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1 Foreword

This paper is an attempt to share with a larger audience some modern develop-
ments in the theory of finite automata. It is written for the mathematician who
has a background in semigroup theory but knows next to nothing on automata
and languages. No proofs are given, but the main results are illustrated by
several examples and counterexamples.

What is the topic of this theory ? It deals with languages, automata and
semigroups, although recent developments have shown interesting connections
with model theory in logic, symbolic dynamics and topology. Historically, in
their attempt to formalize natural languages, linguists such as Chomsky gave a
mathematical definition of natural concepts such as words, languages or gram-
mars: given a finite set A, a word on A is simply an element of the free monoid
on A, and a language is a set of words. But since scientists are fond of clas-
sifications of all sorts, language theory didn’t escape to this mania. Chomsky
established a first hierarchy, based on his formal grammars. In this paper, we
are interested in the recognizable languages, which form the lower level of the
Chomsky hierarchy. A recognizable language can be described in terms of fi-
nite automata while, for the higher levels, more powerful machines, ranging
from pushdown automata to Turing machines, are required. For this reason,
problems on finite automata are often under-estimated, according to the vague
— but totally erroneous — feeling that “if a problem has been reduced to a
question about finite automata, then it should be easy to solve”.

Kleene’s theorem [23] is usually considered as the foundation of the the-
ory. It shows that the class of recognizable languages (i.e. recognized by finite
automata), coincides with the class of rational languages, which are given by
rational expressions. Rational expressions can be thought of as a generalization
of polynomials involving three operations: union (which plays the role of addi-
tion), product and star operation. An important corollary of Kleene’s theorem
is that rational languages are closed under complement. In the sixties, several
classification schemes for the rational languages were proposed, based on the
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number of nested use of a particular operator (star or product, for instance).
This led to the natural notions of star height, extended star height, dot-depth
and concatenation level. However, the first natural questions attached to these
notions — “do they define strict hierarchies ?”, “given a rational language, is
there an algorithm for computing its star height, extended star height”, etc. ? —
appeared to be extremely difficult. Actually, several of them, like the hierarchy
problem for the extended star height, are still open.

A break-through was realized by Schützenberger in the mid sixties [53].
Schützenberger established the equivalence between finite automata and finite
semigroups and showed that a finite monoid, called the syntactic monoid, is
canonically attached to each recognizable language. Then he made a non trivial
use of this invariant to characterize the languages of extended star height 0, also
called star-free languages. Schützenberger’s theorem states that a language is
star-free if and only if its syntactic monoid is aperiodic. Two other “syntactic”
characterizations were obtained in the early seventies: Simon [57] proved that a
language is of concatenation level 1 if and only if its syntactic monoid is J -trivial
and Brzozowski-Simon [9] and independently, McNaughton [29] characterized
an important subfamily of the languages of dot-depth one, the locally testable
languages. These successes settled the power of the semigroup approach, but it
was Eilenberg who discovered the appropriate framework to formulate this type
of results [17].

Recall that a variety of finite monoids is a class of monoids closed under
the taking of submonoids, quotients and finite direct product. Eilenberg’s the-
orem states that varieties of finite monoids are in one to one correspondence
with certain classes of recognizable languages, the varieties of languages. For
instance, the rational languages correspond to the variety of all finite monoids,
the star-free languages correspond to the variety of aperiodic monoids, and the
piecewise testable languages correspond to the variety of J -trivial monoids. Nu-
merous similar results have been established during the past fifteen years and
the theory of finite automata is now intimately related to the theory of finite
semigroups. This had a considerable influence on both theories: for instance
algebraic definitions such as the graph of a semigroup or the Schützenberger
product were motivated by considerations of language theory. The same thing
can be said for the systematic study of power semigroups. In the other direc-
tion, Straubing’s wreath product principle has permitted to obtain important
new results on recognizable languages. The open question of the decidability of
the dot-depth is a good example of a problem that interests both theories (and
also formal logic !).

