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Chapitre 1

Introduction

These notes intend to provide an introduction to the computational geometry of surfaces. The main mo-
tivation is to provide effective algorithms to construct piece-wise (PL) approximations of surfaces. Instead
of surveying the many approaches that have been proposed in the literature, we focus on provably correct
methods and, among them, on methods based on a fundamental data structure that has been extensively
studied in computational geometry, the Voronoi diagram of a finite set of points. Given n points (also called
sites) of R

d, the associated Voronoi diagram subdivides R
d into regions, each region consisting of the points

of R
d that are closer to one of the sites.

In a first part (sections 2-4), we introduce Voronoi diagrams and their dual Delaunay triangulations. We
establish a connexion between Voronoi diagrams and polytopes that allows to derive tight combinatorial
bounds and efficient algorithms to construct Voronoi diagrams. This first part is a (very brief) introduction
to computational geometry. The interested reader will find more material in the textbooks devoted to the
subject [12, 13, 19, 24].

In a second part (sections 5-7.5), we show how Voronoi diagrams and Delaunay triangulations can be used
to sample and approximate a surface. The main tool is the concept of Delaunay triangulation restricted to a
surface. Under some sample conditions, we will show that the restricted Delaunay triangulation of a surface
S is a good approximation of S, both in a topological and in a geometric sense. We will present and analyze
an algorithm to compute such an approximation, and present some results.

Notations : We identify a point x ∈ R
d and the vector of its coordinates. We note x · y the dot product

and x2 = x · x = ‖x‖2 the squared euclidean norm of x. B(c, r) denotes the ball of center c and radius r,
aff(f) the affine hull of f .

Remark : The latest version of these notes can be downloaded

7
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ftp ://ftp-sop.inria.fr/geometrica/boissonnat/notes de cours.pdf

All comments are welcome and can be addressed to Jean-Daniel.Boissonnat@sophia.inria.fr



Chapitre 2

Convex hulls

2.1 Simplices and complexes

A linear combination of k + 1 points {p0, . . . , pk} is a weighted sum of points

k
∑

i=0

λi pi, with

k
∑

i=0

λi = 1.

We say that the k + 1 points are affinely independent if the space generated by the affine combinations of
these points has dimension k.

We call k-simplex of R
d the convex hull of k + 1 points that are affinely independent, i.e. the set of points

satisfying
k
∑

i=0

λi pi, with

k
∑

i=0

λi = 1 and λi ≥ 0.

A k-simplex s is a simplex such that the smallest affine subspace that contains s is of dimension k. A
0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a triangle, a 3-simplex is a tetrahedron.
The faces of a simplex are simplices of lower dimensions. The k-faces of a l-simplex s, l > k, are obtained
by taking the convex hull of all subsets of k + 1 vertices of s. We note g ≺ f if g is a face of f .

If the points of a finite point set E are in general position, meaning that no subset of k+ 2 points belong to
an affine space of dimension k, for k = 0, . . . , d− 1, all the faces of conv(E) are simplices.

A simplicial complex K is a finite set of simplices such that

1. if f ∈ K and g ≺ f , then g ∈ K
2. if f, g ∈ K and f ∩ g = h 6= ∅, then h ≺ f and h ≺ g.

9
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The dimension of K is the maximal dimension of its faces. If the dimension of K is k, we say that K is a
k-complex.

A cell complex C is defined as a simplicial complex except that the faces may be general convex polyhedra
that are not restricted to be simplices.

2.2 Convex hulls

The convex hull conv(E) of a finite set of points E is the smallest convex set (for the inclusion relation) that
contains E. conv(E) can alternatively be defined as the intersection of a finite number of half spaces. We
say that a hyperplane h supports conv(E) if h∩E 6= ∅ and if E belongs to one of the two half spaces defined
by h. We note h− this half-space. conv(E) is the intersection of all such half-spaces h−. The boundary of
conv(E) is a cell complex whose faces are the convex hulls of E ∩ h for all supporting hyperplanes h. The
vertices of conv(E) are the points of E. When the points are in general position, all the faces of conv(E)
are simplices. This will be assumed in the sequel.

2.2.1 The planar case

conv(E) will be represented by a circular list L whose elements are the vertices of conv(E) sorted in coun-
terclockwise order. The numerical operations that will be used are comparing two numbers, and computing
the orientation of a triangle, which reduces to evaluating the sign of a wedge product

orient(pipjpk) = (pi − pj) ∧ (pi − pk) =

∣

∣

∣

∣

1 1 1
pi pj pk

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 1 1
xi xj xk
yi yj yk

∣

∣

∣

∣

∣

∣

.

orient(pipjpk) is 0 when pi, pj and pk are colinear, positive if the triangle pipjpk is oriented positively
(counterclockwise), negative if pipjpk is oriented clockwise.

Observe that the output of the numerical operations above belongs to the discrete set {−, 0,+}. We call
them predicates. The orientation predicate is mandatory. Comparisons are not necessary but make things
easier.

2.2.2 Convex hulls in R
3

A vertex s of conv(E) is represented by a pointer to the corresponding point point(s). Each vertex points
to one of its incident facets. Each facet of conv(E) has three pointers to its 3 vertices p1, . . . , p3 and three

pointers to its three incident facets, f1, . . . , f3. By convention, fi is the facet that has not pi as a vertex.
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The important predicate is still the orientation predicate

orient(pi, pj, pk, pl) =

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
xi xj xk xl
yi yj yk yl
zi zj zk zl

∣

∣

∣

∣

∣

∣

∣

∣

= ((pj − pi) ∧ (pk − pi)) · (pl − pi).

If orient(pi, pj , pk, pl) = 0, the points pi, pj , pk, pl are coplanar.

We require, in the sequel, that the convex hull is oriented, meaning that all its facets are oriented negatively.
A facet f = pipjpk is oriented negatively if, for any p ∈ E, orient(pi, pj, pk, p) < 0.

2.2.3 In higher dimensions

A simplex pi0 . . . pid is oriented positively, negatively or is degenerate (the affine subspace generated by its
vertices has dimension < d) whether the determinant of the (d+ 1)× (d+ 1) matrix is positive, negative or
zero

orient(pi0 , . . . , pid) = sign

∣

∣

∣

∣

1 . . . 1
pi0 . . . pid

∣

∣

∣

∣

= sign|pi1 − pi0 . . . pid − pi0 |

A geometric interpretation that will be useful is the following. Let us note h the hyperplane passing through
pi0 , . . . , pid−1

and π(p) the projection of point p onto xid = 0. If h is not vertical and if

orient(π(pi0), . . . , π(pid−1
)) > 0,

orient(pi0 , . . . , pid) is > 0, < 0 or 0 whether the point pid is above, below or in h.
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2.3 Space of lines and duality

Let h be a non vertical line of R
2 of equation y = ax − b. We associate to h the dual point h∗ = (a, b).

Conversely, to point p = (x, y), we associate the dual line p∗ = {(a, b) : b = xa − y}. Note that p∗ consists
of the points dual to the lines passing through p.

The mapping ∗

– is involutive and thus is bijective : h∗∗ = h and p∗∗ = p

– preserves incidences :

p = (x, y) ∈ h⇐⇒ y = ax− b⇐⇒ b = xa− y ⇐⇒ h∗ ∈ p∗.
Moreover, if h+ = {(x, y) : y > ax− b}, the mapping ∗

– reverses inclusions
p ∈ h+ ⇐⇒ h∗ ∈ p∗+.

Let us consider a set H of n lines h1, . . . , hn and note P the (unbounded) polygon that is the intersection
of the half-planes h+

i . Each vertex s of P is the intersection point of two lines hi and hj , and s lies above
all the other lines hk, k 6= i, j. The dual point s∗ of s is therefore the line lij = (h∗i h

∗
j ). Moreover, by the

inclusion-reversing property of the mapping ∗, no point of H∗ = {h∗1, . . . , h∗n} lie below lij . It follows that
lij supports the lower convex hull of H∗, i.e. the set of the faces of the convex hull of H ∗ whose supporting
hyperplanes are not above any point of H∗.

s

h1
h2 *

h3

h
∗
3

h∗2

h
∗
1

Fig. 2.1 – Point-line duality.

In this way, we reduce the construction of P to the construction of a lower convex hull.

In higher dimensions, we can proceed in a similar way and establish a dual mapping between points and
hyperplanes, and therefore between convex hulls and intersections of half-planes.

Let h be a non vertical hyperplane of R
d of equation xd = a · x − b, where x = (x1, . . . , xd−1) ∈ R

d−1. We
associate to h the dual point h∗ = (a, b) of R

d. Conversely, to a point p = (x, xd) ∈ R
d−1 × R, we associate

the dual hyperplane p∗ = {(a, b) ∈ R
d−1 × R : b = x · a− xd}.
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Consider now a set of n hyperplanes h1, . . . , hn and note P the (unbounded) polyhedron that is the inter-
section of the half-planes h+

i . Let f be a face of P and assume without loss of generality that h1, . . . , hk+1

are the k + 1 hyperplanes that contain f . If p denotes a point of R
d, we deduce from the discussion above

p ∈ h1 ∩ . . . ∩ hk+1 ⇐⇒ h∗1, . . . , h
∗
k+1 ∈ p∗. (2.1)

Moreover, if p ∈ f , p ∈ h+
i for all i = 1, . . . , n and p ∈ int h+

i for all k + 1 < i ≤ n. Equivalently,

∀i, k + 1 < i ≤ n, h∗i ∈ int p∗+. (2.2)

Let H∗
k+1 = {h∗i }i=1,...,k+1 . We deduce from (2.1) and (2.2) that, if p ∈ f , p∗ is a hyperplane that supports

the convex hull conv(H∗
k+1) and that f ∗ = conv(H∗

k+1) is a face of the lower convex hull P ∗ of H∗
k+1. We

now associate to each face f of P the corresponding face f ∗ of P ∗ : this correspondence is involutive (and
therefore bijective) and reverses inclusions. We say that polyhedron P ∗ is dual to polyhedron P .

Exercise 2.1

Extend the construction of the intersection H of n general half-spaces (not necessarily all above their
bounding line) assuming we know a point o in H. (Hint : To the point p, we associate the dual line
p∗ p∗ = {∀x ∈ p∗, (x− o) · (p− o) = 1}. To a line h not passing through o, we associate the dual point
h∗ : (h∗ − o) · (x − o) = 1,∀x ∈ h. If we denote h+ the half-space bounded by h not containing o, we
can easily adapt the above discussion and get a bijection between the faces of the intersection of the
half-spaces and the convex hull of the dual points.)

2.4 Combinatorial bounds

2.4.1 Convex hulls in R
3

Euler’s formula

The number of vertices s, edges a and facets f are related by the celebrated Euler’s formula :

s− a+ f = 2.

We prove the formula for a bounded convex polyhedron P . The Schlegel diagram of P is a planar model
obtained when P is seen in perspective from a position just outside the center of one facet. This facet appears
as a large polygon with all the remaining faces filling its interior.
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We prove Euler’s formula for any connected planar map. We build the map from a single vertex by adding
edges one-by-one. At each step, the edge to be inserted to the current map C has 1 or vertex in C. In the
fir2st case, s does not change while a and f both increase by 1. In the other case, f does not change while
s and a both increase by 1. In both cases, s − a + f remains invariant. At the beginning s = f = 1 and
a = 0, and thus s− a+ f = 2. This value 2 is maintained troughout the whole construction. The formula is
therefore true for any connected planar map and, in particular, for any Schlegel diagram, and therefore for
any bounded convex polyhedron of R

3.

s = s′

a′ = a + 1
f ′ = f + 1

a′ = a + 1
f ′ = f

s′ = s + 1

Each edge is incident to two facets and each facet has at least three edges. We thus have

2a ≥ 3f,

with an equality in the case where all facets are triangles. Using this inequality in Euler’s formula, we get

a ≤ 3s− 6

f ≤ 2s− 4

with an equality in the case where all facets are triangles.
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2.4.2 Beyond the third dimension

The combinatorial complexity of a polyhedron defined as the intersection of n half-spaces of R
d, which is

given by the celebrated upper bound theorem..

Theorem 2.1 (Upper Bound Theorem) The total number of faces of a polytope defined as the inter-

section of n half-spaces of R
δ is Θ

(

nb δ
2c
)

.

Proof. We present a simple proof of the asymptotic version of the upper bound theorem due to Seidel [33].
Let P be the polytope and let p one of its vertices. We assume that all the vertices of P are incident to exactly
d edges (which is the general situation). Otherwise, we can slightly perturb the hyperplanes bounding the
half-spaces defining P so that the hyperplanes become in general position. During this process, the number
of faces of P can only increase. Among the edges that are incident to p (there are d such edges), at least
dd2e edges are in the half-space xd ≥ xd(p) or at least d d2e edges are in the half-space xd ≤ xd(p). If k < d

edges are incident to p, they belong to a same face of dimension k (k-face for short). Therefore, p is a vertex
of extremal xd-th coordinate for at least one face of dimension d d2e. Since any face has at most one vertex
of maximal xd-th coordinate and one vertex of minimal xd-th coordinate, the number of vertices of P is at
most twice the number of d d2e-faces of P .

Under the general position assumption, a k-face is the intersection of d − k of the hyperplanes that define

P . We conclude that the number of k-faces is

(

n

d− k

)

= O(nd−k), which is O(nb
d
2
c) if k = dd2e. From the

above discussion, we then conclude that the number of vertices of P is O(nb d
2
c).

Under the general position assumption, the number of faces (of any dimension) that are incident to a vertex
is bounded by a constant that depends on d but not on n. Hence, the upper bound holds also for the number
of faces of any dimension. �

2.5 Algorithms

2.5.1 An incremental algorithm

We start with the case of a set E of n points in R
2.

1. We sort the points by lexicographic order. We therefore have for any two indices i < j

x(pi) < x(pj) or

{

x(pi) = x(pj)
y(pi) < y(pj)

We represent conv(E) by two lists that share the same first element p1 and the same last element pn. The
first one, L+, represents the vertices of the upper hull, located above p1p2, the other one, L−, represents the
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vertices of the lower hull, located below p1p2. We describe only the construction of L+, the construction of
L− being entirely symetrical.

2. L+ is initialized with p1 and p2.

3. Loop :

for i = 3, . . . , n
while tail(L+) 6= head(L+) and orient(pi, tail(L+), pred(tail(L+))) ≤ 0

remove tail(L+) from L+ ;
insert pi in tail(L+).

The initial sorting can be done using O(n log n) comparisons. In step 3, a unique new element is inserted in
L+. The other elements of L+ that are considered are, all except the last one, removed from the list and
won’t be inserted again. The total cost of step 3 is therefore O(n). Observe that the cost of a single iteration
can be O(n) ; nevertheless the total amortized cost is also linear.

The overall complexity of the algorithm is therefore O(n log n). Note that the algorithm executes O(n log n)
comparisons of coordinates and only O(n) orientation tests.

2.5.2 Can we do better ?

It is known that sorting n elements requires at least log2(n!) = Ω(n log n) comparisons. We deduce that
computing the convex hull of n points requires at least Ω(n log n) comparisons and orientation tests.

Indeed, take n numbers x1, . . . , xn. We associate to each xi the point pi = (xi, x
2
i ). The pi lie on the parabola

y = x2. If we know the convex hull of the pi, we can deduce in linear time the list of the xi sorted by increasing
values. Observe that the orientation test reduces in this case to three comparisons. Indeed,

∣

∣

∣

∣

xi − xj xi − xk
x2
i − x2

j x2
i − x2

k

∣

∣

∣

∣

= (xi − xj)(xj − xk)(xk − xi).

As any sorting algorithm must execute Ω(n log n) comparisons, we conclude that any convex hull algorithm
using comparisons and orientation tests only must execute Ω(n log n) such operations.

2.5.3 Randomisation helps

The algorithm of section 2.5.1 can be extended to R
3 but its complexity cannot remain O(n log n). In fact,

no incremental algorithm can have an O(n log n) complexity in dimensions 3 and higher. Still, we can have
an optimal algorithm provided we introduce some randomness in the algorithm.
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The algorithm is incremental and introduces the points one by one. We first describe the case of point set
E of R

2. Let o be a point in the interior of conv(E), e.g. the barycenter of three non collinear points. We
denote by Ei the subset of the i first points that have been inserted. The algorithm maintains two data
structures. First, we maintain the current convex hull conv(Ei) at step i. Second, we maintain a graph called
conflict graph. The conflict graph is a bipartite graph that links any point pj that has not been inserted yet
(i.e. j > i) to an edge e of the current convex hull conv(Ei) that is intersected by the line segment opj . A
point and an edge that are joined by an arc in the conflict graph are said to be in conflict.

Consider step i + 1. An edge of conv(Ei) is said to be red if its supporting line intersects the line segment
opi+1. An edge that is not red is said to be blue. If conv(Ei) is oriented positively, an edge ab is red if and
only if orient(a, b, pi+1) < 0. The union of the red edges is a connected portion of the boundary of conv(Ei).
Let s and t be its endpoints. Updating conv(Ei) consists in replacing the red edges by the two new edges
spi+1 and pi+1t.

