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An artistic view of a Voronoi diagram
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Affine Voronoi Diagrams Power Diagrams

Order k Voronoi Diagrams

Power diagrams of spheres

Power of a point to a sphere

o(x)=(x —1)2=(x —c)? —r2
o(x) < 0«<=x €int(o)
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Affine Voronoi Diagrams Power Diagrams

Order k Voronoi Diagrams

Bisector of two sites = hyperplane

0i(X) = 0j(X) <> %% — 2¢; - X + 5] = X% — 2¢j - X + S

o
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Affine Voronoi Diagrams Power Diagrams

Order k Voronoi Diagrams

Power diagram

Sites : n spheres o4, ...,0n

Distance of a point x to o
oi(x) = (x — &) —r?

POV\(O'i) = {X : O'i(X) < Uj(x)7 VJ}

Pow(oi) may be empty
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Affine Voronoi Diagrams Power Diagrams

Order k Voronoi Diagrams

Space of spheres

o — the polar hyperplane h, of R*1 : x4, 1 =2c-x — s
1. If o; = pi, h,, is the hyperplane hy, tangent to the paraboloid P
2. The vertical projection of h,, NP onto X411 = 0is o;

3. 0i(X) < 0j(X)<= 2C - X — Si > 2j - X — §j
< at point x, h,, is above h,,
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Affine Voronoi Diagrams Power Diagrams

Order k Voronoi Diagrams

Space of spheres

the faces of the power diagram are the vertical projections of
the faces of P(S) = N h

The vertical projection of the dual complex R(S) of P(S) is
called the regular triangulation of S

P(S) = hjl ? .nhi  — R(S)=conv ({¢(01),...,9(on)})

power diagram of S «—— Regular triangulation of S
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Affine Voronoi Diagrams Power Diagrams

Order k Voronoi Diagrams

Complexity and algorithm

nb of faces = © (nld%lJ> (Upper Bound Th.)

can be computed in time © (n logn + nlLﬁlJ)
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Affine Voronoi Diagrams Power Diagrams

Order k Voronoi Diagrams

Complexity and algorithm
nb of faces = © (nld%lJ> (Upper Bound Th.)
can be computed in time © (n logn + nLLﬁlJ)
Main predicate

1 1
power _test (og,...,0441) = Sign Co Cqi1

2 .2 2 2
Co—Ty -+ Coy1— Mo
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Affine Voronoi Diagrams Power Diagrams

Order k Voronoi Diagrams

Affine Voronoi diagrams

Definition
Diagrams defined for objects and a distance function
s.t. bisectors are hyperplanes
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Affine Voronoi Diagrams Power Diagrams

Order k Voronoi Diagrams

Affine Voronoi diagrams

Definition
Diagrams defined for objects and a distance function
s.t. bisectors are hyperplanes

Theorem [Aurenhammer]
Any affine Voronoi diagram of RY is the power diagram of a set
of spheres of RY.
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Affine Voronoi Diagrams Power Diagrams

Order k Voronoi Diagrams

P, : any non vertical hyperplane of R4+1
P, : any non vertical hyperplane such that
proj(P1 NPy) = hyy

fork >3
Py : the hyperplane such that

proj(Pl NPx) = hy
prO](P2 N Pk) = h2k

pl’Oj(Pi N PJ) = hij <= proj(Pl NP N P]) =hy; N hlj = Ilij
prO!(Pz NP N Pj) =hy N h2j = |2ij
proj (aff (Pl NPy N Pj, P,NPiN Pj)) = aff(|1ij, |2ij) = hij

we define o = proj (PiP) = h, =P
h;j = radical hyperplane of o; et g;
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Affine Voronoi Diagrams Power Diagrams

Order k Voronoi Diagrams

Examples of affine diagrams

1. The vertical projection of the faces of any polyhedron that
is the intersection of upper half-spaces of R4+1
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Affine Voronoi Diagrams Power Diagrams

Order k Voronoi Diagrams

Examples of affine diagrams

1. The vertical projection of the faces of any polyhedron that
is the intersection of upper half-spaces of R4+1

2. The intersection of a power diagram with an affine
subspace
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Affine Voronoi Diagrams Power Diagrams

Order k Voronoi Diagrams

Examples of affine diagrams

1. The vertical projection of the faces of any polyhedron that
is the intersection of upper half-spaces of R4+1

2. The intersection of a power diagram with an affine
subspace

3. A Voronoi diagram with the following quadratic distance
function

Ix —allqg = (x —a)'Q(x — a) Q=0qQ
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Affine Voronoi Diagrams Power Diagrams