The paper is organized as follows. Sections 2 and 3 present the necessary
material to understand Kleene’s theorem. The equivalence between finite au-
tomata and finite semigroups is detailed in section 4. The various hierarchies of
rational languages, based on star height, extended star height, dot-depth and
concatenation level are introduced in section 5. The syntactic characterization
of star-free, piecewise testable and locally testable languages are formulated in
sections 6, 7 and 8, respectively. The variety theorem is stated in section 9 and
some examples of its application are given in section 10. Other consequences
about the hierarchies are analyzed in section 11 and recent developments are
reported in section 12. The last section 13 contains the conclusion of this article.
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2 Rational and recognizable sets

The terminology used in the theory of automata originates from various founts.
Part of it came from linguistics, some other parts were introduced by physi-
cists or by logicians. This gives sometimes a curious mixture but it is rather
convenient in practice.

An alphabet is a finite set whose elements are letters. Alphabets are usually
denoted by capital letters: A, B, . . . and letters by lower case letters from the
beginning of the latin alphabet: a, b, c, . . . A word (over the alphabet A) is
a finite sequence (a1, a2, . . . , an) of letters of A; the integer n is the length of
the word. In practice, the notation (a1, a2, . . . , an) is shortened to a1a2 · · · an.
The empty word, which is the unique word of length 0, is denoted by 1. Given
a letter a, the number of occurrences of a in a word u is denoted by |u|a. For
instance, |abbab|a = 2 and |abbab|b = 3.

The (concatenation) product of two words u = a1a2 · · ·ap and v = b1b2 · · · bq

is the word uv = a1a2 · · ·apb1b2 · · · bq. The product is an associative operation
on words. The set of all words on the alphabet A is denoted by A∗. Equipped
with the product of words, it is a monoid, with the empty word as an identity.
It is in fact the free monoid on the set A. The set of non-empty words is denoted
by A+; it is the free semigroup on the set A.

A language of A∗ is a set of words over A, that is, a subset of A∗. The
rational operations on languages are the three operations union, product and
star, defined as follows

L1 + L2 = {u | u ∈ L1 or u ∈ L2} (1) Union :

L1L2 = {u1u2 | u1 ∈ L1 and u2 ∈ L2} (2) Product :

L∗ = {u1 · · ·un | n ≥ 0 and u1, . . . , un ∈ L} (3) Star :

It is also convenient to introduce the operator

L+ = LL∗ = {u1 · · ·un | n > 0 and u1, . . . , un ∈ L}

Note that L+ is exactly the subsemigroup of A∗ generated by L, while L∗ is
the submonoid of A∗ generated by L. The set of rational languages of A∗ is the
smallest set of languages of A∗ containing the finite languages and closed under
finite union, finite product and star. For instance, (a+ab)∗ab+(ba∗b)∗ denotes
a rational language on the alphabet {a, b}.

The set of rational languages of A+ is the smallest set of languages of A+

containing the finite languages and closed under finite union, product and plus.
It is easy to verify that the rational languages of A+ are exactly the rational
languages of A∗ that do not contain the empty word.

It may seem a little awkward to have two separate definitions for the rational
languages: one for the free monoid A∗ and another one for the free semigroup
A+. There are actually two parallel theories and although the difference between
them may appear of no great significance at first sight, it turns out to be crucial.
The reason is that the algebraic classification of rational languages, as given in
the forthcoming sections, rests on the notion of varieties of finite monoids (for
languages of the free monoid) or varieties of finite semigroups (for languages of
the free semigroup). And varieties of finite semigroups cannot be considered as
varieties of finite monoids. The simplest example is the variety of finite nilpotent
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semigroups, which, as we shall see, characterizes the finite or cofinite languages
of the free semigroup. If one tries, in a naive attempt, to add an identity to
convert each nilpotent semigroup into a monoid, the variety of finite monoids
obtained in this way is the variety of all finite monoids whose idempotents
commute with every element. But this variety of monoids does not characterize
the finite-cofinite languages of the free monoid.