Let e be an edge of conv(Ei) in conflict with pi+1. As e is intersected by opi+1, e is red and must be removed.
To find the other red edges, we walk on the boundary of conv(Ei) (in both directions) until we meet a blue
edge : we thus get s and t, and we can construct conv(Ei+1) in time proportional to the number of red edges.

It remains to update the conflict graph. For each point of index j > i+ 1 whose conflict edge has just been
removed, we look for the new edge that is intersected by the half-line [opj). Let e′ = a′b′ be that edge. If
orient(a′b′pj) ≥ 0, pj is not a vertex of conv(E) and is no longer considered. Otherwise, we add an arc in
the conflict graph joining pj and e′.

In higher dimensions, the algorithm is almost identical. The main difference comes from the fact that the
boundary of the convex hull is a triangulation and not a polygonal curve. We identify the red facets by
traversing the adjacency graph of the facets of conv(Ei). Let R be the union of the red faces. To update
conv(Ei+1), we create new faces fk = conv(pi+1, gk) for all faces gk of the boundary of R, and remove the
red faces. The adjacency graph is updated accordingly.

To analyze this algorithm, we assume that the points are inserted in random order.

Let us bound the expected number of facets created at step i. In R
2, this number is 2. Consider the situation

in R
d. Assume that Ei is given. A facet of conv(Ei) has been created at step i if and only if one of its d

vertices is pi, which arises with probability d
i
. Noting E the expectation and ni the number of facets of

conv(Ei) that are created at step i, we have, using the upper bound theorem

E(ni) =
∑

f∈conv(Ei)

d

i
=
d

i
O
(

ib d
2c
)

= O(nb d
2c−1).

In particular, when d = 2 or 3, E(ni) = O(1). This bound does not depend on the choice of Ei and therefore
remains valid when averaging on all subsets Ei of E of i elements. Therefore, the bound holds also for the
expected number of facets created at step i. By summing over all i and using linearity of expectation, we

obtain that the expected total number of created (and therefore also removed) facets is O(nb d
2c).
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We now bound the cost of updating the conflict graph. For any point pj, j > i+ 1, a new conflict (pj , fj) is
created when inserting the (i+ 1)-th point if and only if the line segment opj crosses one of the new facets.
The expected number of new conflicts is therefore

∑

i+1<j≤n
proba(fj is new) = (n− i− 1)

d

i+ 1
.

By summing over i and using linearity of expectation, we obtain that the total cost of updating the conflict

graph is O(n log n+ nb d
2c)).

Theorem 2.2 The convex hull of n points of R
d can be constructed in time Θ

(

n log n+ nb d
2c
)

.

Using the duality introduced in section 2.3, we immediately deduce the following corollary

Corollary 2.1 The intersection of n half-spaces of R
d can be constructed in time Θ

(

n log n+ nb d
2c
)

.

Exercises 2.1

1. Show that any incremental algorithm that constructs the convex hull of n points of R
3 takes Ω(n2)

time in the worst-case.

2. Show that we can remove a point in expected time O(log n).

2.6 Bibliographical notes

A modern introduction to the theory of polytopes can be found in Ziegler’s book [35]. The original proof of
the upper bound theorem has been established by McMullen in 1970. The simple asymptotic version given
in Theorem 2.1 is due to Seidel [33]. Chazelle [16] has proposed a deterministic algorithm to compute the
convex hull of a finite point set in any dimension. However, the algorithm is mostly of theoretical interest
and no implementation is known.

An excellent introduction to algorithms can be found in the book of Cormen, Leiserson and Rivest [18]. The
theory of randomized algorithms is well-developed and finds applications in many areas of computer science.
See the book by Motwani and Raghavan for a broad perspective [27]. The cgal library offers robust and
efficient implementation of many geometric algorithms [8, 15].



Chapitre 3

Voronoi diagrams and Delaunay

triangulations

Voronoi diagrams are fundamental data structures that have been extensively studied in Computational
Geometry.

In this chapter, we introduce Euclidean Voronoi diagrams of points and establish a correspondence between
those diagrams and polyhedra in a one dimension higher space. This allows to derive tight bounds on their
combinatorial complexity.

3.1 Voronoi diagrams

Let E = {p1, . . . , pn} be a set of points of R
d. To each pi, we associate its Voronoi region V (pi)

V (pi) = {x ∈ R
d : ‖x− pi‖ ≤ ‖x− pj‖,∀j ≤ n}.

V (pi) is the intersection of the n− 1 half-spaces bounded by the bisector hyperplanes of pi and each of the
other points of E. V (pi) is therefore a convex polyhedron, possibly unbounded. Observe that V (pi) contains
pi and therefore is not empty. The collection of the Voronoi regions and their faces, together with their
incidence relations, constitute a cell complex called the Voronoi diagram of E. Since any point of R

d belongs
to at least one Voronoi region, the Voronoi diagram of E is a subdivision of R

d.

Definition 3.1 The Euclidean Voronoi diagram of E, noted Vor(E), is the cell complex whose cells are the
Voronoi regions and their faces.

In the next subsection, we introduce a useful correspondence between Euclidean Voronoi diagrams of R
d

and a class of polyhedra of R
d+1.

19
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Fig. 3.1 – The Voronoi diagram of a set of 9 points.

3.2 The space of spheres

Let σ be the sphere of equation

σ(x) = (x− c)2 − r2 = x2 − 2c · x+ s = 0,

where c is the center of σ, r its radius and s = σ(0) = c2 − r2.
Let

φ : σ ∈ R
d −→ φ(σ) = (c, s) ∈ R

d+1

be the bijection that maps a sphere of R
d to a point of R

d+1. We call R
d+1 the space of spheres. For

convenience, we call vertical the (d + 1)-th coordinate axis and (x, s) ∈ R
d+1 is said to be above (x, s′) if

s > s′, and below (x, s′) if s < s′. We call vertical projection the orthogonal projection onto the hyperplane
xd+1 = 0.

Observe that the image by φ of a point, considered as a sphere of radius 0, is a point of the paraboloid Q
of R

d+1 of equation xd+1 = x2.

Let us consider a sphere σ passing through a given point p. We denote by x its center, r its radius and
s = x2 − r2. We have

σ(p) = p2 − 2x · p+ s = 0.

Hence φ(σ) = (x, s = 2p · x − p2). It follows that the image by φ of the spheres that pass through p is the
hyperplane hp of R

d+1

xd+1 = 2p · x− p2.
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Fig. 3.2 – A face of V(E) projects vertically onto a face of Vor(E).

The intersection of hp and the paraboloid Q is reduced to the point φ(p) = (p, p2) : hp is thus tangent to Q
in p.

Consider now a set E = {p1, . . . , pn} of n points and the associated hyperplanes hp1 , · · · , hpn tangent to Q
at p1, . . . , pn respectively.

If x is closer to pi than pj

(x− pi)2 < (x− pj)2 ⇐⇒ 2 pi · x− p2
i > 2 pj · x− p2

j .

In other words, the vertical line passing through x intersects hpi
above hpj

.

Consider now the polyhedron V(E) = h+
p1
∩ · · · ∩ h+

pn
of R

d+1, where h+
pi

denotes the half-space above hpi
.

Each point (x, xd+1) of the facet fi of V(E) contained in hpi
is above all hpj

. Hence, point x is closer to pi
than to any pj, which proves that fi projects vertically onto the Voronoi cell V (pi) (see figure 3.2).

The faces of the Voronoi diagram Vor(E) of E are the vertical projections of the faces of the convex polyhedron
V(E).

It follows from the above correspondence that the combinatorial complexity of the Voronoi diagram of n
points of R

d is at most the combinatorial complexity of a polyhedron defined as the intersection of n half-

spaces of R
d+1, which is O

(

nd d
2e
)

as shown in section 2.4. This bound is tight. In particular, the Voronoi
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diagram of n points of R
3 may be quadratic (see exercise 3.1.5 below).

Exercises 3.1

1. What are the preimages by φ of the points of R
d+1 that lie

(a) above Q ?

(b) on the boundary of V(E) ? in the interior of V(E) ?

(c) on a line ?

2. Consider the diagram obtained by projecting the faces of h−
p1
∩ · · · ∩ h−pn

vertically. Characterize the
points that belong to a face of this diagram.

3. Show that if we take points on two non coplanar lines of R
3, say n1 + 1 on one of the lines and n2 + 1

on the other, their Voronoi diagram has n1n2 vertices.

3.3 Delaunay triangulation

A triangulation of a finite set of points E of R
d is a simplicial complex embedded in R

d that cover the convex
hull of E.

A given set of points admits, in general, many triangulations. The Delaunay triangulation of E, which is
defined as the dual of the Voronoi diagram of E, is a canonical triangulation that has interesting properties
and finds numerous applications.

Two cell complexes V and D are said to be dual if there exists an involutive correspondence between the
faces of V and the faces of D that reverses inclusion relationships, i.e. for any two faces f and g of V , their
dual faces f ∗ and g∗ of D satisfy f ⊂ g =⇒ g∗ ⊂ f∗.
Let f be a face of dimension k of the Voronoi diagram of E. All points in the interior of f have the same
closest points in E. Let Ef ⊂ E be the subset of those closest points. If the points are in general position
(meaning no subset of d+2 points of E lie on a same sphere in this chapter), |Ef | = d−k+1. The face dual
to f is the convex hull of Ef . The Delaunay triangulation of E, noted Del(E), is the complex consisting of
all the dual faces. Under the general position assumption, all the faces of Del(E) are simplices and Del(E)
is a simplicial complex. The fact that Del(E) is indeed a triangulation, i.e. a simplicial complex embedded
in R

d and covering the convex hull of E, will follow from the well-known duality between polyhedra in the
space of spheres.

In section 3.2, we have associated to the sphere σ of R
d of equation σ(x) = x2 − 2c · x + s = 0 the point

φ(σ) = (c, s) of R
d+1. Similarly to what we did in section 2.3, we associate to this point φ(σ) the so-called

polar hyperplane hσ of R
d+1 of equation xd+1 = 2c · x − s. Observe that if σ is reduced to a point c, hσ is

identical to the hyperplane hc tangent to the paraboloid Q that has been introduced in section 3.2. It should
also be observed that the intersection of hσ with Q projects vertically onto σ.
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Fig. 3.3 – The Delaunay triangulation of a point set (in bold) and its dual Voronoi diagram (thin lines).

σ

h(σ)

P

Fig. 3.4 – The polar hyperplane of a sphere.
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We deduce the remarkable following property : x ∈ σ if and only if φ(x) = (x, x2) ∈ hσ and σ encloses x if
and only if φ(x) is below hσ. Indeed

σ(x) = 0 ⇐⇒ x2 = 2c · x− s⇐⇒ φ(x) ∈ hσ

σ(x) < 0 ⇐⇒ x2 < 2c · x− s⇐⇒ φ(x) ∈ int h−σ .

Consider now a set E = {p1, . . . , pn} of n points and let V(E) denote, as in section 3.2, the polyhedron
intersection of the n halfspaces above the n polar hyperplanes hpi

. We define D(E) as the lower convex hull
of the points φ(pi), i = 1, . . . , n. From section 2.3, we know that D(E) and V(E) are dual polyhedra of R

d+1.
More precisely, if f is a face of V(E) that is the intersection of k polar hyperplanes h1, . . . , hk, the face f ∗

dual to f is the face of D(E) that is the convex hull of h∗1, . . . , h
∗
k. As previously observed, π(f) is the k-face

of Vor(E) that is common to the k Voronoi regions V (p1), . . . , V (pk). Plainly, π(f ∗) is the convex hull of
p1, . . . , pk.

The convex polyhedron D(E) projects vertically onto a triangulation of E in R
d. The fact that Del(E)

is properly embedded in R
d comes from the fact that the vertical projection of D(E) onto the hyperplane

xd+1 = 0 is 1-1. Moreover, Del(E) is a subdivision of the convex hull of E since projection preserves convexity.

We deduce that D(E) projects vertically onto the cell complex dual to Vor(E) , i.e. Del(E).

V(E) = h+
p1
∩ . . . ∩ h+

pn
←→ D(E) = conv−(φ(E))

l l
Voronoi Diagram Vor(E) ←→ Delaunay Triangulation Del(E)

It follows from the above correspondence that the combinatorial complexity of the Delaunay triangulation of
n points is the same as the combinatorial complexity of the dual Voronoi diagram. Moreover, the Delaunay
triangulation of n points of R

d can be deduced from the dual Voronoi diagram or vice versa in time propor-
tional to its size. The Delaunay triangulation of n points of R

d can be constructed directly by computing
the lower convex hull of n points of R

d+1.

If the pi are in general position, the points φ(pi) are affinely independent and all the faces of D(E) are
simplices. It follows that Del(E) is a triangulation. Otherwise, it is always possible to triangulate the faces
that are not simplices. We then obtain a triangulation of E we also call a Delaunay triangulation. Since
there are several ways of triangulating the faces, such a Delaunay triangulation of E is no longer unique.

We deduce from theorem 2.2 and corollary ?? the following theorem.

Theorem 3.1 The Voronoi diagram and the Delaunay triangulation of n points of R
d can be constructed

in time Θ
(

n log n+ nd
d
2
e
)

.
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3.4 Properties of the Delaunay triangulation

The following lemma can easily be proved either directly or as a consequence of the correspondence between
Del(E) and D(E).

Lemma 3.1 A triangulation T of a finite set of points E such that any d-simplex of T has a (d− 1)-sphere
circumscribing that does not enclose any point of E is a Delaunay triangulation of E. Any k-simplex with
vertices in E that can be circumscribed by a (d− 1)-sphere that does not enclose any point of E is a face of
a Delaunay triangulation of E.

The following lemma provides a local characterization of Delaunay triangulations.

Lemma 3.1 A triangulation T (E) of a finite set of points E whose pairs are all regular is a Delaunay
triangulation.

Proof : Let T̂ (E) be the triangulated surface in the space of spheres obtained by lifting the vertices of T (E)
by φ. The fact that a pair (t1, t2) is regular is equivalent to (see section 3.3)

φ(q2) ∈ h+
σ1

and φ(q1) ∈ h+
σ2
.

Considering T̂ (E) as the graph of a function γ defined on conv(E), γ is thus locally convex at each point
of the interior of its domain of definition which is convex. Hence, γ is convex, T̂ (E) is a convex polyhedron
which is therefore D(E). It follows that T (E) is a Delaunay triangulation. 2

The following lemma shows that the Delaunay triangulation of a given set E is the triangulation of E with
the largest smallest angle, a useful property in scientific computing where meshes with small angles result
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in convergence problems. We define the angular vector of a triangulation T (E) of a finite set E of points of
the plane as the vector ang (T (E)) = (α1, . . . , α3t) where the αi are the angles of the t triangles of T (E)
sorted by increasing order.

Lemma 3.2 Given a finite set E of points in the plane, the triangulation whose angular vector is maximal
for the lexicographical order is a Delaunay triangulation of E.

Proof. Let T (E) be any triangulation of E. Let us consider two adjacents triangles t1 = abc and t2 = bcd

of T (E). Let Q be their union. If Q is not strictly convex, the pair is regular. If Q is strictly convex, we can
retriangulate Q by creating the triangles t3 = abd and t4 = acd. Let us prove that ang (t1, t2) > ang (t3, t4)
if and only if the pair (t1, t2) is regular.

a

b

c

d

a

b

d

c

t3

t4

a4

c4
d4

a3

b3

d3

a1

t1

c1

b1

c2
d2

t2

b2

If (t1, t2) is regular, d does not belong to the disk circumscribing abc and a does not belong to the disk
circumscribing bcd. Hence we have, denoting by pi the angle of vertex p in triangle of index i,

d3 ≤ c1, d4 ≤ b1, a3 ≤ c2, a4 ≤ b2.

As a1 = a3 + a4 and d2 = d3 + d4, ang (t1, t2) ≥ ang (t3, t4). If (t1, t2) is not a regular pair, we have

d3 > c1, d4 > b1, a3 > b2, a4 > c2.

With b3 = b1 + b2 and c4 = c1 + c2, we conclude that ang (t1, t2) < ang (t3, t4).

If the triangulation of E of maximal angular vector, noted TM (E), was not a Delaunay triangulation, there
will be a non regular pair of triangles that could be regularized by the above procedure. As the above
procedure increases the angular vector of the triangulation, this contradicts the fact that TM (E) is optimal.

2

Exercises 3.2
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1. Let S be a sphere of R
d passing through d+ 1 points p0, . . . , pd. Show that a point pd+1 of R

d lies on
S, in the interior of the ball BS bounded by S or outside BS, depending whether the determinant of
the (d+ 2)× (d+ 2) matrix

in sphere(p0, . . . , pd+1) =

∣

∣

∣

∣

∣

∣

1 . . . 1
p0 . . . pd+1

‖p0‖2 . . . ‖pd+1‖2

∣

∣

∣

∣

∣

∣

is 0, < 0 or > 0. Show that this predicate is the only numerical operation that is required to check if
a triangulation is a Delaunay triangulation.

