it is possible to “pick sufficiently fresh names”.

Figure1 presents Damas and Milner’s type system [3].

2 Types, type schemes, type environments

The syntax of types, type schemes, and type environments is as follows:

τ ::= α | τ → τ
σ ::= ∀ᾱ.τ
Γ ::= ε | (Γ;x : τ)

3 Renamings and substitutions

Definition 3.1 A renamingρ is a total, bijective mapping of type variables to type variables whose
domain is finite. Thedomainof ϕ is the set of the type variablesα such thatρ(α) 6= α. Thesupportof
ρ is its domain. ¦

Lemma 3.2 Γ ` e : σ impliesρ(Γ) ` e : ρ(σ). Furthermore, for every derivation of the former
jugement, there exists a derivation of the latter judgement with the same structure. ¦

Proof. A meta-theoretic argument suffices here. None of the typing rules that define Damas and Mil-
ner’s type system is sensitive to the choice of type variable names, so the inductive predicate that these
rules define must be preserved by renamings. This is what Gabbay and Pitts refer to asequivari-
ance[1]. ¤

DM-VAR

Γ(x) = σ

Γ ` x : σ

DM-ABS

Γ;x : τ ` e : τ ′

Γ ` λx.e : τ → τ ′

DM-APP

Γ ` e1 : τ → τ ′ Γ ` e2 : τ

Γ ` e1 e2 : τ ′

DM-LET

Γ ` e1 : σ Γ;x : σ ` e2 : τ

Γ ` let x = e1 in e2 : τ

DM-GEN

Γ ` e : τ ᾱ # Γ
Γ ` e : ∀ᾱ.τ

DM-INST

Γ ` e : ∀ᾱ.τ

Γ ` e : [ᾱ 7→ ~τ ]τ

Figure 1:Damas and Milner’s type system

1



Definition 3.3 A substitutionϕ is a total mapping of type variables to types whose domain is finite. The
domainof ϕ is the set of the type variablesα such thatϕ(α) 6= α. Thecodomainof ϕ is the set of the
type variables that appear free in the image of its domain. Thesupportof ϕ is the union of its domain
and codomain. ¦

As announced above, a type variableα is consideredfresh forϕ, which I writeα # ϕ, if and only if
α is not in the support ofϕ.

Lemma 3.4 ᾱ # ϕ andᾱ # α imply ᾱ # ϕ(α). ¦

Proof. If α is in the domain ofϕ, then, by definition, the free type variables ofϕ(α) are in the codomain
of ϕ, so the first hypothesis implies the goal. If, on the other hand,α is not in the domain ofϕ, then
ϕ(α) is α, so the second hypothesis is the goal. ¤

A substitution is also viewed as a mapping of types to types, of type schemes to type schemes, and
of type environments to type environments, as follows:

ϕ(τ1 → τ2) = ϕ(τ1) → ϕ(τ2)
ϕ(∀ᾱ.τ) = ∀ᾱ.ϕ(τ) if ᾱ # ϕ

ϕ(ε) = ε
ϕ(Γ;x : τ) = ϕ(Γ); x : ϕ(τ)

4 The type substitution lemma

Lemma 4.1 Γ ` e : τ impliesϕ(Γ) ` e : ϕ(τ). Furthermore, for every derivation of the former
jugement, there exists a derivation of the latter judgement with the same structure. ¦

The proof of this lemma is by structural induction over the derivation of the judgementΓ ` e : τ .
In each case, oneinvertsthe rule, thus obtaining access to its premises; then, oneinvokesthe induction
hypothesis, applying it to one of the premises; finally, onebuildsa new instance of the rule. The fact
that one builds a new instance of thesamerule clearly shows that the lemma is structure-preserving.
The proof is very straightforward in all cases, except in casesDM-GEN andDM-INST, where one must
be careful to “pick sufficiently fresh names”. These two cases (and only these two) are detailed below.
In each of these two cases, the reasoning is in two steps. First, one examines the ideal situation where
a suitable freshness hypothesis is available. Then, one shows that, in the general situation, a renaming
step allows obtaining such a hypothesis. In research papers, the second step is usually omitted – the
reader is trusted to convince herself that the freshness hypothesis can indeed be assumed “without loss
of generality”.