Rational languages are often called regular sets in the literature. However,
in the author’s opinion, this last term should be avoided for two reasons. First,
it interferes with the standard use of this word in semigroup theory. Second, the
term rational has a sound mathematical foundation. Indeed one can extend the
theory of languages to series with non commutative variables over a commutative
ring or semiring1 k. Such series can be written as s =

∑

u∈A∗(s, u)u, where (s, u)
is an element of k. In this context, languages appear naturally as series over
the boolean semiring. Now the rational series form the smallest set of series R
satisfying the following conditions:

(1) Every polynomial is in R,

(2) R is a semiring under the usual sum and product of series,

(3) If s is a series in R such that (s, 1) = 0, then s∗ =
∑

n≥0
sn belongs to R.

Note that if k is a ring, then s∗ = (1− s)−1. In particular, in the one variable
case, this definition coincide with the usual definition of rational series, which
explains the terminology. We shall not detail any further this nice extension
of the theory of languages, but we refer the interested reader to [4] for more
details.

3 Finite automata and recognizable sets

A finite (non deterministic) automaton is a quintuple A = (Q, A, E, I, F ) where
Q is a finite set (the set of states), A is an alphabet, E is a subset of Q×A×Q,
called the set of transitions and I and F are subsets of Q, called the set of
initial and final states, respectively. Two transitions (p, a, q) and (p′, a′, q′) are
consecutive if q = p′. A path in A is a finite sequence of consecutive transitions

e0 = (q0, a0, q1), e1 = (q1, a1, q2), . . . , en−1 = (qn−1, an−1, qn)

also denoted
q0

a0−→ q1

a1−→ q2 · · · qn−1

an−1

−→ qn

The state q0 is the origin of the path, the state qn is its end, and the word
x = a0a1 · · · an−1 is its label. It is convenient to have also, for each state q, an
empty path of label 1 from q to q. A path in A is successful if its origin is in I

and its end is in F .
The language recognized by A is the set, denoted L∗(A), of the labels of

all successful paths of A. A language X is recognizable if there exists a finite
automaton A such that X = L∗(A). Two automata are said to be equivalent if
they recognize the same language. Automata are conveniently represented by

1A semiring is a set k equipped with an addition and a multiplication. It is a commutative

monoid with identity 0 for the addition and a monoid with identity 1 for the multiplication.

Multiplication is distributive over addition and 0 satisfies 0x = x0 = 0 for every x ∈ k. The

simplest example of a semiring which is not a ring is the boolean semiring B = {0, 1} defined

by 0 + 0 = 0, 0 + 1 = 1 + 1 = 1 + 0 = 1, 1.1 = 1 and 1.0 = 0.0 = 0.1 = 0.
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labeled graphs, as in the example below. Incoming arrows indicate initial states
and outgoing arrows indicate final states.

Example 3.1 Let A = ({1, 2}, {a, b}, E, {1}, {2}) be an automaton, with E =
{(1, a, 1), (1, b, 1), (1, a, 2)}. The path (1, a, 1)(1, b, 1)(1, a, 2) is a successful path
of label aba. The path (1, a, 1)(1, b, 1)(1, a, 1) has the same label but is unsuc-
cessful since its end is 1.

1 2

a, b

a

Figure 3.1: An automaton.

The set of words accepted by A is L∗(A) = A∗a, the set of all words ending
with an a.

In the case of the free semigroup, the definitions are the same, except that
we omit the empty paths of label 1. In this case, the language recognized by A
is denoted L+(A). Kleene’s theorem states the equivalence between automata
and rational expressions.

Theorem 3.1 A language is rational if and only if it is recognizable.

In fact, there is one version of Kleene’s theorem for the free semigroup and
one version for the free monoid. The proof of Kleene’s theorem can be found in
most books of automata theory [21].

An automaton is deterministic if it has exactly one initial state, usually
denoted q0 and if E contains no pair of transitions of the form (q, a, q1), (q, a, q2)
with q1 6= q2.

q

q1

q2

a

a

Figure 3.2: The forbidden pattern in a deterministic automaton.

In this case, each letter a defines a partial function from Q to Q, which asso-
ciates with every state q the unique state q.a, if it exists, such that (q, a, q.a) ∈ E.
This can be extended into a right action of A∗ on Q by setting, for every q ∈ Q,
a ∈ A and u ∈ A∗:

q.1 = q

q.(ua) =

{

(q.u).a if q.u and (q.u).a are defined

undefined otherwise

One can show that every finite automaton is equivalent to a deterministic one,
in the sense that they recognize the same language.
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States which cannot be reached from the initial state or from which one
cannot access to any final state are clearly useless. This leads to the following
definition. A deterministic automaton A = (Q, A, E, q0, F ) is trim if for every
state q ∈ Q there exist two words u and v such that q0.u = q and q.v ∈ F . It
is not difficult to see that every deterministic automaton is equivalent to a trim
one.