2. Project vertically the faces of the upper hull conv+({φ(E)}). Show that we obtain a triangulation
of the vertices of conv(E) such that each ball circumscribing a simplex contains all the points of E.
Define a dual and make a link with question 4 in section 3.2.

3. Prove lemma 3.1.

4. Consider the following algorithm for constructing a Delaunay triangulation of a finite set E of points
in the plane. We first compute any triangulation of E and then, we regularize the non regular pairs as
indicated in the proof of lemma 3.2. Show that the first step can be done in time O(n log n) and that
the second step in time O(n2). (Hint : use the fact that regularizing a pair of triangles corresponds, in
the space of spheres, to replacing two faces of a tetrahedron by its two other faces.)

3.5 Bibliographical notes

To know more about the space of spheres, one may read the books by Pedoe [29] and Berger [6]. An entire
book is devoted to Voronoi diagrams [28]. One may also look at the survey by Aurenhammer and Klein [5]
and the part of the textbook by Boissonnat and Yvinec [12, 13] devoted to Voronoi diagrams.



28 CHAPITRE 3. VORONOI DIAGRAMS AND DELAUNAY TRIANGULATIONS



Chapitre 4

Laguerre geometry

We have seen that Euclidean Voronoi diagrams of R
d are obtained by projecting vertically a polyhedron of

R
d+1 which is the intersection of finitely many half-spaces. These half-spaces were bounded by hyperplanes

tangent to the paraboloid Q. If we relax the constraint that the hyperplanes are tangent to Q, we still
get a polyhedron whose faces project onto the faces of an affine diagram. Polarity will still provide a dual
triangulation (assuming general position). We will see in this section that these diagrams, called Laguerre
diagrams, have a geometric meaning in the so-called Laguerre geometry where E is replaced by a set of
spheres and the Euclidean distance to an element of E is now the power to a sphere. We will also see that
all affine diagrams are obtained this way and are in fact Laguerre diagrams.

4.1 Laguerre diagrams

We call power of a point to a sphere σ of center c and radius r the real number1

σ(x) = (x− c)2 − r2.

Let S = {σ1, . . . , σn} be a finite set of spheres of R
d. We denote by ci the center of σi and ri its radius. To

each σi, we associate the region L(σi) consisting of the points of R
d whose power to σi is not larger than

the power to the other spheres of S :

L(σi) = {x ∈ R
d : σi(x) ≤ σj(x), 1 ≤ j ≤ n}.

The set of points that have equal power to two spheres σi and σj is a hyperplane, noted πij, called the
radical hyperplane of σi and σj . πij is orthogonal to the line joining the centers of σi and σj . We denote by

1One may see some similarity with the distance between two events in the relativist space-time : d =
p

(x − x′)2 + (y − y′)2 + (z − z′)2 − (t − t′)2.

29
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πiij the half-space bounded by πij consisting of the points whose power to σi is smaller than their power

to σj . L(σi) is the intersection of all half-spaces πiij, j 6= i. If this intersection is not empty, it is a convex
polyhedron, possibly not bounded. We call Laguerre regions the non empty L(σi).

Definition 4.1 We define the Laguerre diagram of S, noted Lag(S), as the cell complex whose cells are the
Laguerre regions and their faces.

S1

S2

S4

S3

S5

S6

4534

35

36

56
15

14

13

When all spheres have the same radius, their Laguerre diagram is identical to the Voronoi diagram of their
centers.

Let’s go back to the space of spheres and use the same notations as in section 3.3.

σi(x) < σj(x)⇐⇒ 2ci · x− si > 2cj · x− sj

can be understood as : the vertical line passing through the point (x, 0) intersects hyperplane hσi
above

hyperplane hσj
.

If we denote by L(S) the polyhedron h+
σ1
∩ · · · ∩ h+

σn
, we get that the faces of the Laguerre diagram are the

vertical projections of the faces of L(S). Hence, Laguerre diagrams are very similar to Voronoi diagrams :
the only difference is that the hyperplanes supporting the faces of L(S) are not necessarily tangent to the
paraboloid Q and that some hyperplane may not contribute a face. In other words, some sphere σi may
have an empty Laguerre region.

By proceeding as in section 3.3, we can define a polyhedron R(S) dual to L(S). The vertical projections of
the faces of R(S) constitute the faces of a (in general) simplicial complex called a regular triangulation.
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L(S) = h+
σ1
∩ · · · ∩ h+

σn
←→ R(S) = conv−(φ(S)

l l
Laguerre diagram Lag(S) ←→ Regular triangulation

It follows, as for Euclidean Voronoi diagrams and Delaunay triangulations, that the combinatorial complexity

of the Laguerre diagram of n spheres of R
d (or equivalently its dual regular triangulation) is Θ

(

nd d
2e
)

and

that such a diagram can be computed in optimal time Θ
(

n log n+ ndd
2e
)

.

4.2 Properties of Laguerre diagrams

We say that a half-space E is an upper half-space if it lies above its bounding hyperplane h and we note
E = h+.

Lemma 4.1 Let P be the intersection of a finite number of upper half-spaces of R
d+1. If we project the

faces of P vertically, we obtain a Laguerre diagram.

Proof. Let P = h+
1 ∩ · · · ∩ h+

n where hyperplane hi is defined by xd+1 = 2ci · x − si. We associate to hi
the sphere of R

d (possibly imaginary) whose center is ci and the squared radius c2i − si. As shown in section
4.1, the faces of the Laguerre diagram are the vertical projections of the faces of L(E) = h+

1 ∩ · · · ∩ h+
n . �

The following lemma gives a conservation law for flows entering a Laguerre region normally to the facets of
the region. This property makes Voronoi and Laguerre diagrams useful when applying finite volume methods
in fluid dynamics.

Lemma 4.2 If fij, j ∈ J , are the facets of a Laguerre region L(σi), we have

∑

j∈J
vol(fij)

cj − ci
‖cj − ci‖

= 0.

Proof. We first show that if P is a convex polyhedron and fj, j ∈ J , are its facets, we have

∑

j∈J
vol(fj) ~nj = 0,

where ~nj is the unit normal vector to fj (oriented towards the outside of P ). Indeed, the volume of P is the
sum of the volumes of the pyramids obtenained by joining a point x in the interior of P to the facets of P :

d vol(P ) =
∑

j∈J
vol(fj) (x− pj) · ~nj.
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Since the volume of P does not depend on x, the gradient of the right term must be zero, which proves the
lemma.

~nj

ci

cj

We apply Minkowski’s theorem to the Laguerre region L(σi) and we use the fact that fij is contained in the
radical hyperplane of the spheres σi and σj , which is orthogonal to the line passing through the centers ci
and cj of the two spheres. Hence we have ~ni =

ci−cj
‖ci−cj‖ . �

Lemma 4.3 The intersection of a Voronoi diagram with an affine subspace E is a Laguerre diagram.

Proof. Let p′i denote the projecion of pi onto E and let di = ‖pi − p′i‖
∀x ∈ E : ‖x− pi‖2 < ‖x− pj‖2 ⇐⇒ ‖x− p′i‖2 + d2

i < ‖x− p′j‖2 + d2
j ⇐⇒ σi(x) < σj(x),

where σi is the (imaginary) sphere centered at p′i whose squared radius is r2 = −d2
i �

We equip R
d with a non Euclidean metric defined by

‖x− y‖Q = (x− y) Q (x− y)t,
where Q is a symetric matrix, i.e. Q = Qt. We can now adapt the definition of Euclidean Voronoi diagrams
and define the Voronoi diagram of a finite set of points for this (non Euclidean) metric.

Lemma 4.4 The Voronoi diagram of a set of n points E = {p1, . . . , pn} for the distance ‖.‖Q is the Laguerre
diagram of n spheres σ1, . . . , σn of R

d. The center ci of σi is the point piQ and its squared radius is
r2i = ci · ci − pi Q pti.

Proof.

‖x− pi‖Q < ‖x− pj‖Q ⇐⇒ −2 piQx
t + piQp

t
i < −2 pj Qx

t + pj Qp
t
j ⇐⇒ σi(x) < σj(x).

�
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4.3 Affine diagrams

Both Voronoi diagrams and Laguerre diagrams are cell complexes whose cells are convex polyhedra. Let us
consider a more general setting where O is a finite set of objects and δ is a continuous function between a
point of R

d and an object (we do not assume δ to be a distance and, in particular, we do not require that
it satisfies the triangular inequality). Assume that the bisector between any two objects is a hyperplane.
We can then define the diagram of O under the distance δ in the way we defined Voronoi and Laguerre
diagrams. Such a diagram is called an affine diagram. Voronoi and Laguerre diagrams are special cases of
affine diagrams. Lemmas 4.3 and 4.4 have provided other examples of such diagrams. As stated in those
lemmas, each of these diagrams is identical to some Laguerre diagram. In fact, the following theorem, due
to Aurenhammer [4], states that all affine diagrams are Laguerre diagrams.

Theorem 4.1 Let O be a set of n objects o1, . . . , on, and let δ(x, oi) be a function that measures the distance
from any point x of R

d to object i, i = 1, . . . , n. Assume that the set of points of R
d that are closer to oi

than to oj, is a given halfspace of R
d. The affine diagram defined in R

d for O under the distance function δ

is identical to the Laguerre diagram of a set of n spheres of R
d.

Exercises 4.1

1. Show that if some spheres are imaginary (i.e. their squared radii are negative) does not lead to any
additional difficulty.

2. Show that the intersection of a Laguerre diagram with an affine subspace is still a Laguerre diagram.

3. Show that the only numerical operation that is required to check if a triangulation is the regular
triangulation of a set of spheres σi is the evaluation of the sign of the determinant of the (d+2)×(d+2)
matrix

power test(σ0, . . . , σd+1) =

∣

∣

∣

∣

∣

∣

1 . . . 1
c0 . . . cd+1

‖c0‖2 − r20 . . . ‖pd+1‖2 − r2d+1

∣

∣

∣

∣

∣

∣

where ci and ri are respectively the center and the radius of σi.

4.4 Bibliographical notes

To know more about Laguerre diagrams, also called power diagrams, one may look at the survey paper by
Aurenhammer [4].



34 CHAPITRE 4. LAGUERRE GEOMETRY



Chapitre 5

Delaunay triangulation restricted to a

surface

In this section, we introduce the concept of restricted Delaunay triangulation. Given a surface S of R
3 and

a sample E of S, i.e. a finite set of points on S, the Delaunay triangulation of E restricted to S, noted
DelS(E), is a subcomplex of the Delaunay triangulation of E. The main result of this chapter (Theorem 5.3)
states that, under some sampling conditions to be discussed in section 5.3, DelS(E) is a good approximation
of S. First, we need to define what good approximation means.

5.1 Approximation criteria

There are many ways of measuring how close two objects are. We distinguish between topological and
geometric criteria.

5.1.1 Topological equivalence

Definition 5.1 Two subsets X and Y of R
d are said to be homeomorphic if there exists a continuous,

bijective map f : X → Y with continuous inverse f−1.

When X and Y are homemorphic, they have the same number of handles. If X is the standard unit ball of
R
d (and therefore has no handle), Y is called a topological ball.

Definition 5.2 Two subsets X and Y of R
d are said to be isotopic if there exists a continuous map f :

X × [0, 1] → R
d such that f(., 0) is the identity of X, f(X, 1) = Y , and for each t ∈ [0, 1], f(., t) is a

homeomorphism onto its image.

35
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Fig. 5.1 – Two curves whose Haudorff distance is small compared to their Fréchet distance.

5.1.2 Distance between two sets

Given a compact set X of R
d, define tubeε(X) to be the tubular neighborhood of X of radius ε, i.e. the set

of all points at distance at most ε from X

tubeε(X) = {y ∈ R
d : inf

x∈X
‖x− y‖ ≤ ε} =

⋃

x∈X
B(x, ε).

Definition 5.3 The Hausdorff distance dH(X,Y ) between two subsets X and Y of R
d is the smallest ε such

that X ⊂ tubeε(Y ) and Y ⊂ tubeε(X). Equivalently,

dH(X,Y ) = max

(

sup
y∈Y

( inf
x∈X
‖x− y‖), sup

x∈X
( inf
y∈Y
‖x− y‖)

)

.

The Hausdorff distance is not always a good measure of the similarity of two shapes. This is illustrated in
Figure 5.1.2 where two curves are close for the Hausdorff distance but look quite different.

A more satisfactory measure of the similarity of two shapes is the so-called Fréchet distance.

Definition 5.4 The Fréchet distance between two subsets X and Y of R
d is

dF (X,Y ) = inf
h

sup
p∈X

d(p, h(p)),

where h ranges over all homeomorphisms from X to Y .

If X and Y are isotopic, supx∈X ‖f(x, 0) − f(x, 1)‖ is an upper bound on the Fréchet distance between X

and Y .

Other criteria are also useful when considering smooth curves and surfaces. Of utmost importance is the
approximation of the normal field. As illustrated in Figure 5.1.2, a triangulated surface can be arbitrarily
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Fig. 5.2 – The normals of the two facets on the left side are almost perpendicular to the normal field of the
cylinder. This is in sharp contrast with the normals of the two facets on the right side.

close to a cylinder for the Hausdorff or even the Fréchet distance, while the normal fields of the two surfaces
are very different. As a consequence, it is impossible to estimate the area of the cylinder from the area of
the triangulated surface.

5.2 Restricted Delaunay triangulation

In this section, X denotes a subset of R
d and E a finite set of points of R

d.

Definition 5.5 If f is a face of the Voronoi diagram of E, we say that f ∩ X is the restriction of f to
X. The subcomplex made of all non-empty restrictions of faces of Vor(E) to X is called the restriction of
Vor(E) to X, and noted Vor|X(E).

Definition 5.6 We call restriction of a Delaunay triangulation Del(E) to X the sub-complex of Del(E),
noted DelX(E), that consists of the faces of Del(E) whose dual Voronoi faces intersect X. The regularized
restriction of the Delaunay triangulation Del(E) to X is the subcomplex of DelX(E) consisting of the faces
of maximal dimension of DelX(E) and their subfaces.

In this chapter, X will denote most of the time a surface of R
3. For pedagogical and illustration purposes,

we will also consider the case of a curve in R
2.

Assume that X is a surface we denote by S and that E is a generic sample meaning that no vertex of Vor(E)
lies on S. It is always possible to slightly perturb E so that it is generic. Therefore DelS(E) does not contain cf Edels.
tetrahedra and is a 2-complex. The regularized DelS(E) consists of the facets of DelS(E), i.e. the Delaunay
facets dual to the Voronoi edges that intersect S.



38 CHAPITRE 5. DELAUNAY TRIANGULATION RESTRICTED TO A SURFACE

Fig. 5.3 – The Voronoi diagram and the Delaunay triangulation of a point set restricted to a planar closed
curve. The edges of the restricted Voronoi diagram and of the Delaunay triangulation of the sample points
are in bold lines.

We call surface Delaunay ball a ball that is centered on S and that circumscribes a facet of DelS(E). There
may be several surface Delaunay balls associated to a given facet. In the sequel, we denote by f a facet of
DelS(E) and by Bf = B(cf , rf ) a surface Delaunay ball that circumscribes f .

An example is shown in Figure 5.3. As can be seen on this example, DelS(E) is a simple closed polygon that
correctly approximates S. We will show, in section 5.4, that this is indeed the case when E is a sufficiently
dense sample of S.

5.3 Sampling conditions

Let O be an open set of R
d. The medial axis M(O) of O will play a crucial role in the sequel. M(O) can

be seen as a generalization of the notion of Voronoi diagram to infinite point sets.

Definition 5.7 (Medial axis) The medial axis of O is the closure of the set of points with at least two
closest points on the boundary of O.

Observe that if O is the complement R
d \E of a finite set of points E, M(O) is the subcomplex of Vor(E)

obtained by removing from Vor(E) the cells of full dimension d.

A ball that is centered on the medial axis, whose interior is contained in O, and whose bounding sphere
intersects the boundary of O is called a medial ball (see Figure 5.4).
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Fig. 5.4 – The medial axis of a planar domain. The thin curves are parallel to the boundary of the domain.
The circle bounds a medial ball.

Definition 5.8 (Local feature size) The local feature size at a point x ∈ O, noted lfs(x), is the distance
of x to the medial axis of O.

It can easily be proved that lfs is a 1-Lipschitz function, i.e. ∀x, y ∈ O, lfs(x) ≤ lfs(y) + ‖x− y‖.
We consider now the case where S denotes a surface of R

3 and O = R
3 \ S. For convenience, we call medial

axis of S the medial axis of O, and write M(S) forM(O).

We will restrict our attention to the class C1,1 of surfaces that admits a normal at each point and whose
normal field is Lipschitz. This class is larger than the class of C 2 surfaces and includes surfaces whose
curvature may be discontinous at some points. An example of a surface that is C 1,1 but not C2 is the offset
(i.e. the boundary of a tube) of a cube.