Proof. I consider only the two cases announced above.

◦ CaseDM-GEN. The hypothesis isΓ ` e : ∀ᾱ.τ , and is obtained as the conclusion of an instance
of DM-GEN whose premises areΓ ` e : τ andᾱ # Γ. The goal isϕ(Γ) ` e : ϕ(∀ᾱ.τ).

Step 1. Let us assume the freshness hypothesisᾱ # ϕ. Invoking the induction hypothesis yields
ϕ(Γ) ` e : ϕ(τ). Besides, the freshness hypothesisᾱ # ϕ, together with the premisēα # Γ, imply
ᾱ # ϕ(Γ) (Lemma3.4). Thus, we can build a new instance ofDM-GEN, whose conclusion isϕ(Γ) `
e : ∀ᾱ.ϕ(τ). Thanks to the freshness hypothesis, this isϕ(Γ) ` e : ϕ(∀ᾱ.τ)—that is, the goal.

Step 2. Now, what when the freshness hypothesis is not met? Pick a vector of distinct type vari-
ablesβ̄, whose length is the same as that ofᾱ, such that̄β is fresh for the judgementΓ ` e : ∀ᾱ.τ (that
is, β̄ # Γ andβ̄ # ∀ᾱ.τ ) andβ̄ satisfies the desired freshness hypothesis (that is,β̄ # ϕ). Let ρ be the
renaming(ᾱ β̄), that is, the bijective mapping that swapsᾱ and β̄ and leaves all other type variables
unaffected.

Now, notice that alsōα is fresh for the judgementΓ ` e : ∀ᾱ.τ (that is, bothᾱ # Γ andᾱ # ∀ᾱ.τ
hold, the former by hypothesis and the latter by construction). Since bothᾱ and β̄ are fresh for this
judgement, there follows, by definition ofρ, thatρ preserves this judgement (that is,ρ(Γ) = Γ and
ρ(∀ᾱ.τ) = ∀ᾱ.τ ).

2



By Lemma3.2, applyingρ to the derivation of this judgement yields another valid derivation with
the same structure, and, by the above remarks, it is a derivation of the same judgement. By construction,
this new derivation ends with an instance ofDM-GEN whose premises areΓ ` e : ρ(τ) andβ̄ #Γ. This
instance ofDM-GEN satisfies the freshness hypothesis that was assumed in step 1.

◦ CaseDM-INST. The hypothesis isΓ ` e : [ᾱ 7→ ~τ ]τ , and is obtained as the conclusion of an
instance ofDM-INST whose premise isΓ ` e : ∀ᾱ.τ . The goal isϕ(Γ) ` e : ϕ([ᾱ 7→ ~τ ]τ).

Step 1. Let us assume the freshness hypothesisᾱ # ϕ. Invoking the induction hypothesis yields
ϕ(Γ) ` e : ϕ(∀ᾱ.τ), which, by the freshness hypothesis, can be writtenϕ(Γ) ` e : ∀ᾱ.ϕ(τ). Let us
build a new instance ofDM-INST, whose conclusion isϕ(Γ) ` e : [ᾱ 7→ ϕ(~τ)]ϕ(τ). I claim that this
is the goal. To establish this claim, it suffices to check that the substitutionsϕ1 = ϕ ◦ [ᾱ 7→ ~τ ] and
ϕ2 = [ᾱ 7→ ϕ(~τ)] ◦ϕ coincide. This is done by applying both substitutions to an arbitrary variableα. I
distinguish two sub-cases.

Sub-caseα ∈ ᾱ. For some indexi, α is αi, thei-th element of the vector̄α. Then,ϕ1(α) is ϕ(τi),
whereτi is thei-th element of the vector~τ . Besides,α ∈ ᾱ andᾱ # ϕ imply α # ϕ, soα is not in the
domain ofϕ, soϕ(α) is α. There follows thatϕ2(α) is alsoϕ(τi).