Order k Voronoi Diagrams

Examples of affine diagrams

1. The vertical projection of the faces of any polyhedron that
is the intersection of upper half-spaces of R4+1

2. The intersection of a power diagram with an affine
subspace
3. A Voronoi diagram with the following quadratic distance
function
Ix —allg = (x —a)'Q(x —a) Q=0

4. k-order Voronoi diagrams
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Affine Voronoi Diagrams Power Diagrams

Order k Voronoi Diagrams

A k-order Voronoi diagram is a power diagram

Let Eq1, Ey, ... denote the subsets of k points of E

)= S -pP = E Ypx e Y2

J€E; j€E; j€E

The k nearest neighbors of x are the points of E; iff
Vi, ai(x) < oj(x)

o; is the sphere centered at % Z}‘Zl P;
K
ok(0) = % 21 pi?
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Affine Voronoi Diagrams Power Diagrams

Order k Voronoi Diagrams

In the space of spheres

The cells of the k-Voronoi diagram are the projections
of the cells of the k-th level in the arrangement of the polar
hyperplanes hp,
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Affine Voronoi Diagrams Power Diagrams

Order k Voronoi Diagrams

Number of faces of levels < k in an arrangement of
hyperplanes

H set of n hyperplanes of R, A the associated arrangement
It is sufficient to count the number of vertices of level < k

Objects : hyperplanes of H
Configurations : d-uplets of hyperplanes (= a vertex of A
Conflict : heH, svertexof A,s € h™

The number of vertices of level < k is equal to |CY, (H)|
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Affine Voronoi Diagrams Power Diagrams

Order k Voronoi Diagrams

Random sampling theorem [Clarkson & Shor]

If S is a set of n objects
k aninteger,2 <k <n/(d +1)
R|n/k) @ random subset of S of size [n/k]

€4 (S) < 4 (d + 1) kY E(IC§ (Rins))])
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Affine Voronoi Diagrams Power Diagrams

Order k Voronoi Diagrams

Proof : E(|C(R:)]) = > ceca(s) Proba(C € Co(R))
n—d—j
r—d
n
(7)

> [C%(S)] ( nfd_k)

(")

= 251G (S)]
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Affine Voronoi Diagrams Power Diagrams

Order k Voronoi Diagrams

Proof : E(IC(R)]) = Seeco(s) Proba(C € Co(R)
(")
r—d
n
(7)

<n—d—k>
> (et ()~ @

(")

(n—d—k)
—d
for2<k <z andr = |n/k] : ' > 1

= 251G (S)]

( n ) = A(d+1)kd
r
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Affine Voronoi Diagrams Power Diagrams

Order k Voronoi Diagrams

» By the random sampling theorem

Cak(H)] = O (KYE (ICo(Rpn))]))
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Affine Voronoi Diagrams Power Diagrams

Order k Voronoi Diagrams

» By the random sampling theorem

Cak(H)] = O (KYE (ICo(Rpn))]))

» By the upper bound theorem

Co(Rpnpp)l = O (In/k)t2!)
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Affine Voronoi Diagrams Power Diagrams

Order k Voronoi Diagrams

» By the random sampling theorem
Cak(H)] = O (KYE (ICo(Rpn))]))
» By the upper bound theorem
d
Co(Rpnpp)l = O (In/k)t2!)
» The number of vertices of level < k is

0 (k(%w nL%J)
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Affine Voronoi Diagrams Power Diagrams

Order k Voronoi Diagrams

Bounds on < k-levels, < k-sets and < k-order VD

Theorem
The total number of faces (of all dimensions) of the k first levels

of Ais
0 (k[%1 nL%J)

For all orders : ©(nY)
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Order k Voronoi Diagrams

Bounds on < k-levels, < k-sets and < k-order VD

Theorem
The total number of faces (of all dimensions) of the k first levels

of Ais
0 (k[%1 nL%J)

For all orders : ©(nY)

Corollary

By duality, the same bounds apply for the number of < k-sets
of a set of n points of RY
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Affine Voronoi Diagrams Power Diagrams

Order k Voronoi Diagrams

Bounds on < k-levels, < k-sets and < k-order VD

Theorem
The total number of faces (of all dimensions) of the k first levels

of Ais
0 (k[%1 nL%J)

For all orders : ©(nY)

Corollary

By duality, the same bounds apply for the number of < k-sets
of a set of n points of RY

Corollary
The number of vertices and faces of the k first Voronoi
diagrams is

O (kI nl%t)
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Moebius Diagrams
Apollonius Diagrams
Anisotropic Diagrams