An important property of C1,1 surfaces is the following lemma.

Lemma 5.1 For a surface of class C1,1, lfs is bounded away from 0.

Lemma 5.2 Let S be a surface of R
3 and B a ball centered at a point x of radius r that intersects S. If

B ∩ S is not a topological disk, B contains a point of the medial axis of S.

Proof. The result is trivial when x belongs to the medial axisM(S) of S. Therefore assume that x 6∈ M(S)
and, for a contradiction, that B ∩ S is not a topological disk.

We denote by Bx the largest ball centered at x whose interior does not intersect S. Let rx be its radius. Bx
is tangent to S in a unique point y since x does not belong to M(S). Hence Bx ∩ S = {y} is a topological
disk. Since B ∩ S is not a topological disk, there exists a point z of S at distance r > rc > rx from x such
that the ball Bc = B(x, rc) is tangent to S in z. The medial ball tangent to S in z and centered on the
half-line [zx) is contained in Bc (since it is tangent to S in z and cannot contain y) and therefore in B. Its
center belongs to M(S). �
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S

B

x
y

z

Bc

Bx

Fig. 5.5 – For the proof of Proposition 5.2.

Since B(x, r) cannot intersect the medial axis of S for any r < lfs(x), Lemma 5.2 implies

Lemma 5.3 For any x of S, and any r < lfs(x), the intersection of S with the ball B(x, r) centered at x of
radius r is a topological disk.

Definition 5.9 (ε-sample) Let ε < 1 and S be a surface of class C 1,1. We say that a finite point set E ⊂ S
is an ε-sample of S if any point of S is at distance at most εlfs(x) from a point of E.

In other words, E is a finite set of points on S such that dH(E,S) ≤ ε. Observe that ε-samples are non
uniform samples which are denser where lfs is small (See Figure 5.6).

Let E be an ε-sample of S, f a facet of DelS(E) and v a vertex of f .

Lemma 5.4 For any p ∈ E, V (p) ∩ S ⊂ B(p, r) where r ≤≤ ε
1−ε lfs(p).

Proof. Let x be a point of V (p) ∩ S. Using the Lipschitz property of lfs, we have

‖p− x‖ ≤ ε lfs(x) ≤ ε lfs(p) + ‖p− x‖ ≤ ε

1− ε lfs(p).

�

5.4 Approximation of smooth surfaces

In this section, S denotes an oriented closed surface of R
3 of class C1,1. Our goal is to prove that, when E is

an ε-sample of S for some sufficiently small ε, DelS(E) and S are isotopic and that the distance between a
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Fig. 5.6 – An ε-sample.

point and its image by the isotopy is a decreasing function of the sampling density (Theorem 5.3). We will
also prove that the normals of the facets of DelS(E) are close to the normal field of S (Lemma 5.7).

Before considering the case of a surface of R
3, we consider the simpler case of a curve in the next section.

The proof for surfaces is subdivided into three parts. We first prove some local results, then prove that
DelS(E) is a closed surface and, finally, we exhibit an isotopy between S and DelS(E).

5.4.1 Approximation of a curve

In this section, S denotes a simple curve of R
d and E a sample of S. We assume that E contains at least

three points on each closed connected component of S (H1). If a component is an arc, we assume that the
two endpoints of the arc belong to E (H2). S is then the union of elementary arcs joining two points of
E that are consecutive along S. Note that two elementary arcs have at most one endpoint in common. In
addition, we assume that no face of dimension less than d− 1 of Vor(E) intersect S (H3), which can always
be ensured by slightly perturbing E.

Theorem 5.1 If E be an ε-sample of S, then DelS(E) is a polygonal curve homeomorphic to S and
dF (DelS(E),S) ≤ 2ε supx∈S lfs(x).

Proof. By (H3), DelS(E) contains no face of dimension 2 or more, and therefore consists only of edges and
vertices.

Let p1 and p2 be two points of E that are consecutive along S. We prove that p1p2 is an edge of DelS(E).
Let γ12 be the elementary arc of S that joins p1 to p2. We denote by c an intersection point between γ12 and
the bisector of p1 and p2, and by σ the largest sphere centered at c that does not enclose any point of E.
If σ passes through p1 and p2, then p1p2 is a Delaunay edge and therefore an edge of DelS(E). Otherwise,
σ passes through a third point p3 of E and the intersection of the ball bounded by σ with S contains at
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least two arcs. By Lemma 5.3 (adapted to the case where S is a curve, see Exercise 5.11), the radius of σ is
therefore greater than lfs(c), which contradicts the assumption that E is an ε-sample of S.

Conversely, we show that any Delaunay edge pipj whose Voronoi dual facet pip
∗
j intersects S joins two points

of E that are consecutive along S. We denote by c an intersection point of pip
∗
j with S. The sphere σ that

is centered at c and passes through pi and pj does not enclose any point of E : hence, its radius is less than
lfs(c) since E is an ε-sample. By Lemma 5.3, the portion of S that is contained in the ball bounded by σ is
an arc : pi and pj are therefore consecutive along S.

Two consecutive points defining a unique elementary arc (H1), we have a bijection between the elementary
arcs of S and the edges of DelS(E). Each elementary arc is homeomorphic to its associated edge, and,
since an elementary arc of S and the associated edge of DelS(E) have the same endpoints, we obtain a
homeomorphism between S and DelS(E) by concatenating the elementary homeomorphisms between the
elementary arcs and their associated edges of DelS(E).

The last claim comes from the observation made above that an elementary arc γpq and its associated edge
of DelS(E) are both contained in the surface Delaunay ball1 circumscribing pq. Hence, the distance between
a point and its image is at most twice the radius of such a ball, which is less than 2ε supx∈S lfs(x). �

5.4.2 Approximation of a smooth surface : local lemmas

Notations. For x ∈ S, nx denotes the unit vector normal to S, oriented according to the orientation
of S, and Tx denotes the tangent plane at x. In this section, f denotes a facet of DelS(E), Bf a surface
Delaunay ball circumscribing f , cf its center, rf its radius, and nf a unit vector perpendicular to f . Unless
it is explicitly mentioned, we do not specify an orientation for nf in this section. The modulus of the angle
between two vectors n and n′, measured in [0, π], is noted (n, n′). We define the angle between a vector n
and a plane P , noted (n, P ), as the smallest angle between n and a vector of P . We define similarly the
angle between a vector and a line.

For a real α, we write α+ = α
1−α .

Lemma 5.5 (Chord angle lemma) For any two points x and y of S with ‖x− y‖ ≤ η lfs(x), η ≤ 2, the
angle between xy and the tangent plane Tx at x is at most arcsin η

2 .

Proof. S and therefore y do not intersect the interior of the tangent balls of radius lfs(x) at x. The modulus
of the angle θx between xy and Tx is maximized when y lies on the boundary of one of the tangent balls.
We then have sin θx = ‖x−y‖

2lfs(x) ≤
η
2 . �

Lemma 5.6 (Normal variation lemma) Let x and y be two points of S with ‖x−y‖ ≤ ηmin(lfs(x), lfs(y)),
η ≤ 2. The angle (nx, ny) between the normals nx and ny is at most 2 arcsin η

2 .

1Curve Delaunay ball would be more appropriate.
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Fig. 5.7 – For the proof of Lemma 5.7.

Proof. To do. �

Lemma 5.7 (Facet normal lemma) Let f = pqr be a facet of Del(E) and assume that p̂ ≥ π
3 . If the

circumradius ρf of f is at most η lfs(p), then (nf , np) ≤ arcsin(η
√

3).

Proof. Let B and B ′ denote the two balls of radius lfs(p) tangent to S at p, D = B ∩ aff(f) and
D′ = B′ ∩ aff(f) (see Figure 5.4.2). We call cB and cD the centers of B and D respectively, and ρD the
radius of D and D′.

We first observe that ρD ≤ ρf
√

3. Indeed, the interiorsD andD′ contain no vertex of f . ρD is then maximized
with respect to ρf when f is equilateral with one vertex other than p, say q, on the boundary of D and r

on the boundary of D′.

We then have

sin(nf , np) = sin(pcBcD) ≤ ‖p− cD‖‖p− cB‖
=

ρD

lfs(p)
≤ η
√

3

�

Lemma 5.8 (Projection lemma) Let E be an ε-sample of S for ε < 0.24, and f and f ′ be two facets of
DelS(E) with a common vertex p. Then, the orthogonal projections of f and f ′ onto the tangent plane at p
do not overlap, i.e. the projections of the relative interiors of f and f ′ do not intersect.
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Proof. Assume, for a contradiction, that there exists a line l parallel to np that intersects f and f ′. We
orient l as np and assume without loss of generality that f intersects l before f ′. Let T = t1, . . . , ts be the
sequence of tetrahedra intersected by l between f and f ′. Without loss of generality, we take a line l very
close to p so that all the tetrahedra of T have p as a vertex. We denote by c1, . . . , cs the centers of the
Delaunay balls circumscribing t1, . . . , ts, and γ the polygonal chain γ = cf , c1, . . . , cs, cf ′ . Clearly, γ is a path
in Vor(E). Moreover, γ is monotone with respect to l. Indeed, the directed line l intersects ti before ti+1,
i = 1, . . . , s− 1. Because ti and ti+1 are Delaunay tetrahedra, the same is true for the line (cici+1) directed
from ci to ci+1. Hence (ci − ci+1) · np > 0 for i = 1, . . . , s− 1. For essentially the same reason, we also have
(c1 − cf ) · np > 0 and (cf ′ − cs) · np > 0.

The proof is in parts. First, we provide an upper bound on the angle between cf cf ′ and Tp, the tangent
plane at p. Then, we will provide a lower bound on the same angle, leading to a contradiction.

1. Using the Lipschitz property of function lfs and the hypothesis of the lemma, we have

‖cf − cf ′‖ ≤ ‖cf − p‖+ ‖p− cf ′‖
≤ ε (lfs(cf ) + lfs(cf ′))

≤ ε (2max(lfs(cf ), lfs(cf ′)) + ‖cf − cf ′‖)
≤ 2ε+ min(lfs(cf ), lfs(cf ′)). (5.1)

Then, by the Chord angle lemma, the angle φ between cf cf ′ and the tangent plane Tcf at cf is at most
arcsin ε+. Moreover, since ‖cf − p‖ ≤ εlfs(cf ) ≤ ε+ lfs(p), the Normal variation lemma 5.6 implies that

ψ = (ncf , np) ≤ 2 arcsin ε+

2 . It follows that

(cf cf ′ , Tp) ≤ φ+ ψ ≤ arcsin ε+ + 2arcsin
ε+

2
(5.2)

2. We exhibit now a lower bound on (cf cf ′ , Tp). We first need to prove that all the ci are close to p. Let Bp
be the ball centered at p of radius ε+lfs(p), and mp and m′

p be the two points on the line normal to S at p,
at distance lfs(p) from p. We define Wp as the union of two solid half-cones Cp and C ′

p. Refer to Figure 5.8.
The boundary of Cp (resp. C ′

p) is the union of the rays issued from mp (resp. m′
p) that are tangent to Bp.

Observe that, since the radius of Bp is ε+lfs(p), the half-angle of Cp and C ′
p is θp = arcsin ε+. Let V (p) be

the Voronoi cell of p. By Lemma 5.4, mp and m′
p belongs to V (p) and V (p) ∩ S ⊂ Bp. We claim that V (p)

is contained in Wp. Indeed, otherwise, let x ∈ V (p) \Wp. Assuming that x and mp lie on distinct sides of S
(otherwise exchange the role of mp and m′

p), the line segment [xmp] is not entirely contained in V (p) since
it must intersect S but does not intersect Bp ⊇ V (p) ∩ S. This violates the convexity of V (p) and proves
the claim. Hence, the ci, which are vertices of V (p), belong to Wp. Moreover, by the monotonicity of γ, the
ci lie in the slab limited by the two planes perpendicular to np passing respectively through cf and cf ′ . By
the hypothesis of the lemma, ‖cf − p‖ ≤ εlfs(cf ) ≤ ε+lfs(p) and the same inequality holds for ‖cf ′ − p‖. The
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Fig. 5.8 – For the proof of the Projection lemma.

Chord angle lemma then implies that |(cf − p) · np| ≤ 1
2 ε

+2lfs(p)
def
= h, and also |(cf ′ − p) · np| ≤ h. Hence

the ci lie in the slab Lp limited by the two planes perpendicular to np at distance h from p. The points of
Wp ∩Lp that are most distant from p lie on one of the two circles Wp ∩ ∂Lp. Elementary computations then
show that

‖ci − p‖ ≤ ε+
√

1 + 5
4ε

+2

√
1− ε+2

lfs(p) = ε∗ lfs(p).

By the Facet normal lemma 5.7 and the Normal deviation lemma 5.6, we obtain

(nfi
, np) ≤ arcsin(ε∗

√
3) + 2 arcsin

ε∗

2(1− ε∗)
def
= χ.

Observing that ci − ci+1 is perpendicular to facet fi, we get (ci+1 − ci) · np ≥ ‖ci+1 − ci‖ cosχ.

Using this last inequality (a) and the monotonicity of γ (b), we get

‖cf − cf ′‖ cosχ ≤
s
∑

i=0

‖ci+1 − ci‖ cosχ

a
≤

s
∑

i=0

(ci+1 − ci) · np

b
= (cf − cf ′) · np
= ‖cf − cf ′‖ sin((cf cf ′ , Tp). (5.3)
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Fig. 5.9 – An edge with three incident facets and a vertex whose star is not a simple polygon.

For ε < 0.24, cosχ > sin
(

arcsin ε+ + 2arcsin ε+

2

)

and we obtain a contradiction from inequalities (5.2) and

(5.3).

�

Remark. Observe that the proof of the Projection lemma still holds if cf and cf ′ are the centers of two
surface Delaunay balls circumscribing the same facet f ′ = f2. Hence, the Voronoi edge dual to any facet of
DelS(E) cannot intersect S more than once if E is an ε-sample of S with ε < 0.24.

5.4.3 DelS(E) is a closed triangulated surface

In this subsection, we prove that DelS(E) is a closed triangulated surface of R
3. Since DelS(E) is a 2-

complex, this is equivalent to proving that each edge of DelS(E) is incident to exactly two facets, and that
the boundary of the star of each vertex is a simple closed polygon. The star of a vertex p is the union of the
facets of DelS(E) that are incident to p.

Proposition 5.1 If E is an ε-sample and ε < 0.24, DelS(E) is a closed surface.

Proof. 1. We first prove that every edge of DelS(E) is incident to exactly two facets of DelS(E). Let e be
an edge of DelS(E). We denote by e∗ the Voronoi face dual to e. Since S has no boundary, S ∩ aff(e∗) is
a union of simple closed curves, none of which intersects the boundary ∂e∗ of e∗ tangentially, by the Facet
normal lemma 5.7. Hence, by the Jordan curve theorem, each component of S ∩ aff(e∗) intersects ∂e∗ an
even number of times. It follows that S intersects ∂e∗ at an even number of points. Moreover, by the remark
after the Projection lemma, each edge of ∂e∗ cannot be intersected more than once by S. Thus, S intersects
an even number of edges of ∂e∗. Equivalently, e is incident to an even number of restricted Delaunay facets.

2The main change is the fact that T is now empty, which makes the proof much simpler.
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In addition, e cannot be incident to more than two facets of DelS(E). Indeed, consider any two facets f and
f ′ incident to e and let p be an endpoint of e. By the Projection lemma 5.8, the projections of f and f ′

onto T (p) do not overlap. Hence, they must lie on different sides of the line supporting the projection of e,
which proves the claim.

In conclusion, the number of facets of DelS(E) that are incident to e is even, at least 1 and at most 2. It
follows that e is incident to exactly two facets of DelS(E).

2. Consider now a vertex p of DelS(E) whose star boundary is not a simple closed polygon. By the discussion
above, the star of p consists of several components we call umbrellas. Each umbrella is a triangulated
topological disk. All umbrellas of p have p in common but two distinct umbrellas have distinct edges and
facets.

We prove now that every vertex of DelS(E) has exactly one umbrella. Let U be one of the umbrellas incident
to p and Ū its projection onto the tangent plane Tp at p.

We claim that p belongs to the interior of Ū . Let us assume the contrary. Then U has a silhouette edge pq
whose projection on Tp belongs to the boundary of Ū . Since, by Proposition 5.1, pq is incident to two facets
of U , these two facets must project onto the same side of (p, q), and therefore overlap, which contradicts the
Projection lemma 5.8.

As a consequence, p cannot have two umbrellas U and U ′. Indeed, otherwise, there would be a facet of U
and a facet of U ′ whose projections onto Tp overlap, which contradicts again the Projection lemma 5.8. �

5.4.4 DelS(E) and S are isotopic

We assume that ε < 0.24. By Proposition 5.1, DelS(E) is a closed surface we can therefore orient : specifically,
we orient the normals of the facets of DelS(E) so that they all point outside the bounded region limited by
DelS(E). In the sequel, we write nf for the oriented normal of a facet f of DelS(E).