Sub-caseα 6∈ ᾱ. Then,ϕ1(α) is ϕ(α). Besides,̄α # ϕ andᾱ # α imply ᾱ # ϕ(α), which implies
thatϕ2(α) is ϕ(α).

Step 2. Now, what when the freshness hypothesis is not met? Pick a vector of distinct type vari-
ablesβ̄, whose length is the same as that ofᾱ, such that̄β is fresh for∀ᾱ.τ andβ̄ satisfies the desired
freshness hypothesis (that is,β̄ # ϕ). Let ρ be the renaming(ᾱ β̄).

Because both̄α andβ̄ are fresh for the type scheme∀ᾱ.τ , ρ is fresh for∀ᾱ.τ as well. This implies
ρ(∀ᾱ.τ) = ∀ᾱ.τ , which can be written∀β̄.ρ(τ) = ∀ᾱ.τ . In short, the bound variables of the type
scheme can be changed from̄α to β̄ via anα-conversion step.

Furthermore, I claim that the type[ᾱ 7→ ~τ ]τ can also be written[β̄ 7→ ~τ ]ρ(τ). To prove this,
it suffices to check that the substitutions[ᾱ 7→ ~τ ] and [β̄ 7→ ~τ ] ◦ ρ coincide when applied to a type
variableα that appears free inτ . As above, I distinguish two sub-cases. If, for some indexi, α is αi,
the i-th element of the vector̄α, then it is clear that both substitutions mapα to τi, thei-th element of
the vector~τ . If, on the other hand,α is not inᾱ, thenα appears free in∀ᾱ.τ , which, becausēβ is fresh
for ∀ᾱ.τ , means thatα is not inβ̄. It is then clear that both substitutions mapα to itself.

By these two remarks, our instance ofDM-INST has premiseΓ ` e : ∀β̄.ρ(τ) and conclusion
Γ ` e : [β̄ 7→ ~τ ]ρ(τ). When viewed in this manner, it satisfies the freshness hypothesis that was
assumed in step 1. ¤

It is somewhat discomforting that the renaming arguments (the “step 2”s), when written out in full,
like above, are quite complex, yet are usually omitted – only the central arguments (the “step 1”s) are
written on paper. Expert readers are usually able to form an intuition for which freshness hypotheses
are reasonable and which are not. In caseDM-GEN, the intuitive reason whȳα can be picked fresh
is that it does not appear free in the conclusion of the rule, so that a renaming of the entire derivation
does not affect the conclusion. In caseDM-INST, the intuitive reason is that̄α is mute both in the
premise (where it is universally bound) and in the conclusion (where it is substituted out), so that a
local α-conversion step suffices – no global renaming of the derivation is even required. In practice, it
is useful for researchers to form this kind of intuition. Yet, mistakes remain possible, so that, ideally,
reasoning up to freshness hypotheses should be machine-checked. See, for instance, Pitts [2] for a
rigorous development of recursion and induction principles up to freshness hypotheses.

References

[1] Murdoch J. Gabbay and Andrew M. Pitts.A new approach to abstract syntax with variable binding.
Formal Aspects of Computing, 13(3–5):341–363, July 2002.

[2] Andrew M. Pitts.Alpha-structural recursion and induction. Journal of the ACM, 53:459–506, 2006.

3

http://www.cl.cam.ac.uk/~amp12/papers/newaas/newaas-jv.pdf
http://www.cl.cam.ac.uk/~amp12/papers/alpsri/alpsri.pdf


[3] François Pottier and Didier Ŕemy. The essence of ML type inference. In Benjamin C. Pierce, editor,
Advanced Topics in Types and Programming Languages, chapter 10, pages 389–489. MIT Press,
2005.

4


	Introduction
	Types, type schemes, type environments
	Renamings and substitutions
	The type substitution lemma