Deterministic automata are partially ordered as follows. Let

A = (Q, A, E, q0, F ) and A′ = (Q′, A, E′, q′0, F
′)

be two deterministic automata. Then A ≤ A′ if there is a surjective function
ϕ : Q → Q′ such that ϕ(q0) = q′0, ϕ−1(F ′) = F and, for every u ∈ A∗ and
q ∈ Q, ϕ(q.u) = ϕ(q).u. One can show that, amongst the trim deterministic
automata recognizing a given recognizable language L, there is a minimal one
for this partial order. This automaton is called the minimal automaton of L.
Again, there are standard algorithms for minimizing a given finite automaton
[21].

4 Automata and semigroups

In this section, we turn to a more algebraic definition of the recognizable sets,
using semigroups in place of automata. Although this definition is more abstract
than the definition using automata, it is more suitable to handle the fine struc-
ture of recognizable sets. Indeed, as illustrated in the next sections, semigroups
provide a powerful and systematic tool to classify recognizable sets. We treat
the case of the free semigroup. For free monoids, just replace every occurrence
of “A+” by “A∗” and “semigroup” by “monoid” in the definitions below.

The abstract definition of recognizable sets is based on the following obser-
vation. Let A = (Q, A, E, I, F ) be a finite automaton. To each word u ∈ A+,
there corresponds a boolean square matrix of size Card(Q), denoted by µ(u),
and defined by

µ(u)p,q =

{

1 if there exists a path from p to q with label u

0 otherwise

It is not difficult to see that µ is a semigroup morphism from A+ into the mul-
tiplicative semigroup of square boolean matrices of size Card(Q). Furthermore,
a word u is recognized by A if and only if µ(u)p,q = 1 for some initial state
p and some final state q. Therefore, a word is recognized by A if and only if
µ(u) ∈ {m ∈ µ(A+) | mp,q = 1 for some p ∈ I and q ∈ F }. The semigroup
µ(A+) is called the transition semigroup of A, denoted S(A).

Example 4.1 Let A = (Q, A, E, I, F ) be the automaton represented below

1 2a a, b

a

b

Figure 4.3: A non deterministic automaton.
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Here Q = {1, 2}, A = {a, b}, I = {1}, F = {2} and

E = {(1, a, 1), (1, a, 2), (2, a, 2), (2, b, 1), (2, b, 2)}

whence

µ(a) =

(

1 1
0 1

)

µ(b) =

(

0 0
1 1

)

µ(aa) = µ(a)

µ(ab) =

(

1 1
1 1

)

µ(ba) = µ(bb) = µ(b)

Thus µ(A+) = {
(

0 0

1 1

)

,
(

1 1

0 1

)

,
(

1 1

1 1

)

}.

This leads to the following definition. A semigroup morphism ϕ : A+ → S

recognizes a language L ⊂ A+ if L = ϕ−1ϕ(L), that is, if u ∈ L and ϕ(u) = ϕ(v)
implies v ∈ L. This is also equivalent to saying that there is a subset P of S

such that L = ϕ−1(P ). By extension, a semigroup S recognizes a language L

if there exists a semigroup morphism ϕ : A+ → S that recognizes L. As shown
by the previous example, a set recognized by a finite automaton is recognized
by the transition semigroup of this automaton.

Proposition 4.1 If a finite automaton recognizes a language L, then S(A)
recognizes L.

The previous computation can be simplified if A is deterministic. Indeed, in
this case, the transition semigroup of A is naturally embedded into the semi-
group of partial functions on Q under composition.

Example 4.2 Let A be the deterministic automaton represented below.

1 2

a

b

Figure 4.4: A deterministic automaton.