We define the ε-thickening of S as thickε(S) =
⋃

x∈S B(x, εlfs(x)). For ε < 1, thickε(S) does not intersect
the medial axis of S and its boundary has two components S+

ε and S−ε . We call fiber at x the line segment
normal to S at x with one endpoint on S+

ε and the other on S−ε .

The following result is a basic theorem in differential topology [25]. Let πS : R
3 → S map a point of R

3 to
its closest point on S. The restriction of πS to thickε is a well-defined continuous function since thickε(S)
does not intersect the medial axis of S.

Theorem 5.2 Let S be a C1,1, compact, oriented, closed surface and T be a compact closed surface (not
necessarily smooth) such that :

1. T ⊂ U = thickε(S),
2. Any fiber intersects T in exactly one point.

Then the restriction of πS to T induces an isotopy that maps T to S. The isotopy does not move the points
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Fig. 5.10 – DelS(E) is included in thickε(S). A fiber is shown in light grey.

by more than ε supx∈S lfs(x).

This theorem will be used to prove the following result :

Theorem 5.3 If E is an ε-sample, ε < 0.2, then the restriction of πS to DelS(E) induces an isotopy that
maps DelS(E) to S. The isotopy does not move the points by more than ε supx∈S lfs(x).

Before proving the theorem in its full generality, we prove that, for any p ∈ E, the fiber passing through p

intersects DelS(E) at point p only.

Lemma 5.9 Let E be a ε-sample of S, ε < 1, p ∈ E, and let mp be the center of a medial ball Bp tangent
to S at p. The segment pmp can only intersect DelS(E) at point p.

Proof. Let p ∈ E, mp the center of a medial ball Bp tangent to S at p. We prove that the open segment
pmp cannot intersect DelS(E). Assume that pmp intersects a facet f of DelS(E). ∂Bp and ∂Bf necessarily
intersect since the vertices of f do not belong to the interior of Bp and p does not belong to the interior of
Bf . Let H be the plane containing the intersection of the spheres bounding Bp and Bf , H

+ be the open
halfspace limited by H that contains Bf \ Bp, and H− the other open halfspace which contains Bp \ Bf .
Since p does not belong to the interior of Bf and is on the boundary of Bp, p must belong to H−∪H. On the
other hand, mp belongs to H− since otherwise mp would belong to Bf , which contradicts the assumption
that rf < lfs(cf ). Hence the open segment pmp is contained in the open half space H−, and therefore cannot
intersect f which is contained in H+ ∪H . �

We now proceed to the proof of Theorem 5.3.
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Fig. 5.11 – For the proof of Lemma 5.9.

Proof. We prove that the hypotheses of Theorem 5.2 are satisfied for S, T = DelS(E) and U = thickε(S).

Each facet of T is contained in the corresponding surface Delaunay ball. By definition of ε-samples, the
radius of the surface Delaunay ball of any facet f of DelS(E) is ≤ εlfs(cf ) where cf is the center of the ball.
Hence the first condition of Theorem 5.2 is fulfilled.

Consider now the second condition. Let S1 ⊂ S be the subset of points of S that are images by πS of exactly
one point of T . S1 6= ∅ by Lemma 5.9. Moreover, a sufficiently small neighborhood of any vertex p of T
projects 1-1 onto the tangent plane Tp to S at p since the star of p in T is a closed polygon (Proposition
5.1) that projects 1-1 onto Tp (Projection lemma 5.8). The continuity of the normal field then implies that
S1 contains an open neighborhood of each vertex of T .

If S1 has no boundary, then, since E intersects all the connected components of S (exercise 5.12), S1 = S
and the theorem is proved. Assume, for a contradiction, that ∂S1 6= ∅, and let x ∈ ∂S1 and l be the fiber at
x. l intersects T at a point t that necessarily belongs to an edge e = pq of T . Let us assume that t is not an
endpoint of e (otherwise move x slightly along ∂S1). By Proposition 5.1, there are exactly two facets of T ,
say f and f ′, that are incident to e and, since x ∈ ∂S1, nf · nx and nf ′ · nx must have different signs.

Let us bound (nf , nx). We first bound (nf , np) using the Facet normal lemma. We then bound the distance
between x and p and deduce from the Normal variation lemma a bound on (nx, np).

Let s be a vertex of f with greatest angle. By the Facet normal lemma 5.7, (nf , ns) ≤ arcsin ε+
√

3. Moreover,
since ‖s−p‖ ≤ 2ε lfs(cf ) ≤ 2ε+ min(lfs(p), lfs(s)), the Normal variation lemma 5.6 gives (ns, np) ≤ 2 arcsin ε+.
Hence

(nf , np) ≤ arcsin ε+
√

3 + 2 arcsin ε+ (5.4)

We now bound the distance between p and x. Write y for the projection of x onto edge e and assume without
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Fig. 5.12 – For the proof of Theorem 5.3.

loss of generality that ‖y − p‖ ≤ ‖y − q‖. We have ‖x− p‖2 = ‖x− y‖2 + ‖y − p‖2 ≤ ε2lfs2(x) + ε2lfs2(cf ).
and, since

lfs(cf ) ≤ lfs(x) + ‖x− cf‖
≤ lfs(x) + ‖x− t‖+ ‖t− cf‖
≤ (1 + ε) lfs(x) + ε lfs(cf )

≤ 1 + ε

1− ε lfs(x)

we obtain
‖x− p‖ ≤ ε+

√

2(1 + ε2) lfs(x)
def
= η lfs(x) ≤ η+ lfs(p).

By the Normal deviation lemma 5.6, we deduce (np, nx) ≤ 2 arcsin η+

2 , which, together with equation (5.4),
yields

(nf , nx) ≤ arcsin ε+
√

3 + 2 arcsin ε+ + 2 arcsin
η+

2
(5.5)

For ε > 0.2, (nf , nx) ≤ π
2 . The same inequality holds for (nf ′ , nx). It follows that nf ·nx and nf ′ ·nx have the

same sign, which contradicts our previous observation. It follows that ∂S1 = ∅ and therefore that S1 = S,
which proves that DelS(E) and S are isotopic.
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The isotopy is induced by projecting DelS(E) onto S. Since, DelS(E) and S are both contained in thickε(S),
the isotopy does not move the points by more than ε supx∈S lfs(x). �

5.4.5 Loose ε-samples

The notion of ε-sample is well-suited for analysis but is difficult to use in practise. Indeed, the definition
involves a condition for infinitely many points of S. The following concept relaxes this condition to a finite
set of points.

Definition 5.10 Given a surface of class C1,1 and ε < 1, we say that a finite set of points E ⊂ S is a loose
ε-sample of S if

1. E ⊂ S and DelS(E) has at least one vertex on each connected component of S,
2. for any facet f of DelS(E) and any surface Delaunay ball Bf = B(cf , rf ) circumscribing f , we have

rf ≤ ε lfs(cf ).

Clearly, an ε-sample is a loose ε-sample. Interestingly, the converse is true asymptotically as stated in
Theorem 5.4 below. We need first the following result :

Lemma 5.10 Let E be a loose ε-sample of S. Let p ∈ E and V (p) denote the Voronoi cell of p. V (p) ∩ S
is contained in the ball B(p, r) centered at p of radius r = ε(1 +O(ε2)) lfs(p).

Proof. We consider a slab Lp of width h = O(ε2) which is a thickening of the tangent plane Tp at p. We
call C(p) the portion of V (p) ∩ S that is contained in Lp. The proof consists of two steps. We first prove
that C(p) is contained in B(p, r). We then show that V (p) ∩ S lies entirely in Lp and therefore is identical
to C(p), which proves the lemma.

1. The first part of the proof is similar to the proof of the Projection lemma 5.8 and one can refer to Figure
5.8. Let Up be the star of p in DelS(E) and write f1, . . . , fs for the facets of Up. The centers ci of the surface

Delaunay balls circumscribing the fi are at distance at most ε lfs(ci) ≤ ε+lfs(p)
def
= ρ from p. Moreover, by

the Chord angle lemma 5.5, we have

|(ci − p) · np| ≤
ε+2

2
lfs(p)

def
= h.

Hence, the ci belong to B(p, ρ) ∩ Lp where Lp is the slab bounded by the two planes H et H ′ normal to np
lying at distance h from p.

Let e1, . . . , es be the edges of Up that are incident to p and let f1, . . . , fs be the facets of Up that are incident
to p. We denote by f ∗

i the Voronoi facet dual to fi and by e∗i the Voronoi facet dual to ei. In addition,
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write Hp
i for the halfspace bounded by aff(e∗i ) that contains p. Write Q(p) = ∩i=1,...,sH

p
i . Observe that the

Voronoi cell V (p) of p is included in Q(p).

The intersection of Q(p) with H (resp. H ′) is a convex polygon P (resp. P ′). A vertex of P (resp. P ′) is
the intersection point of H (resp. H ′) with the affine hull of a Voronoi edge dual to a facet of Up. Any such
Voronoi edge f ∗i contains the center ci of the surface Delaunay ball circumscribing fi. As observed above,
the ci belong to B(p, ρ)∩Lp. Writing θp for the maximal angle between np and an edge f ∗i (or equivalently
the normal to fi), we obtain that all the vertices of P and P ′ lie in the intersection of the slab Lp with the
cylinder Wp of axis (p, np) and radius

ρ?
def
= ρ+ 2h tan θp = ρ(1 + ε+ tan θp),

According to Lemmas 5.6 and 5.7, θp = arcsin ε+
√

3 + 2 arcsin ε+. We therefore have V (p) ∩ Lp ⊂Wp ∩ Lp.
Let C(p) = V (p)∩S ∩Lp. Since S cannot intersect the two balls Bp and B′

p of radius lfs(p) that are tangent
to S at p, we deduce from the above discussion that C(p) ⊂Wp ∩Lp which implies that, for any x in C(p),

‖x− p‖ ≤
√

h2 + ρ?2 = ε (1 +O(ε2)) lfs(p).

2. We prove now that C(p) = V (p) ∩ S, which, together with the first part of the proof, proves the lemma.
Assume the contrary and let C ′(p) be the portion of V (p) ∩ S that lie outside Lp. We claim that C ′(p)
cannot intersect an edge of V (p). Indeed, otherwise, since C ′(p) lies outside the two balls Bp and B′

p, such an
intersection point c would be the center of a surface Delaunay ball whose radius is ‖c−p‖ > ‖c−mp‖ ≥ lfs(c)
(see Figure ??) where mp denotes the center of Bp or B′

p closer to c. This would contradict the assumption
that E is a loose ε-sample.

We show now that C ′(p) = ∅. Consider the subdivision S † of S induced by Vor(E). A facet of S † is a
connected component of the intersection of a cell of Vor(E) with S. We distinguish, among the facets of S †,
those that contain a sample point (we call them the punctured facets) and those that do not contain any
point of E (called the orphan facets). A punctured facet cannot be incident to an orphan facet since any
edge of a punctured facet has its two endpoints on edges of V (p) while an orphan facet intersect no edge of
V (p). Hence, a connected component F of orphan facets has no boundary and is a connected component of
S. Since F contains no point of E, we get a contradiction with the assumption that E is a loose ε-sample
and therefore has points on each connected component of S. �

Theorem 5.4 Any loose ε-sample is an ε(1 +O(ε2))-sample.

Proof. Let p be a vertex of DelS(E). From Lemma 5.10, the intersection of S with the Voronoi cell V (p)
of p is contained in a ball of center p and radius η lfs(p) with η = ε(1 + O(ε2)). Hence, for any point x in
V (p) ∩ S, we have ‖x− p‖ ≤ ηlfs(p) ≤ η (lfs(p) + ‖x− p‖) ≤ η+lfs(x). The theorem follows. �

In particular, one can check that if E is a loose η-sample of S with η ≤ 0.13, then it is an ε-sample of S
with ε ≤ 0.2 and therefore Theorem 5.3 applies.
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c
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p
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S

V (p)

Lp

Bp

B′
p

Fig. 5.13 – For the proof of Lemma 5.10.
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Exercises 5.1

1. Extend Lemmas 5.2 and 5.3 to the case of manifolds of R
d.

2. Let E be an ε-sample of a surface S. Prove that E has points on all the connected components of S.

3. Prove that the surface Delaunay balls of the restricted Delaunay triangulation DelS(E) of an ε-sample
E of S intersect S along topological disks.

4. Show that the Fréchet distance between DelS(E) and S is O(ε2) for a fixed surface S and ε→ 0.

5. Show that Theorem 5.3 still holds if we replace DelS(E) by the subcomplex of DelS(E) consisting of
all facets of DelS(E) whose dual Voronoi edge intersects S an odd number of times.

6. Improve the constants in the previous results when the smallest angle of the facets of DelS(E) are
bounded from below, say larger than π

6 .

7. (Research problem) Extend the approximation results to piecewise smooth surfaces.

5.5 Bibliographical notes

Good introductions to algebraic topology and differential topology can be found in the books of Rotman
[31] and Hirsch [25]. The concept of restricted Delaunay triangulation is related to the notion of nerve in
algebraic topology [20]. Theorem 5.3 is due to Amenta and Bern [1]. For its extension to loose ε-samples and
non smooth surfaces see [7] and [11]. The Facet normal lemma 5.7 provides a bound on the normal deviation
between the surface S and the restricted Delaunay triangulation DelS(E). Cohen-Steiner and Morvan have
further shown that one can estimate the tensor of curvatures from DelS(E) [17].



Chapitre 6

Surface meshing

Let S be a surface of R
3. If we know a loose ε-sample E for ε < 0.1 of S, then, according to section

5.4.2, DelS(E) is a good approximation of S. In this section, we present an algorithm that can construct
such a sample and the associated restricted Delaunay triangulation. We restrict the presentation to the
case of surfaces that are compact, C1,1 and closed. S being compact and of class C1,1, for any x ∈ S,
lfs(x) ≥ lfsinf > 0.

6.1 Algorithm

The algorithm is greedy. It inserts points one by one and maintains the current set E, the Delaunay tri-
angulation Del(E) and its restriction DelS(E) to S, and a list L of bad facets of DelS(E). Any point that
is inserted is the center of the surface Delaunay ball of a bad facet of DelS(E). The algorithm stops when
there are no more bad facets (which eventually happens as we will see).

We define a bad facet as a facet f of DelS(E) that has a circumscribing surface Delaunay ball Bf = B(cf , rf )
satisfying rf > ψ(cf ), where ψ is a function defined over S and that satisfies

∀x ∈ S, ψ(x) ≥ ψinf > 0.

The surface is only queried through an oracle that, given a line segment f ∗ (to be the edge of Vor(E) dual
to a facet f of DelS(E)), determines whether f ∗ intersects S and, in the affirmative, returns an intersection
point and the value of ψ at this point.

We initialize the construction with a (usually small) set of points E0 ⊂ S. Three points per connected
component of S are sufficient (see exercise 6.12. The algorithm then executes the following loop

55
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while L is not empty {
take an element f of L ;
insert cf in E and in Del(E) ;
update DelS(E), i.e.

remove the facets that are no longer facets of Del(E) ;
add the new facets of Del(E) whose dual Voronoi edge intersects S ;

update L, i.e.
remove the elements of L that are no longer facets of DelS(E) ;
add the new facets of DelS(E) that are bad ; }

>ε

Ωd

6.2 Termination

Proposition 6.1 The algorithm terminates after a finite number of steps.

Proof. We call radius of insertion of a point p the distance of p to the current set E, just before inserting
p. We note it ρp.

We show that ρp ≥ ψinf for all points p ∈ E \ E0. Indeed, at each step, we insert the center of a surface
Delaunay ball that circumscribes a bad facet f . If rf denotes the radius of this ball and cf its center, we
have ρcf = rf . And, as f is a bad facet, rf > ψ(cf ) ≥ ψinf > 0. The insertion radius of the points of E \E0 is

therefore always greater than ψinf . The balls of radius ψinf

2 centered at the points of E \E0 thus have disjoint
interiors. The surface being compact, we can only insert a finite number of points, which proves that the
algorithm terminates. �

Upon termination, any facet f of DelS(E) has a circumscribing surface Delaunay ball Bf of center cf and
radius rf with rf < ψ(cf ). To be able to apply theorem 5.3, we need 1. to take ψ ≤ ε lfs, for a sufficiently
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small ε. 2. To ensure that DelS(E) has at least one vertex on each connected component of S. This can be
done by taking in E0 three points per component of S that are sufficiently close (see exercise 6.1).

6.3 Optimality

We bound the number of points inserted by the algorithm when ψ is 1-Lipschitz, i.e. ψ(x) ≤ ψ(y) + ‖x− y‖
for any x, y ∈ S.

Proposition 6.2 If ψ(x) is 1-Lipschitz and at most 1
2 lfs(x), the number of points inserted by the algorithm

after the initialization phase is n = |E \ E0| = O
(

∫

S
dx

ψ2(x)

)

.