Curved Voronoi Diagrams

MObius Diagrams

» Weighted points : W; = (pi, i, i), pi € RY, A € R\ {0},
i € R
» Distance function :

o (X, Wi) = Ni[x — pill2 — i
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Moebius Diagrams
Apollonius Diagrams
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Curved Voronoi Diagrams

MObius Diagrams

» Weighted points : W; = (pi, i, i), pi € RY, A € R\ {0},
i € R
» Distance function :

o (X, Wi) = Ni[x — pill2 — i

Generalization of
» Voronoi diagrams (\j = A > 0 et i = 0)
» Power diagrams (\j = A > 0)
» multiplicatively weighted Voronoi diagrams (u; = 0)
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Moebius Diagrams
Apollonius Diagrams
Anisotropic Diagrams

Curved Voronoi Diagrams

Bisectors are hyperspheres, hyperplanes or ()

A(X = pi)? = i = N (X = py)® =
<— ()\i — )\j)XZ — Z(Aipi —/\jpj)-X +)\ipi2 — Wi — /\ij2 + pj = 0
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Moebius Diagrams
Apollonius Diagrams
Anisotropic Diagrams

Curved Voronoi Diagrams

Bisectors are hyperspheres, hyperplanes or ()

A(X = pi)? = i = N (X = py)® =
= (N = )X = 2(Npi — Ajpy) X+ APE — i — AP+ =0
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Moebius Diagrams
Apollonius Diagrams
Anisotropic Diagrams

Curved Voronoi Diagrams

Linearization Lemma

We can associate to each weighted point W,
a hypersphere ¥; of R4*1 so that

the faces of the Mobius diagram of the W, are obtained by
projecting vertically the faces of the restriction of the Power
Diagram of the ¥; to the paraboloid P : Xq;1 = X2
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Moebius Diagrams
Apollonius Diagrams
Anisotropic Diagrams

Curved Voronoi Diagrams

Proof

Ai(x — pi)2 — i < A(X — pj)2 — 1
i A2
O AR (2 ) 02— e
Aj A2
< (= AP)?H (P + )7 = NP — 7 AR
— (X—Ci)z—pizg(x_cj)z_pjz

where X = (x,x?) € R4+,
i A2
Ci = ()‘ipi?—%) € R9+1 and piz = )‘izpiz + 3 - )\ipiZ T
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Moebius Diagrams
Apollonius Diagrams
Anisotropic Diagrams

Curved Voronoi Diagrams

Corollaries

1. Inversion and Mdbius transforms map a spherical diagram
to another spherical diagram
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Moebius Diagrams
Apollonius Diagrams

Curved Voronoi Diagrams
Anisotropic Diagrams

Corollaries

1. Inversion and Mdbius transforms map a spherical diagram
to another spherical diagram

2. The intersection of a spherical diagram with an affine
subspace is a a spherical diagram
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Moebius Diagrams
Apollonius Diagrams
Anisotropic Diagrams

Curved Voronoi Diagrams

Corollaries

1. Inversion and Mdbius transforms map a spherical diagram
to another spherical diagram

2. The intersection of a spherical diagram with an affine
subspace is a a spherical diagram

3. Using stereographic projection, one can define spherical
diagrams on S¢
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Moebius Diagrams
Apollonius Diagrams

Curved Voronoi Diagrams

Anisotropic Diagrams

Corollaries

1. Inversion and Mdbius transforms map a spherical diagram
to another spherical diagram

2. The intersection of a spherical diagram with an affine
subspace is a a spherical diagram

3. Using stereographic projection, one can define spherical
diagrams on S¢

4. The class of Mdbius diagrams is identical to the class of
spherical diagrams, i.e.diagrams whose bisectors are
hyperspheres
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Moebius Diagrams
Apollonius Diagrams
Anisotropic Diagrams

Curved Voronoi Diagrams

Constructing Mobius diagrams

The complexity of the Mdbius diagram of n doubly weighted
points in B9 is ©(nl2/+1)
It can be constructed in time ©(nlogn + nL%J“)
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Moebius Diagrams

. Apollonius Diagrams
Curved Voronoi Diagrams i agra
Anisotropic Diagrams

Constructing Mobius diagrams

The complexity of the Mdbius diagram of n doubly weighted
points in R is ©(nlz/+1)

It can be constructed in time ©(nlogn + nL%J“)
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Moebius Diagrams
Apollonius Diagrams
Anisotropic Diagrams