The transition semigroup S(A) of A contains five elements which correspond
to the words a, b, ab, ba and aa. If one identifies the elements of S(A) with
these words, one has the relations aba = a, bab = b and bb = aa. Thus S(A) is
the aperiodic Brandt semigroup BA2. Here is the transition table of A:

1 2
a 2 -
b - 1

aa - -
ab 1 -
ba - 2

Conversely, given a semigroup morphism ϕ : A+ → S recognizing a subset X of
A+, one can build a finite automaton recognizing X as follows. Denote by S1 the
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monoid equal to S if S has an identity and to S ∪{1} otherwise. Take the right
representation of A on S1 defined by s.a = sϕ(a). This defines a deterministic
automaton A = (S1, A, E, {1}, P ), where E = {(s, a, s.a) | s ∈ S1, a ∈ A}.

This automaton recognizes L and thus, the two notions of recognizable sets
(by finite automata and by finite semigroups) are equivalent.

Example 4.3 Let A = {a, b, c} and let S = {1, a, b} be the three element
monoid defined by a2 = a, b2 = b, ab = b and ba = a. Let ϕ : A+ → S

be the semigroup morphism defined by ϕ(a) = a, ϕ(b) = b and ϕ(c) = 1 and
let P = {a}. Then ϕ−1(P ) = A∗ac∗ and the construction above yields the
automaton represented in Figure ??:

Now, Kleene’s theorem can be reformulated as follows.

Theorem 4.2 Let L be a language of A+. The following conditions are equiv-
alent.

(1) L is recognized by a finite automaton,

(2) L is recognized by a finite deterministic automaton,

(3) L is recognized by a finite semigroup,

(4) L is rational.

Kleene’s theorem has important consequences.

Corollary 4.3 Recognizable languages are closed under finite boolean opera-
tions2, inverse morphisms and morphisms.

The trick is that it is easy to prove the last property (closure under mor-
phisms) for rational sets and the other ones for recognizable sets. Here are two
examples to illustrate these techniques:

Example 4.4 (Closure of recognizable sets under morphism). Let ϕ : {a, b}+ →
{a, b, c}+ be the semigroup morphism defined by ϕ(a) = aba and ϕ(b) = ca and
let L = a∗b+bab be a rational set. Then ϕ(L) = (aba)∗ca+caabaca is a rational
set.

Example 4.5 (Closure of recognizable sets under complement). Let L be a
recognizable set. Then there exists a finite semigroup S, a semigroup morphism
ϕ : A+ → S and a subset P of S such that L = ϕ−1(P ). Now A+ \ L =
ϕ−1(S \ P ) and thus the complement of L is recognizable.

The patient reader can, as an exercise, prove the remaining properties by
using either semigroups or automata. The impatient reader may consult [16, 37].

Let L be a recognizable language of A+. Amongst the finite semigroups
that recognize X , there is a minimal one (with respect to division). This finite
semigroup is called the syntactic semigroup of L. It can be defined directly as
the quotient of A+ under the congruence ∼L defined by u ∼L v if and only if,
for every x, y ∈ A∗, xuy ∈ L ⇐⇒ xvy ∈ L. It is also equal to the transition
semigroup of the minimal automaton of L. This last property is especially useful
for practical computations. It is a good exercise to take a rational expression

2Boolean operations comprise union, intersection, complementation and set difference.
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at random, to compute the minimal automaton of the language represented by
this rational expression and then to compute the syntactic semigroup of the
language. See examples 6.1 and 7.2 below for outlines of such computations.

5 Early attempts to classify recognizable lan-

guages

Kleene’s theorem shows that recognizable languages are closed under comple-
mentation. Therefore, every recognizable language can be represented by a
extended rational expression, that is, a formal expression constructed from the
letters by mean of the operations union, product, star and complement. In
order to keep concise algebraic notations, we shall denote by Lc the comple-
ment of the language L3, by 0 the empty language and by u the language
{u}, for every word u. In particular, the language {1}, containing the empty
word, is denoted 1. These notations are coherent with the intuitive formulæ
1L = L1 = L and 0L = L0 = 0 which hold for every language L. For instance,

if A = {a, b}, the expression
(

(

0c(ab + ba)0c
)c

+ (aba)∗
)c

represents the lan-

guage (A∗abA∗ ∪A∗baA∗) \ (aba)∗ of all words containing the factors ab and ba

which are not powers of aba.
Thus we have an algebra on A with four operations: +, ., ∗ and c. Now a

natural attempt to classify recognizable languages is to find a notion analogous
with the degree of a polynomial for these extended rational expressions. It is
a remarkable fact that all the hierarchies based on these “extended degrees”
suggested so far lead to some extremely difficult problems, most of which are
still open.