Proof. Let τ(x) = inf{r : |B(x, r)
⋂

E| ≥ 2} and Bp = B(p, τ(p)2 ), p ∈ E. It is easy to see that τ is
1-Lipschitz.

∫

S
dx

τ2(x)
≥∑p∈E\E0

∫

(Bp∩S)
dx

τ2(x)
(the balls Bp have disjoint interiors)

≥ 4
9

∑

p∈E\E0

area(Bp∩S)
τ2(p)

(τ(x) ≤ τ(p) + ‖p− x‖ ≤ 3

2
τ(p))

≥ 4
9

∑

p∈E\E0

3π
16 = π

12 n

The last inequality comes from the fact that area(Bp ∩ S) ≥ 3πτ2(p)
16 . To prove the latter, we first observe

that τ(p) is no more than twice the radius of the surface Delaunay balls incident to p. Hence, if f is a facet
of DelS(E) incident to p, we have

τ(p) ≤ 2rf ≤ 2ψ(cf ) ≤ 2ψ(p) + ‖p− cf‖ = 2ψ(p) + rf ≤ 4ψ(p).

Now consider the two balls B and B ′ tangent to S at p of radius 1
2τ(p). Since τ(p)

2 ≤ 2ψ(p) ≤ lfs(p), Bp ∩ S
is a topological disk by lemma 5.5. Moreover, this disk cannot intersect the interiors of the two balls B and
B′, and its boundary lies on ∂Bp. Hence the area of Bp ∩ S is larger than the area of the disk bounded by

the circle ∂B ∩ ∂Bp. Denoting by ρ its radius, we have ρ = τ(p)
√

3
4 . The claim follows.

Using the Lipschitz property of τ and ψ, ∀x ∈ Bp, we have

1

2
τ(p) ≤ τ(p)− ‖x− p‖ ≤ τ(x) (6.1)

ψ(x) ≤ ψ(p) + ‖p− x‖ ≤ ψ(p) +
τ(p)

2
(6.2)
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Let q be a point of E closest to p : τ(p) = ‖p−q‖. According to the algorithm, ‖p−q‖ > ψ(p) or ‖p−q‖ > ψ(q)
depending whether p has been inserted after or before q. In both cases, due to the Lipschitz property of ψ,
we have

τ(p) = ‖p− q‖ ≥ ψ(p)− ‖p− q‖ > 1

2
ψ(p) (6.3)

From inequalities (6.1), (6.2) and (6.3), we get ψ(x) ≤ 5 τ(x), from which we deduce

n ≤ 300

π

∫

S

dx

ψ(x)2
.

�

We sum up the results of this section in the following theorem. The proof of optimality is let as an exercise.

Theorem 6.1 Given a compact oriented C2 surface S and a positive function ψ on S, one can compute a

loose ε-sample E of S for ψ. If ψ is 1-Lipschitz and at most 1
2 lfs(x), the size of the sample is O

(

∫

S
dx

ψ2(x)

)

,

which is optimal. If ψ < 0.1 lfs, DelS(E) is isotopic to S and the isotopy does not move the points by more
than supx∈S ψ(x).

6.4 Experimental results

The algorithm has been implemented by S. Oudot. We present some experimental results on algebraic
surfaces. The first two surfaces have genus respectively 3 and 5. We then show the standard trefoil knot and
a more intricate knot in ”sausage” format. A thorough discussion of the implementation of the algorithm
and other experimental results can be found in [10].
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Exercises 6.1

1. Adapt the algorithm to the case where S is a curve of R
d.
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2. Assume that ψ is a Lipschitz function. Show that a facet f circumscribed by Delaunay ball Bf of center
cf and radius rf with rf ≤ 1

3ψ(cf ) will remain a restricted Delaunay facet throughout the course of
the algorithm.

3. We modify the definition of a bad facet so as to eliminate facets with small angles. A facet f of DelS(E)
is now said to be bad if rf is too large (as above) or if one of its angles is smaller than π

6 . Show that
the algorithm still terminates.

4. Show that the bound in proposition 6.2 is tight.

5. Since S is compact and lfs is continuous, there exists x ∈ S such that lfs(x) = inf y∈S lfs(y). Show that
either lfs(x) is the minimal radius of curvature at x (in which case, one of the two medial spheres
passing through x is osculating S), or the line normal to S at x intersects S at another point z and
is also the line normal to S at z, and the sphere with diameter xz is a medial ball. Show then how to
compute infy∈S lfs(y).

6. Show that the algorithm remains valid if we replace the restricted Delaunay triangulation by the
subcomplex of DelS(E) consisting of its bipolar facets (see exercise ??2.

6.5 Bibliographical notes

The meshing algorithm presented in this chapter is due to Boissonnat and Oudot [7]. The paradigm of
Delaunay refinement has been first proposed by Ruppert for meshing planar domains [32].



Chapitre 7

Complexity of Voronoi diagrams of

surface samples

7.1 Introduction

We have seen in chapter 3 that the complexity of the Delaunay triangulation of n points of R
d can be

quadratic in the worst-case. In this chapter, we will see that, if the points form a good sample of a fixed set
of non intersecting polygons of R

3, the complexity of the Delaunay triangulation is linear.

In this chapter, we consider the case of points distributed on a fixed finite set of interior-disjoint planar regions
whose total area is positive and whose total perimeter is finite. This includes the case of polyhedral surfaces.
Under a mild uniform sampling condition (depending on a parameter κ), we show that the complexity of
the Delaunay triangulation of the points is linear when κ is a constant. Our bound is deterministic. The
constants are explicitly given and depend on κ and on the number of planar regions CS , the total area
AS and the total perimeter LS of the regions. More precisely, our main result states that the number of
Delaunay edges is at most :

(

1 +
CS κ

2
+ 5300π κ2 L

2
S

AS

)

n

where κ is a constant characterizing the set of points. Our bound holds for any n > 0.
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7.2 Definitions and notations

7.2.1 Notations

For a curve Γ, we denote by length(Γ) its length. For a portion of a surface R, we denote by area(R) its
area, and by ∂R its boundary. We further denote by B(x, r) (Σ(x, r)) the ball (sphere) of radius r centered
at x, and by DH(x, r) the disk lying in plane H centered at x ∈ H and of radius r.

Let H be a plane and R ⊂ H be a region of H. The plane H containing R is called a supporting plane of
R. We define :

R⊕H ε = {x ∈ H : DH(x, ε) ∩R 6= ∅}
R	H ε = {x ∈ H : DH(x, ε) ⊂ R}

R⊕H ε is obtained by growing R by ε within its supporting plane H and R 	H ε is obtained by shrinking
R by ε within its supporting plane H. When the supporting plane is unique or when it is clear from the
context, we will simply note R⊕ ε and R	 ε.

7.2.2 Polyhedral surfaces

In this chapter, we use the term polyhedral surface to denote a fixed finite set of interior-disjoint planar
regions whose total area is positive and whose total perimeter is finite. Accordingly, the planar regions are
called facets and the intersection between two facets is called an edge. This abuse of terminology is mainly
for simplicity and to refer to what is probably the most important case in applications. It should be kept
in mind however that our results hold for objects that are more general than usual polyhedral surfaces.
In particular, we do not require our polyhedral surfaces to be connected or to be manifolds, we allow an
arbitrary number of facets to be glued to a commoin edge etc.

In the rest of the chapter, S denotes an arbitrary but fixed polyhedral surface. Three quantities CS , AS and
LS will express the complexity of the surface S : CS denotes the number of facets of S, AS = area(S) its
area, and LS the sum of the lengths of the boundaries of the facets of S :

L =
∑

F⊂S
length(∂F ).

Observe that, if an edge is incident to k facets, its length will be counted k times.

We consider two zones on the surface, the ε-singular zone that surrounds the edges of S and the ε-regular
zone obtained by shrinking the facets.

Definition 7.1 Let ε ≥ 0. The ε-regular zone of a facet F ⊂ S is F 	 ε. The ε-regular zone of S is the
union of the ε-regular zones of its facets. The ε-singular zone of F (resp. S) is the set of points that do not
belong to the ε-regular zone of F (resp. S).
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Observe that the 0-singular zone of S consists exactly of the edges of S.

7.2.3 Sample

Any finite subset of points P ⊂ S is called a sample of S. The points of P are called sample points. We
impose two conditions on samples. First, the facets of the surface must be uniformly sampled. Second, the
sample cannot be arbitrarily dense locally.

Definition 7.2 Let S be a polyhedral surface. P ⊂ S is said to be a (ε, κ)-sample of S if and only if for
every facet F of S and every point x ∈ F :
– the ball B(x, ε) encloses at least one point of P ∩ F ,
– the ball B(x, 2ε) encloses at most κ points of P ∩ F .

The 2 factor in the second condition of the definition is not important and is just to make the constant in
our bound simpler. Any other constant and, in particular 1, will lead to a linear bound.

In the rest of the paper, P denotes a (ε, κ)-sample of S and we provide asymptotic results when the sampling
density increases, i.e. when ε tends to 0. As already mentioned, we consider κ and the surface S (and, in
particular, the three quantities CS, AS and LS) to be fixed and not to depend on ε.

7.3 Preliminary results

S designates a polyhedral surface and P ⊂ S a (ε, κ)-sample of S. We denote by ](A) the number of elements
of A. Let n(R) = ](P ∩R) be the number of sample points in the region R ⊂ S. Let n = ](P ) be the total
number of sample points. We first establish two propositions relating n(R) and n. We start with the following
lemma :

Lemma 7.1
AS

4πε2
≤ n

Proof. Let F be a facet of S. Let {D(xi, ε)}i∈{1,...,λ} be a maximal set of λ non-intersecting disks lying inside

F ⊕ ε. Because the set of disks is maximal, no other disk can be added without intersecting ∪λi=1D(xi, ε).
This implies that no point m of F is at distance greater than 2ε from a point xi (see Figure 7.1). Therefore,

{D(xi, 2ε)}i∈{1,...,λ} is a covering of F . We have area(F )
4πε2

≤ λ. Because of our sampling condition, every disk
D(xi, ε) contains at least one sample point. Therefore, λ ≤ n(F ) and

area(F )

4πε2
≤ λ ≤ n(F )
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By summing over the facets of S, we get the result. �

Lemma 7.2 Let F be a facet of S. For any R ⊂ F , we have :

n(R) ≤ 4κ area
(

R⊕ ε
2

)

πε2

m

F

F ⊕ ε

ε

Fig. 7.1 – A maximal set of non-intersecting disks contained in R⊕ ε and the corresponding covering of R
obtained by doubling the radii of the disks.

Proof. Let {D(xi,
ε
2)}i∈{1,...,λ} be a maximal set of λ non-intersecting disks lying inside R⊕ ε

2 . Because the

set of disks is maximal, no other disk can be added without intersecting ∪λi=1D(xi,
ε
2). This implies that no
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point m of R is at distance greater than ε from a point xi. Therefore, {D(xi, ε)}i∈{1,...,λ} is a covering of R.
We have :

n(R) ≤ κλ ≤ κ× area
(

R⊕ ε
2

)

πε2

4

�

Proposition 7.1 Let F be a facet of S. For any R ⊂ F , we have :

n(R) ≤ 16κ
area(R ⊕ ε

2 )

AS
n

Proof. By Lemma 7.1, we have :
AS

4πε2
≤ n (7.1)

We apply Lemma 7.2 to bound n(R) from above.

n(R) ≤ 4κ area(R ⊕ ε
2)

πε2

Eliminating ε from the two inequalities yields the result. �

Proposition 7.2 Let F be a facet of S. Let Γ ⊂ F be a curve contained in F . Let a > 0. We have :

n(Γ⊕ aε) ≤ (4a+ 1)2

a
κ

length(Γ)

ε
≤ 2(4a + 1)2

a

√
π κ

length(Γ)√
AS

√
n

Proof. Arguing as in the proof of Lemma 7.2, we see that the region Γ ⊕ aε can be covered by length(Γ)
aε

disks of radius 2aε centered on Γ and contained in the supporting plane of F .

Applying Lemma 7.2 to a disk R with radius 2aε, we get :

n(R) ≤ 4κπ(2aε + ε
2)2

πε2
= κ(4a+ 1)2

Therefore, we have :

n(Γ⊕ aε) ≤ κ (4a+ 1)2

a

length(Γ)

ε

From Lemme 7.1, we get :
1

ε
≤ 2
√
π√
AS

√
n

Combining the two inequalities leads to the result. �
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F

F 	 ε

x

c
y

Dp(y, ε)

Σ ∩ P

Fig. 7.2 – Assume Sigma is an empty sphere passing through a point x ∈ F 	 ε and intersecting the
supporting plane of F in a circle of radius greater than ε. Then, Sigma contains an empty disk DH(y, ε)
centered on F .

Lemma 7.3 Let x be a sample point in the ε-regular zone of S. Let H be the supporting plane of the facet
through x. Any empty sphere passing through x intersects H in a circle whose radius is less than ε.

Proof. The proof is by contradiction. Let H be the supporting plane of F . Consider an empty sphere
Sigma passing through x and intersecting H along a circle of radius greater than ε (see Figure 7.2). Let c
be the center of this circle. Let y be the point on the segment [xc] at distance ε from x. Because x belongs
to the ε-regular zone of F , y ∈ F . The empty sphere Sigma encloses the disk DH(y, ε). Therefore, DH(y, ε)
is an empty disk of H, centered on F and of radius ε, which contradicts our sampling condition. �

7.4 Counting Delaunay edges

Let S be a polyhedral surface and P be a (ε, κ)-sample of S. The Delaunay triangulation of P connects two
points p, q ∈ P if and only if there exists an empty sphere passing through p and q. The edge connecting p
and q is called a Delaunay edge. We will also say that p and q are Delaunay neighbours.

The number of edges ep and the number of tetrahedra tp incident to a vertex p lying in the interior of the
convex hull of P are related by Euler formula

tp = 2ep − 4

since the boundary of the union of those tetrahedra is a simplicial polyhedron of genus 0. Using the same
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argument, if p lies on the boundary of the convex hull, we have :

tp < 2ep − 4

By summing over the n vertices, and observing that a tetrahedron has four vertices and an edge two, we get

t < e− n.

To bound the complexity of the Delaunay triangulation, it is therefore sufficient to count the Delaunay edges
of P .

We distinguish three types of Delaunay edges : those with both endpoints in the ε-regular zone, those with
both endpoints in the ε-singular zone and those with an endpoint in the ε-regular zone and the other in the
ε-singular zone. They are counted separately in the following subsections,

We denote by Ps the set of sample points in the ε-singular zone of S.

7.4.1 Delaunay edges with both endpoints in the ε-regular zone

In this section, we count the Delaunay edges joining two points in the ε-regular zone.

Lemma 7.4 Let x be a sample point in the ε-regular zone and F the facet that contains x. x has at most
κ Delaunay neighbours in F .

Proof. By Lemma 7.3, any empty sphere passing through x intersects F in a circle whose radius is less
than ε. Therefore, the Delaunay neighbours of x on F are at distance at most 2ε from x. By assumption,
the disk centered at x with radius 2ε contains at most κ points of P . �

Lemma 7.5 Let x be a sample point in the ε-regular zone of a facet F . Let F ′ 6= F be another facet of S.
x has at most κ Delaunay neighbours in the ε-regular zone of facet F ′.

Proof. Refer to Figure 7.3. H and H ′ are the supporting planes of F and F ′, y is a Delaunay neighbour
of x in the ε-regular zone of F ′ and Sigma is an empty sphere passing through x and y. Let B be the
closed ball whose boundary is Sigma. B intersects the planes H and H ′ along two disks whose radii are
respectively r and r′. By Lemma 7.3, r ≤ ε and r′ ≤ ε.
Let M be the bisector plane of H and H ′. Let x′ and y′ be the points symmetric to x and y with respect
to M . Consider the sphere Sigma0 centered on M and passing through the four points x, x′, y and y′. Let
B0 be the closed ball whose boundary is Sigma0. B0 intersects H and H ′ along two disks D0 and D′

0 of
the same radius r0. We claim that r0 ≤ max(r, r′). Indeed, let v0 be the center of Sigma0 and v be the
center of Sigma. Let Mxy (resp. Mx′y′) be the bisector plane of x and y (resp. of x′ and y′). Observe that
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x

x′

H

M

v0

Mxy

Σ

Σ0

v

Mx′y′

H ′

y′

y

Fig. 7.3 – Any sphere passing through x and y intersects one of the two planes H or H ′ in a circle whose
diameter is at least ‖x′ − y‖.

v0 ∈Mxy ∩Mx′y′ and v ∈Mxy. If v ∈Mxy ∩Mx′y′ , r0 = r = r′ and the claim is proved. Otherwise, v must
belong to one of the two open halfspaces limited by Mx′y′ . If v belongs to the halfspace that contains x′, B
encloses D′

0 and therefore r0 ≤ r′ while in the second it encloses D0 and r0 ≤ r.
We therefore have :

‖x′ − y‖
2

= r0 ≤ max(r, r′) ≤ ε

and consequently :
‖x′ − y‖ ≤ 2ε.