Curved Voronoi Diagrams

Constructing Mobius diagrams

The complexity of the Mdbius diagram of n doubly weighted
points in B9 is ©(nl2/+1)
It can be constructed in time ©(nlogn + nL%J“)

Predicates :
power_test
decide whether a face of Power({%;}] ;) intersects P
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Moebius Diagrams
Apollonius Diagrams

Curved Voronoi Diagrams
9 Anisotropic Diagrams

An Euclidean model

oo a hyperplane of R? (x4 = 0)
a finite set of hyperspheres {o; = (pi,wi) }{.;
V(00) = {x € RY: d(x,00) < d(x,0i),Vi}
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Moebius Diagrams
Apollonius Diagrams

Curved Voronoi Diagrams
9 Anisotropic Diagrams

An Euclidean model

oo a hyperplane of R? (x4 = 0)
a finite set of hyperspheres {o; = (pi,wi) }{.;
V(00) = {x € RY: d(x,00) < d(x,0i),Vi}

Projection Lemma
The vertical projection of 9V (¢g) on og is @ MObius diagram
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Moebius Diagrams
Apollonius Diagrams

Curved Voronoi Diagrams
Anisotropic Diagrams

Apollonius diagrams of spheres

o = (pi,ri)
6(x,0i) = [Ix —pil| =T
Apo(ai) = {X,4(x,0i) < 6(x, 07)}
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Curved Voronoi Diagrams

The Projection Lemma extends to any set of spheres
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Curved Voronoi Diagrams

The Projection Lemma extends to any set of spheres
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Anisotropic Diagrams

The Projection Lemma extends to any set of spheres
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Anisotropic Diagrams

The Projection Lemma extends to any set of spheres
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Moebius Diagrams
Apollonius Diagrams
Anisotropic Diagrams

Curved Voronoi Diagrams

The Projection Lemma extends to any set of spheres

v
I
[
1

!

Theorem: The combinatorial complexity of a single cell in the
Apollonius diagram of n spheres of RY is @(nL%J)
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Moebius Diagrams
Apollonius Diagrams
Anisotropic Diagrams

Curved Voronoi Diagrams

CGAL implementations

CGAL planar Apollonius diagrams [M. Karavelas]
100k circles : 40s (Pentium Ill, 1 GHz)

Affine and curved Voronoi diagrams Affine and Curved Voronoi Diagrams



Curved Voronoi Diagrams

Anisotropic Diagrams

CGAL implementations

CGAL planar Apollonius diagrams [M. Karavelas]
100k circles : 40s (Pentium Ill, 1 GHz)

A prototype implementation [C. Delage]
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Apolloniu
Anisotropic Diagrams

Curved Voronoi Diagrams

Anisotropic Voronoi diagrams Labelle & Shewchuk

Weighted point : (p;, M;, ;) where p; € RY, M; isad x d
symmetric positive definite matrix and r; € R

Distance to a weighted point : d;(x) = (X — p;)' M; (X — pj) — 1;
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Curved Voronoi Diagrams . L
Anisotropic Diagrams

Anisotropic Voronoi diagrams Labelle & Shewchuk

Weighted point : (p;, M;,r;) where p; € RY, M;isad x d
symmetric positive definite matrix and r; € R

Distance to a weighted point : dj(x) = (X — p;)! M; (X — p;) — i

Anicatrani EYaT2aYae

d
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Moebius DI’qumi
Apollonius
Anisotropic Dlagrams

Curved Voronoi Diagrams

Lined%erZation Lemma

, one can define a set X of n hyperspheres so that the
anisotropic Voronoi diagram of the n given weighted sites is the
projection of the restriction of Pow(X) to a d-manifold
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Curved Voronoi Diagrams

Lined%erZ)ation Lemma

INR™ 2, one can define a set X of n hyperspheres so that the
anisotropic Voronoi diagram of the n given weighted sites is the
projection of the restriction of Pow(X) to a d-manifold

Universality Lemma
Any quadratic Voronoi diagram (i.e. with quadratic bisectors) is
an anisotropic diagram
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Conclusion
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Conclusion

The linearization approach

» Provides a framework for many Voronoi diagrams
» Leads to rather simple data structures and algorithms
» Robust and efficient implementations exist for simple cases
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Conclusion

The linearization approach

» Provides a framework for many Voronoi diagrams
» Leads to rather simple data structures and algorithms
» Robust and efficient implementations exist for simple cases

Further questions

» Does not directly provide good combinatorial bounds

» How to compute the restriction of an affine diagram to a
manifold efficiently ?

» Approximation algorithms ?
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