The first proposal concerned the star operation. The star height of an ex-
tended rational expression is defined inductively as follows:

(1) The star height of the basic languages is 0. Formally

sh(0) = 0 sh(1) = 0 and sh(a) = 0 for every letter a

(2) Union, product and complement do not affect star height. If e and f are
two extended rational expressions, then

sh(e + f) = sh(ef) = max{sh(e), sh(f)} sh(ec) = sh(e)

(3) Star increases star height. For each extended rational expression e,

sh(e∗) = sh(e) + 1

Thus the star height counts the number of nested uses of the star operation.
For instance

(

(a∗ + bca∗)∗ + (b∗ab∗)∗
)∗

(b∗a∗ + b)∗

is an extended rational expression of star height 3. Now, the extended star
height4 of a recognizable language L is the minimum of the star heights of the
extended rational expressions representing L

esh(L) = min{sh(e) | e is an extended rational expression for L }

3If L is a language of A∗, the complement of L is A∗ \ L; if L is a language of A+, the

complement is A+ \ L
4also called generalized star height
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The difficulty in computing the extended star height is that a given language
can be represented in many different ways by an extended rational expression !

The languages of extended star height 0 (or star-free languages) are char-
acterized by a beautiful theorem of Schützenberger that will be presented in
section 6. Schützenberger’s theorem implies the existence of languages of ex-
tended star height 1, such as (aa)∗ on the alphabet {a}, but, as surprising as
it may seem, nobody has been able so far to prove the existence of a language
of extended star height greater than 1, although the general feeling is that such
languages do exist. In the opposite direction, our knowledge of the languages
proven to be of extended star height ≤ 1 is rather poor (see [46, 51, 52] for
recent advances on this topic).

The star height of a recognizable language is obtained by considering rational
expressions instead of extended rational expressions [15].

sh(L) = min{star height(e) | e is a rational expression for L }

That is, one simply removes complement from the list of the basic operations.
This time, the corresponding hierarchy was proved to be infinite by Dejean and
Schützenberger [14].

Theorem 5.1 For each n ≥ 0, there exists a language of star height n.

It is easy to see that the languages of star height 0 are the finite languages,
but the effective characterization of the other levels was left open for several
years until Hashiguchi first settled the problem for star height 1 [18] and a few
years later for the general case [19].

Theorem 5.2 There is an algorithm to determine the star height of a given
recognizable language.

Hashiguchi’s first paper is now well understood, although it is still a very
difficult result, but volunteers are called to simplify the very long induction
proof of the second paper.

T he second proposal to construct hierarchies was to ignore the star operation
(which amounts to working with star-free languages) and to consider the con-
catenation product or, more precisely, a variation of it, called the marked con-
catenation product. Given languages L0, L1, . . . , Ln and letters a1, a2, . . . , an,
the product of L0, . . . Ln marked by a1, . . .an is the language L0a1L1a2 · · ·anLn.
As product is often denoted by a dot, Brzozowski defined the “dot-depth” of
languages of the free semigroup [5]. Later on, Thérien (implicitly) and Straub-
ing (explicitly) introduced a similar notion (often called the concatenation level
in the literature) for the languages of the free monoid. The languages of dot-
depth 0 are the finite or cofinite languages, while the languages of concatenation
level 0 are A∗ and the empty language 0. Otherwise, the two hierarchies are
constructed in the same way and count the number of alternations in the use of
the two different types of operations: boolean operations and marked product.
More precisely, the languages of dot-depth (resp. concatenation level) n +1 are
the finite boolean combinations of marked products of the form

L0a1L1a2 · · ·akLk
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where L0, L1, . . . , Lk are languages of dot-depth (resp. concatenation level) n

and a1, . . . , ak are letters.
Note that a language of dot-depth (resp. concatenation level) m is also a

language of dot-depth (resp. concatenation level) n for every n ≥ m. Brzozowski
and Knast [8] have shown that the hierarchy is strict: if A contains at least two
letters, then for every n, there exist some languages of dot-depth (resp. level)
n + 1 that are not of level n.