The Delaunay neighbours of x in the ε-regular zone of F ′ lie in the disk DH′(x′, 2ε). This disk contains at
most κ points of P . �

Proposition 7.3 There are at most 1
2CSκn Delaunay edges with both endpoints in the ε-regular zone of S.

Proof. The surface S has CS facets. Therefore, by Lemmas 7.4 and 7.5, a point x in the ε-regular zone of
S has at most CSκ Delaunay neighbours. �

7.4.2 Delaunay edges with both endpoints in the ε-singular zone

In this section, we count the Delaunay edges joining two points in the ε-singular zone (see Figure 7.4).

Proposition 7.4 The number of Delaunay edges with both endpoints in the ε-singular zone is less than

1

2
502π κ2 L

2
S

AS
n
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Proof. By Proposition 7.2, the number ](Ps) of sample points in the ε-singular zone is at most

50
√
π κ

LS√
AS

√
n

Hence, the number of Delaunay edges in the ε-singular zone is at most 1
2 ](Ps)× (](Ps)− 1) < 1

2 ](Ps)
2. �

Fig. 7.4 – Example of a Delaunay triangulation of m points having a quadratic number of edges. Even if
such a configuration can occur for a subset of the sample points, the number m of sample points involved
in this configuration is O(

√
n). Therefore, the number of Delaunay edges involved in this configuration is

O(n).

7.4.3 Delaunay edges joining the ε-regular and the ε-singular zones

In this section, we count the Delaunay edges with one endpoint in the ε-regular zone and the other in the
ε-singular zone.

We first introduce a geometric construction of independent interest that will be useful.

Let H be a plane in R
3 and X ⊆ R

3 be a finite set of points. We assign to each point x of X the region
V (x) ⊂ H consisting of the points h ∈ H for which the sphere tangent to H at h and passing through x

encloses no point of X (see Figure 7.5). In other words, if R(h, x) denotes the radius of the sphere tangent
to H at h and passing through x, we have :

V (x) = {h ∈ H : ∀y ∈ X, R(h, x) ≤ R(h, y)}.

It is easy to see that the set of all V (x), x ∈ X, is a subdivision of H which we denote VH(X) (see Figure
7.8). The diagram VH(X) is a multiplicatively-weighted power Voronoi diagram. Let Px be the paraboloid
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Px

Pp

V (x)

x

Fig. 7.5 – The cell V (x) is the set of contact points between a plane H and a sphere passing through x and
tangent to H. The part of the paraboloid Px on the lower envelope of the paraboloids projects to the cell
V (x).

of revolution with focus x and director plane H. The paraboloid Px consists of the centers of the spheres
passing through x and tangent to H. Assume that the points X are all located above plane H. If not, we
replace x by the point symmetric to x with respect to H, which does not change VH(X). Let us consider
the lower envelope of the collection of paraboloids {Px}x∈X . Cell V (x) is the projection of the portion of
the lower envelope contributed by Px (see Figures 7.5 and 7.8).

Consider the bisector M(x, y) of x, y ∈ X, i.e. the points h ∈ H such that R(h, x) = R(h, y). M(x, y) is
the projection on H of the intersection of the paraboloids Px and Py. As easy computations can show, the
bisector M(x, y) of x and y is a circle or a line (considered as a degenerated circle). Let V (x, y)

V (x, y) = {h ∈ H : R(h, x) ≤ R(h, y)}.

Since M(x, y) is a circle, V (x, y) is either a disk, in which case we rename it D(x, y)+, or the complementary
set of a disk D(x, y)−. We therefore have

V (x) =
⋂

y∈X,y 6=x
V (x, y) =

(

∩D(x, y)+
)

\
(

∪D(x, y)−
)

It follows that the edges E(x, y) of V (x) are circle arcs that we call convex or concave with respect to x

depending whether the disk D(x, y) (whose boundary contains E(x, y)) is labelled + or − (see Figure 7.6).
Observe that the convex edges of V (x) are included in the boundary of the convex hull of V (x).

Proposition 7.5 The number of Delaunay edges with one endpoint in the ε-regular zone and the other in
the ε-singular zone is at most :

(

1 + 4050π κ2 L
2
S

AS

)

n
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F V (x) V (y)E(x, y)

Fig. 7.6 – The bold edges are the convex edges of the shaded cells. The edge E(x, y) which is concave with
respect to x is convex with respect to y. The convex edges of a cell lie on the boundary of its convex hull.

Proof. Let F be a facet of S and H the supporting plane of F . We bound the number of Delaunay edges
with one endpoint in Ps and the other in P ∩(F	ε), i.e. the number of Delaunay edges joining the ε-singular
zone and the ε-regular zone of F .

We denote by VF the restriction of the subdivision VH(Ps) introduced above to F , and, for x ∈ Ps, we
denote by V (x) the cell of VF associated to x.

We first show that the Delaunay neighbours of x that belong to the ε-regular zone of F belong to V (x)⊕2ε.
Consider a Delaunay edge (xf) with x ∈ Ps, x 6∈ H and f ∈ Ps ∩ (F 	 ε). Let Sigma be an empty sphere
passing through x and f , v its center (see Figure 7.7). By Lemma 7.3, Sigma intersects H in a circle whose
radius r is less than ε. For a point c on the segment [vx], we denote by Sigmac the sphere centered at c and
passing through x. Because Sigma encloses Sigmac, Sigmac is an empty sphere. For c = v, Sigmac intersects
H. For c = x, Sigmac does not intersect H. Consequently, there exists a position of c on [vx] for which
Sigmac is tangent to H. Let p = Sigmac ∩H for such a point c. We have p ∈ V (x) and ‖p− f‖ ≤ 2r ≤ 2ε.
Hence, f ∈ V (x)⊕ 2ε. Now, let us consider a Delaunay edge (xf) with x, f ∈ Ps ∩H. Applying Lemma 7.3
leads to f ∈ V (x)⊕ 2ε.

Let NF be the number of Delaunay edges between Ps and F 	 ε. We have, using the fact that VF is a
subdivision of F and Proposition 7.2 :

NF ≤
∑

x∈Ps

n(V (x)⊕ 2ε)

≤ n(F ) +
∑

x∈Ps

n(∂V (x)⊕ 2ε)

≤ n(F ) + 81
√
π κ

1√
AS

√
n
∑

x∈Ps

length(∂V (x))
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Pf

v

p

c

Σ

x

Σc

Fig. 7.7 – Every sphere Sigma passing through x and f ∈ H contains a sphere Sigmac passing through x

and tangent to H.

Let us bound
∑

x∈Ps
length(∂V (x)). Given a cell V (x), we bound the length of its convex edges. By summing

over all x ∈ Ps, all edges in VF will be taken into account.

The convex edges of x are contained in the boundary of the convex hull of V (x). Since V (x) ⊂ F , the length
of the boundary of the convex hull of V (x) is at most the length of ∂F . Consequently :

∑

x∈Ps

length(∂V (x)) ≤ length(∂F )× ](Ps)

Since, by Proposition 7.2, ](Ps) ≤ 50
√
π κ LS√

AS

√
n, we have :

NF ≤ n(F ) + 4050π κ2 length(∂F ) × LS
AS

n

By summing over all the facets, we conclude that the total number of Delaunay edges with one endpoint in
the ε-regular zone and the other in ε-singular zone is at most :

(

1 + 4050π κ2 L
2
S

AS

)

n

�

7.4.4 Main result

We sum up our results in the following theorem :
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Theorem 7.1 Let S be a polyhedral surface and P a (ε, κ)-sample of S of size ](P ) = n. The number of
edges in the Delaunay triangulation of P is at most :

(

1 +
CS κ

2
+ 5300π κ2 L

2
S

AS

)

n

Notice that our bound holds for any n > 0. It should be observed also that the bound does not depend on
the relative position of the facets (provided that their relative interiors do not intersect). In particular, it
does not depend on the dihedral angles between the facets. Notice also that the bound is not meaningful
when AS = 0, which is the case of the quadratic example in Figure 7.4.

7.5 Bibliographical notes

This chapter is taken from a paper by Attali and Boissonnat [2]. The extension to the case of smooth surfaces
is more difficult. Erickson [21] has exhibited a lower bound Ω(n

√
n) while Attali, Boissonnat and Lieutier

have provided a O(n log n) upper bound for generic surfaces [3].
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Fig. 7.8 – Decomposition of a facet F into cells for different set of points Ps. The lower envelope of the
paraboloid {Px}x∈Ps has been represented. The red spheres represent the points of Ps and the red lines
materialize the projection of the points of Ps on the plane H. The bisector of two points is a circle. The
projection of x on H do not belong necessary to its cell. The decomposition of F can have a quadratic
number of edges.



Chapitre 8

Local systems of coordinates

Scattered data interpolation

Dans tout ce chapitre, E désigne un ensemble fini de points de R
d.

Definition 8.1 On appelle système de coordonnées associé à E un ensemble de n fonctions continues λ i,
i = 1, . . . , n vérifiant pour tout x ∈ conv(E)

1. x =
∑

i λi(x) pi

2. λi(pj) = 1 si j = i et 0 si j 6= i

3. λi(x) ≥ 0,
∑

i λi(x) = 1

Une façon d’obtenir un système de coordonnées est de trianguler E, de localiser x dans la triangulation
T (E), c’est-à-dire d’identifier un simplexe tx qui contient x et de définir λi(x) comme les coordonnées
barycentriques de x dans le simplexe tx. On appelle ces coordonnées les coordonnées barycentiques de x
dans T (E). Deux remarques motivent les développements qui vont suivre. Tout d’abord, ces coordonnées
dépendent du choix d’une triangulation et ne sont donc pas intrinsèques. D’autre part, elles sont continues
mais pas continuement différentiables aux bords des simplexes.

8.1 Voisins naturels et systèmes de coordonnées associés

Soit x un point de R
d. On note E+ = E ∪ {x} et V +(x) la région de Voronöı de x dans Vor(E+). On dit

que pi est un voisin naturel de x si V +(x) intersecte la région de Voronöı V (pi) de Vor(E). Si pi est un
voisin naturel de x, on note Wi(x) l’intersection de V +(x) avec V (pi) et Vi(x) la facette commune à V +(x)

75
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et V +(pi). Wi(x) est l’ensemble des points de R
d qui ont x comme plus proche voisin et pi comme second

plus proche voisin dans E+. Vi(x) est la facette de Wi(x) constituée des points à égale distance de x et pi.

���

���

���

���

��	

��


�

De manière équivalente, pi est un voisin naturel de x si xpi est une arête de Del(E+) (puisqu’il existe un
point c qui a x et pi comme plus proches voisins, la sphère centrée en c et passant par x et pi n’englobe
aucun point de E). Les voisins naturels de x sont donc les points de E auxquels serait relié x si on l’insérait
dans la triangulation de Delaunay de E. Ce sont aussi les sommets des tétraèdres de Del(E) dont les sphères
circonscrites englobent x.

Notons Nat la relation d’équivalence qui relie deux points de R
d s’ils ont mêmes voisins naturels. Il découle

de la discussion précédente que les classes d’équivalence de Nat sont les faces de l’arrangement des sphères
de Delaunay1.

Definition 8.2 Soit vi(x) = vol(Vi(x)), v̄i(x) = vi(x)
‖x−pi‖ et wi(x) = vol(Wi(x)). On appelle coordonnées

de Laplace les n fonctions λ1, . . . , λn définies par λi(x) = v̄i(x)
Pn

i=1 v̄i(x)
si x 6∈ E, λi(pi) = 1 et λi(pj) = 0 si

j 6= i. On appelle coordonnées de Sibson les n fonctions ςi(x) = wi(x)
Pn

i=1
wi(x)

, i = 1, . . . , n.

Lemma 8.1 Les coordonnées de Laplace et les coordonnées de Sibson sont continues en tout point x de
conv(E). Les coordonnées de Sibson sont continuement différentiables en tout point x de conv(E) à l’excep-
tion des points de E.

Preuve :

1C’est-à-dire la partition du plan induite par l’union des sphères.
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1. Considérons tout d’abord la fonction vi(x). Le volume de F+(x, pi) varie continuement sauf aux points x
où le plan médiateur de x et pi contient une facette de V (pi), c’est-à-dire quand x est un des voisins naturels
de pi. Il s’ensuit que les vi et donc aussi les λi sont continus en tout point x 6∈ E. Montrons que les λi sont
également continus aux points de E. Quand x tend vers pi, v̄i(x) tend vers l’infini tandis que tous les autres
v̄j(x) restent bornés. Les λj(x) (j 6= i) tendent donc vers 0 et λi(x) vers 1. Comme par définition λi vaut 1
au point pi et 0 aux autres points de E, les λi sont donc également continus aux points de E.

2a. A l’intérieur de chaque cellule de l’arrangement des sphères de Delaunay, les voisins naturels sont fixés
et wi(x) est de classe C∞.

b. Considérons un point x sur une des sphères de Delaunay σ distinct des pi. Au vu du point a, pour que
wi(x) soit continue en x, il suffit que la restriction de wi sur une droite δ coupant transversalement σ soit
continue. De même, pour que la fonction wi(x) soit continuement différentiable, il suffit qu’elle le soit sur δ.

c. Soit δi une demi-droite issue de pi dont on exclut pi. Considérons la restriction wi|δi de wi à δi. On
paramètre δi par t ∈ [0,+∞[. Soit x = x(tx) un point sur δi. Soit tm ≥ 0 la plus petite valeur de t telle que,
∀t > tm, vi(x(t)) = 0. Soit I = [tx, tm[. D’après le point 1, vi(x(t)) est continue en tout point t de I (noter
cependant que vi(x(t)) n’est pas continu en tm si x(tm)) est un point de E dont la cellule de Voronöı est
adjacente à celle de pi). On observe que wi|δi(x) est obtenue en intégrant vi(x(t)) sur I. La continuité de
vi(x(t)) sur I entrâıne que wi|δi est continuement différentiable en x. On conclut que wi|δi est continuement
différentiable en tout point x de δi qui n’est pas un voisin naturel de pi.

d. Il suffit maintenant de prendre comme droite δ (cf. point b) une droite passant par un des pi appartenant
à σ. On conclut que wi est continuement différentiable sauf aux points de E. Il en va clairement de même
pour ςi.

e. Reste à montrer la continuité de ςi aux points de E. Celle-ci découle du fait que, quand x tend vers pi,
tous les wj(x) sauf wi(x) tendent vers 0. Il s’ensuit que les ςi(x) sont continus aux points de E et qu’on a
ςi(pi) = 1 et ςi(pj) = 0 si j 6= i. On notera que wi(x) n’est pas continu en pi.

2

Lemma 8.2 x =
∑

i λi(x) pi.

Preuve : C’est une conséquence directe du lemme 4.2 appliqué à la région de Voronöı V +(x) :

∑

i

vi
x− pi
‖x− pi‖

= 0⇐⇒
(

∑

i

vi

‖x− pi‖

)

x =
∑

i

vi

‖x− pi‖
pi.

2

Lemma 8.3 x =
∑

i ςi(x) pi.
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Preuve : Nous revenons à l’espace des sphères qu’on identifie à R
d+1 (cf. paragraphe 3.2). Pour éviter les

confusions, on rebaptise p le point x du lemme. On note I l’ensemble des indices des voisins naturels de p.
Considérons le polyèdre Vp intersection des demi-espaces h+

pi
, i ∈ I, d’équations h+

pi
: xd+1 ≥ 2pi · x− pi · pi,

et du demi-espace h−p d’équation h−x : xd+1 ≤ 2p · x − p · p. On note fi la facette de Vp portée par hpi
et

fp la facette de Vp portée par hp. Le vecteur ~ni = (2 pi,−1) est normal à fi et dirigé vers l’extérieur de Vp
et le vecteur ~np = (−2 p,+1) est normal à fp et dirigé vers l’extérieur de Vp. Appliquons le théorème de
Minkowski à Vp :

∑

i

vol(fi)
~ni

‖~ni‖
+ vol(fp)

~np

‖~np‖
= 0. (8.1)

pi

pj

x
ni

nj

nx

V(x)

La facette fi se projette dans xd+1 = 0 selon V +(p, pi) et la facette fp se projette selon V +(p), d’où, en
notant ~ıd+1 = (0, . . . , 0, 1) de R

d+1 le vecteur unitaire porté par le dernier axe de coordonnées,

wi(p) = vol(V +(p, pi)) = −vol(fi)
~ni

‖~ni‖
·~ıd+1 =

vol(fi)

‖~ni‖

w(p) = vol(V +(p)) =
vol(fp)

‖~np‖
,

et, avec (8.1),
∑

i

wi(p)~ni + w(p)~np = 0.

En utilisant les expressions des normales et en projetant dans xd+1 = 0, on obtient finalement
∑

i

wi(p)pi − w(p)p = 0.
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2

On rassemble les résultats précédents dans le

Theorem 8.1 Etant donné un ensemble fini de points E, les λi constituent un système de coordonnées
associé à E et il en va de même pour les ςi.

Exercises 8.1 1. Montrer que si d = 1, les coordonnées ςi(x) s’identifient aux coordonnées barycen-
triques de x dans la subdivision de la droite réelle induite par E.

2. Définir des coordonnées de Laplace et de Sibson dans un diagramme de Laguerre. Vérifier que les
lemmes 8.1, 8.3 et 8.4 restent valides.

3. S’inspirer de l’insertion d’un point dans une triangulation de Delaunay pour calculer efficacement λ i(x)
et ςi(x) pour i = 1, . . . , n et x un point de conv(E).

4. Montrer que

wi(x) = w
−pj

i (x)−
(

w
−pj

i (pj)−w−pj+x
i (pj)

)

où w−p+q
i est la i-ième coordonnée non normalisée de Sibson calculée dans le diagramme de Voronöı de

l’ensemble E \ {p} ∪ {q}. En déduire que ςi est, sauf aux points de E+, une fonction continuement
différentiable de pj (x étant fixé).

8.1.1 Gradient des coordonnées naturelles

On peut donner une formule explicite pour le gradient de ςi due à Piper. En fait le lemme suivant donne le
gradient de la coordonnée non normalisée wi. Le gradient de ςi s’en déduit par la relation

∇ςi(x) =
1

∑

j wj(x)



∇wi(x)− ςi(x)
∑

j

∇wj(x)





Lemma 8.4 En tout point x ∈ conv(E) \ E , ∇wi(x) = v̄i(x)(ci − x), où ci est le centre de gravité de la
facette F +(x, pi).

Proof. Nous donnons la preuve dans le cas plan. Soit c et c′ les extrémités d’une arête de V +(x). Le
point c est équidistant de x, pi et pj, et c′ est équidistant de x, pi et pk. On note σ et σ′ les cercles centrés
respectivement en c et c′ qui passent par x.
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zz

On calcule la projection du gradient selon deux directions. La première est la tangente au cercle σ en x. Soit
x(t) le point de σ image de x = x(0) par une rotation de centre c et d’angle t. L’arête F +(x, pi) = [cc′] devient
F+(x(t), pi) = [cc′(t)]. Si x 6∈ E et pour t suffisamment petit, la différence d’aires a(t) = wi(x(t)) − wi(x)
est égale à l’aire du triangle cc′c′(t), soit 1

2 ‖c− c′‖ × ‖c − c′(t)‖ sin θ, en notant θ l’angle entre cc′ et cc′(t).
Comme xpi et x(t)pi sont respectivement perpendiculaires à cc′ et cc′(t), on a θ = ∠c′cc′(t) = ∠xpix(t) = t

2 .
On en déduit que

a′(0) = lim
t→0

a(t)

t
=
‖c− c′‖2

4
.

Comme a(t) = wi(x(t)) −wi(x), on a

a′(0) = ∇wi(x(0))x′(0) = ∇wi(x) · (c− x)⊥,

où v⊥ représente l’image du vecteur v par une rotation de π
2 . On en déduit

∇wi(x) · (c− x)⊥ =
‖c− c′‖2

4
. (8.2)

Un argument analogue pour le cercle σ ′ conduit à

∇wi(x) · (c′ − x)⊥ =
−‖c− c′‖2

4
. (8.3)
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On vérifie maintenant que la formule du lemme conduit aux mêmes projections sur (c − x)⊥ et (c′ − x)⊥.
En effet, on déduit de la formule du lemme et de ci = 1

2 (c+ c′)

∇wi(x) · (c− x)⊥ =
1

2
v̄i(x)

(

(c− x) + (c′ − x)
)

· (c− x)⊥

= v̄i(x) aire(xcc′)

=
1

4
v̄i(x) ‖x− pi‖ × ‖c− c′‖ (cc′ ⊥ xpi)

=
1

4
‖c− c′‖2.

On retrouve (8.2). On montre de même que (8.3) est vérifiée. La formule du lemme étant vérifiée pour deux
directions, elle est donc correcte. �

Exercises 8.2

1. Etendre le lemme 8.4 au cas de coordonnées de Sibson définies sur un diagramme de puissance.

2. Montrer qu’il existe des constantes c et ε telles que si ‖x− pj‖ ≤ ε, on a pour tout i

|ςi(x)− ςi(pj)| ≤ c ‖x− pj‖.

3. Démontrer la formule du gradient en dimensions supérieures à 2.

8.1.2 Support des coordonnées naturelles

Le support d’une fonction définie sur R
d est l’ensemble des x ∈ R

d pour lesquels cette fonction ne s’annule
pas.

On déduit facilement de leur définition que le support de la coordonnée de Laplace λi et le support de la
coordonnée de Sibson ςi est l’union des boules de Delaunay incidentes à pi. On peut préciser quel est le
diamètre du support de ces coordonnées si on suppose que E est un échantillon suffisamment dense.

Soit R un domaine borné de R
d et ε > 0. On dit que E est un ε-échantillon de R si tout point de R est à

distance < ε d’un point de E. On note Rε l’ensemble des points de R à distance au plus ε du bord de R
qu’on appellera aussi érodé de R.

Lemma 8.5 Si E est un ε-échantillon uniforme de R, les voisins naturels de tout point de Rε sont contenus
dans une boule centrée en x de rayon 2ε. Les supports des coordonnées de Laplace et Sibson λi et ςi associées
à un point pi ∈ E ∩Rε sont contenus dans une boule centrée en pi de rayon 2ε.
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Proof. On montre que toute sphère passant par x ∈ Rε et n’englobant aucun point de E a un rayon au
plus ε. Supposons le contraire. Soit σ une telle sphère, c son centre, et y le point du segment cx à distance
ε de x. x étant dans l’érodé de R, y est dans R. La boule Bc limitée par σ contient la boule By centrée en y
et de rayon ε. L’intérieur de Bc ne contenant pas de point de E, il en va de même pour By, ce qui contredit
l’hypothèse sur E. �

8.2 Interpolation de données non structurées

8.2.1 Reconstruction exacte des fonctions affines

Soit un ensemble E fini de points pi de R
d. A chaque pi est associée un réel fi. On cherche une fonction

F : conv(E)→ R qui interpole les données, c’est-à-dire telle que F (pi) = fi, i = 1, . . . , n.

En utilisant les coordonnées définies précédemment, on obtient deux telles fonctions

F0(x) =
∑

i

λi(x)fi

F1(x) =
∑

i

ςi(x)fi.

Les propriétés suivantes découlent immédiatement des propriétés des coordonnées de Laplace et Sibson :

Interpolation : F0(pi) = F1(pi) = fi, i = 1, . . . , n.

Continuité : F0 et F1 sont continues en tout x ∈ conv(E). F1 est continuement différentiable en tout point
x ∈ conv(E) \ E.

Précision : Si F (x) est une fonction affine, i.e. F (x) = a · x + b où a et b sont deux vecteurs de R
d, les

lemmes 8.2 et 8.3 montrent que, en tout point de conv(E), F0(x) = F1(x) = a · x+ b. Les interpolants
F0 et F1 reconstruisent donc exactement les fonctions affines.

8.2.2 Reconstruction exacte des fonctions quadratiques

On suppose ici qu’à chaque point pi ∈ E est associé un réel fi = F (pi) et un vecteur ni = ∇F (pi).

On note comme précédemment

F1(x) =
∑

i

ςi(x) fi

et on définit
Hi(x) = fi + nti(x− pi).

Observer que H−1
i (0) est le plan de R

d × R passant par le point (pi, fi) et perpendiculaire à ni.
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On utilise le lemme 8.3 pour calculer l’erreur d’approximation de F1 et Hi dans le cas où les données
proviennent d’une fonction quadratique Q(x) = a + bt x + xtQx, où a, b sont des réels et Q une matrice
symétrique.

E1(x) = F1(x)−Q(x) =
∑

i

ςi(x)fi −Q(x)

=
∑

i

ςi(x) (a + btpi + ptiQpi)− (a+ btx+ xtQx)

=
∑

i

ςi(x) p
t
iQpi − xtQx

=
∑

i

ςi(x) (ptiQpi + xtQx− 2xtQpi)

=
∑

i

ςi(x) (x− pi)tQ(x− pi)

On considère une combinaison des Hi donnée par H(x) =
∑

i τi(x) Hi(x) avec
∑

i τi(x) = 1. On obtient

E2(x) = Q(x)−H(x) =
∑

i

τi(x) (Q(x)−Hi(x)) =
∑

i

τi(x) (x− pi)tQ(x− pi)

On définit alors F2 par F2(x) = E1(x)H(x)+E2(x)F1(x)
E1(x)+E2(x) . On vérifie que F2(x) = (F1(x)−Q(x)) H(x)+(Q(x)−H(x)) F1(x)

(F1(x)−Q(x))+(Q(x)−H(x)) =

Q(x).

Si on prend τi = σi, F2(x) est calculable à partir de E, des fi et des ni : F2 est une fonction interpolante
qui reconstruit exactement les fonctions quadratiques.

Exercises 8.3

1. Montrer que F2 reconstruit exactement les fonctions sphériques, c’est-à-dire les fonctions quadratiques
pour lesquelles Q = cI.

2. L’interpolant de Sibson Fs est obtenu en prenant pour τi(x) =
τ∗i (x)

P

i τ
∗

i (x) où τ∗i (x) = ςi(x)
‖x−pi‖ . Par la

question précédente, cet interpolant reconstruit les fonctions sphériques. Montrer de plus qu’il interpole
les gradients ni, c’est-à-dire que ∇Fs(pi) = ni. En déduire que Fs est continuement différentiable en
tout point de conv(E) (on pourra se servir de la question 8.2.2).
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8.3 Systèmes de coordonnées sur une surface

Soit S une variété compacte de codimension 1 (on dira surface par commodité), orientable, de classe C 2,
plongée dans R

d, et E = {p1, . . . , pn} un ensemble de points de S. On aimerait définir un système de
coordonnées associé à E et pouvoir interpoler des données sur S.

Les systèmes de coordonnées introduits au paragraphe 8.2.2 et définis sur R
d présentent au moins deux

difficultés. La première est que S n’est pas contenue dans conv(E) : on ne pourra donc pas interpoler sur
tout S. La deuxième est que les voisins naturels d’un point de S ne sont pas nécessairement proches du
point.

On peut pallier à ces difficultés en rajoutant des points sur une bôıte de grande taille contenant S. On peut
alors montrer que, si la bôıte et S sont bien échantillonnés, les voisins naturels d’un point x ∈ S qui sont
loin de x ont des coordonnées petites. Cette solution est néanmoins coûteuse : le nombre de points de E a
grossi et il faut gérer un grand nombre de voisins (alors que leur contribution est faible).

On présente au paragraphe 8.3.1 une autre façon de procéder qui consiste à définir un système de coordonnées
sur S (et pas dans tout R

d). Mais nous faisons auparavant un petit rappel pour définir un bon échantillon
d’une surface.

On appelle lfs(x) la distance de x à l’axe médian de S. On montre facilement que lfs est 1-Lipschitz : Pour
tous x, y ∈ S, lfs(x) ≤ lfs(y) + ‖x− y‖.

Definition 8.3 On dit qu’un ensemble fini de points E de S est un ε-échantillon de S (pour lfs) si tout
point x de S est à distance au plus ε lfs(x), ε < 1, d’un point de E.

8.3.1 Voisins naturels sur S

Soit x un point de S. Le plan tangent Tx à S en x coupe Vor(E) selon un diagramme de Laguerre Lag(E ′)
(lemme 4.3). Plus précisément, si on note p′i le projeté de pi ∈ E sur Tx et hi = ‖pi − p′i‖, Lag(E′) est le
diagramme de Laguerre des sphères (imaginaires) centrées aux p′i et dont les carrés des rayons sont −h2

i .
On peut alors associer à x des voisins naturels dans Lag(E ′) (comme au paragraphe 8.1 (question 8.1)) et
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des voisins naturels sur S : un point pi ∈ E sera un voisin naturel de x sur S si son projeté x′i est un voisin
naturel de x dans Lag(E ′).

Le lemme suivant affirme que les voisins naturels de x sur S sont proches de S.

Lemma 8.6 Si E est un ε-échantillon avec ε < 1
2 , les voisins naturels d’un point x ∈ S sont à distance au

plus 2ε√
1−2ε

lfs(x) de x.

Proof. On note E+ = E ∪ {x} et E ′+ = E′ ∪ {x}. Montrons tout d’abord que la plus grande distance de
x à un de ses voisins naturels sur S n’est pas plus de deux fois la plus grande distance de x aux sommets
de la cellule L(x) de x dans Lag(E ′+). En effet, si pi est voisin naturel sur S de x, pi est sur le bord d’une
boule vide centrée en un sommet v de L(x) qui passe également par x. On a donc ‖x− pi‖ ≤ 2‖x− v‖.
Majorons la distance de x aux sommets de L(x). Soit Bx la boule de rayon lfs(x) tangente à S en x telle que
le segment joignant son centre c à v coupe S en un point q. On note α = ∠vcx = ∠vxq ′ où q′ est le projeté
de x sur le segment vc. La boule (ouverte) Bv de centre v et de rayon ‖x− v‖ ne contient pas de point de E
puisque v ∈ V +(x). Comme Bx ne contient pas non plus de point de E, x est le point de E+ le plus proche
de q. En effet la boule ouverte centrée en q et de rayon ‖q−x‖ est contenu dans Bx ∪Bv dont l’intersection
avec E est vide. On a donc ‖x − q‖ ≤ ε lfs(q) ≤ ε

1−ε lfs(x). Par ailleurs, ‖x − q‖ ≥ ‖x − q′‖ = sinα lfs(x).
On en déduit que α ≤ arcsin ε

1−ε . Le rayon de Bx étant lfs(x), on conclut

‖x− v‖ = tanα lfs(x) ≤ tan(arcsin
ε

1− ε ) lfs(x) =
ε√

1− 2ε
lfs(x).

�

8.3.2 Coordonnées naturelles sur S

Pour pouvoir affecter des coordonnées aux voisins naturels de x dans Tx, il suffit que la cellule de x dans
Lag(E′ ∪ {x}) soit bornée. Le lemme suivant montre que ceci est vrai si E est un 1-échantillon de S,
c’est-à-dire que tout point de S est plus près d’un point de E que du squelette de S.

Lemma 8.7 Si E est un 1-échantillon de S, la cellule de x dans Lag(E ′ ∪ {x}) est bornée.

Proof. Pour prouver le lemme, il suffit de montrer que l’intersection de la cellule V ′(x) de x dans Vor|Tx
(E∪

{x}) est bornée. Supposons le contraire. L’intérieur de V ′(x) contient alors un point à l’infini p∞. Soit H le
plan passant par x et perpendiculaire à (xp∞) et H+ le demi-espace limité par H qui contient p∞. Puisque
x est parmi les points de E ∪ {x} celui qui est le plus de p∞, H+ ne contient aucun point de E.

Soit c ∈ H le centre de la sphère médiane passant par x et contenue dans la région bornée limitée par S. c
appartient au squelette de s. Soit y un point d’intersection de S avec la demi-droite issue de c, perpendiculaire
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à H et contenue dans H+. Un tel point existe puisque S est compacte et sans bord. ‖y− c‖ ≥ lfs(y) et, pour
tout p ∈ E, ‖y − p‖ > ‖y − c‖, ce qui contredit l’hypothèse que E est un 1-échantillon de S. �

Lemma 8.8 Si E est un ε-échantillon avec ε <
√

2 − 1, le support ∆i de τi est contenu dans une boule
centrée en pi et de rayon ri = 2ε√

1−2ε−ε .

Proof. Du lemme 8.6, on déduit que pour tout x ∈ ∆i, ‖x− pi‖ ≤ η lfs(x) ≤ η
1−η lfs(pi), avec η = 2ε√

1−2ε
.

�

Exercise 8.1 On peut montrer des résultats de continuité analogues à ceux obtenus au paragraphe 8.1 et
utiliser les fonctions d’interpolation définies au paragraphe 8.2 pour interpoler des fonctions sur des surfaces.

8.4 Notes bibliographiques

Les coordonnées de Sibson ont été introduites par Sibson [34] et les coordonnées de Laplace par Sugihara
[26]. Les propriétés de continuité de ces coordonnées énoncées par Sibson ont été prouvées par Farin [22]
puis par Piper qui a donné la formule du gradient [30]. Le lemme 8.3 a été prouvé par Sibson. La preuve
géométrique présentée ici reprend une idée de Sugihara pour le cas des coordonnées de Laplace. Plusieurs
autres preuves sont connues [14]. L’extension des coordonnées naturelles aux diagrammes de Laguerre est
étudiée en détail dans la thèse de Julia Flöttoto [23].

La notion de voisins naturels sur une surface a été introduite par Boissonnat et Flötotto. Les résultats de la
section 8.3.2 sont repris de [9].

On trouvera une implantation des coordonnées naturelles dans R
2 et sur une surface dans la bibliothèque

CGAL [15].
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