It is still an outstanding open problem to know whether there is an algo-
rithm to compute the dot-depth (resp. concatenation level) of a given star-free
language. The problem has been solved positively, however, for the dot-depth
(resp. concatenation level) 1: there is an algorithm to decide whether a lan-
guage is of dot-depth (resp. concatenation level) 1. These results are detailed
in sections 7 and 11. The other partial results concerning these hierarchies are
briefly reviewed in section 11. Another remarkable fact about these hierarchies
is their connections with some hierarchies of formal logic. See the article of W.
Thomas in this volume or the survey article [41].

But it is time for us to hark back to Schützenberger’s theorem on star-free
sets.

6 Star-free languages

The set of star-free subsets of A∗ is the smallest set of subsets of A∗ containing
the finite sets and closed under finite boolean operations and product. For
instance, A∗ is star-free, since A∗ is the complement of the empty set. More
generally, if B is a subset of the alphabet A, the set B∗ is also star-free since
B∗ is the complement of the set of words that contain at least one letter of
B′ = A \B. This leads to the following star-free expression

B∗ = A∗ \A∗(A \B)A∗ = (0c(A \B)0c)c = (0c(Ac ∪B)c0c)c

If A = {a, b}, the set (ab)∗ is star-free, since (ab)∗ is the set of words not
beginning with b, not finishing by a and containing neither the factor aa, nor
the factor bb. This gives the star-free expression

(ab)∗ = A∗ \
(

bA∗ ∪A∗a ∪A∗aaA∗ ∪A∗bbA∗
)

=
(

b0c + 0ca + 0caa0c + 0cbb0c
)c

Readers may convince themselves that the sets {ab, ba}∗ and
(

a(ab)∗b
)∗

also
are star-free but may also wonder whether there exist any non star-free rational
sets. In fact, there are some, for instance the sets (aa)∗ and {b, aba}∗, or similar
examples that can be derived from the algebraic approach presented below.

Let S be a finite semigroup and let s be an element of S. Then the subsemi-
group of S generated by s contains a unique idempotent, denoted sω. Recall that
a finite semigroup M is aperiodic if and only if, for every x ∈ M , xω = xω+1.
This notion is in some sense “orthogonal” to the notion of group. Indeed, one
can show that a semigroup is aperiodic if and only if it is H-trivial, or, equiva-
lently, if it contains no non-trivial subgroup. The connection between aperiodic
semigroups and star-free sets was established by Schützenberger [53].

Theorem 6.1 A recognizable subset of A∗ is star-free if and only if its syntactic
monoid is aperiodic.

11



There are essentially two techniques to prove this result. The original proof
of Schützenberger [53, 37, 22], slightly simplified in [32], is by induction on the
J -depth of the syntactic semigroup. The second proof [11, 31] makes use of
a weak form of the Krohn-Rhodes theorem: every aperiodic finite semigroup
divides a wreath product of copies of the monoid U2 = {1, a, b}, given by the
multiplication table aa = a, ab = b, ba = b and bb = b.

Corollary 6.2 There is an algorithm to decide whether a given5 recognizable
language is star-free.

Given the minimal automaton A of the language, the algorithm consists to
check whether the transition monoid of M is aperiodic. The complexity of this
algorithm is analyzed in [10, 58].

Example 6.1 Let A = {a, b} and consider the set L = (ab)∗. Its minimal
automaton is represented below:
The transitions and the relations defining the syntactic monoid M of L are given
in the following tables

1 1 2
a 2 −
b − 1
aa − −
ab 1 −
ba − 2

a2 = b2 = 0
aba = a

bab = b

Since a2 = a3, b2 = b3, (ab)2 = ab and (ba)2 = ba, M is aperiodic and thus
L is star-free. Consider now the set L′ = (aa)∗. Its minimal automaton is
represented below:
The transitions and the relations defining the syntactic monoid M ′ of L′ are
given in the following tables

1 1 2
a 2 1
b − −
aa 1 2

a3 = a

b = 0

Thus M ′ is not aperiodic and hence L′ is not star-free.

7 Piecewise testable languages

Recall that the languages of concatenation level 0 of A∗ are A∗ and 0. According
to the general definition, the languages of concatenation level 1 are the finite
boolean combinations of the languages of the form A∗a1A

∗a2A
∗ · · ·A∗akA∗,

where k ≥ 0 and ai ∈ A. The languages of this form are called piecewise
testable. Intuitively, such a language can be recognized by an automaton that
one could call a Hydra automaton.

5A recognizable set can be given either by a finite automaton, by a finite semigroup or by

a rational expression since there are standard algorithms to pass from one representation to

the other.
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Such an automaton has a finite number h of heads, each of which can read
a letter of the input word. The heads are ordered, so that together they permit
to read a subword (in the sense of a subsequence of non necessarily consecutive
letters) of the input word. The automaton computes in this way the set of
all subwords of length ≤ h of the input word. This set is then compared to
the finite collection of sets of words contained in the memory. If it occurs in
the memory, the word is accepted, otherwise it is rejected. For instance, for the
language (A∗aA∗bA∗aA∗∩A∗bA∗bA∗aA∗)\(A∗aA∗bA∗bA∗∪A∗bA∗bA∗bA∗), the
memory would contain the collection of all sets of words of length 3 containing
aba and bba but containing neither abb nor bbb. Piecewise testable languages
are characterized by a deep result of I. Simon [57].

Theorem 7.1 A language of A∗ is piecewise testable if and only if its syntactic
monoid is J -trivial, or, equivalently, if it satisfies the equations xω = xω+1 and
(xy)ω = (yx)ω.

Corollary 7.2 There is an algorithm to decide whether a given star-free lan-
guage is of concatenation level 1.

Given the minimal automaton A of the language, the algorithm consists
in checking whether the transition monoid of M is J -trivial. Actually, this
condition can be directly checked on A in polynomial time [10, 58].

There exist several proofs of Simon’s theorem [2, 57, 69, 58]. The central
argument of Simon’s original proof [57] is a careful study of the combinatorics of
the subword relation. Stern’s proof [58] borrows some ideas from model theory.
The proof of Straubing and Thérien [69] is the only one that avoids totally
combinatorics on words. In the spirit of the proof of Schützenberger, it works
by induction on the cardinality of the syntactic monoid. The proof of Almeida
[2] is based on implicit operations (see the papers of J. Almeida and P. Weil in
this volume for more details).

Example 7.1 Let A = {a, b, c} and let L = A∗abA∗. The minimal automaton
of L is represented below
The transitions and the relations defining the syntactic monoid M of L are given
in the following tables

1 1 2 3
a 2 2 3
b 1 3 3
c 1 1 3
ab 3 3 3
ba 2 3 3

a2 = a

ab = 0
ac = c

b2 = b

bc = b

ca = a

cb = c

c2 = c

The J -class structure of M is represented in the following diagram.
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*1

* a * c

ba * b

*0

Figure 7.5: The J -classes of M .

In particular, a J c and thus M is not J -trivial. Therefore L is not piecewise
testable.

Example 7.2 Consider now the language L′ = A∗abA∗ on the alphabet A =
{a, b}. Then the minimal automaton of L′ is obtained from that of L by erasing
the transitions with label c.
The transitions and the relations defining the syntactic monoid M ′ of L′ are
given in the following tables

1 1 2 3
a 2 2 3
b 1 3 3
ab 3 3 3
ba 2 3 3

a2 = a

ab = 0
b2 = b

The J -class structure of M ′ is represented in the following diagram.

*1

*a *b

ba

*0

Figure 7.6: The J -classes of M ′.

Thus M ′ is J -trivial and L′ is piecewise testable. In fact L′ = A∗aA∗bA∗.

Simon’s theorem also has some nice consequences of pure semigroup theory.
An ordered monoid is a monoid equipped with a stable order relation. An
ordered monoid (M,≤) is called 1-ordered if, for every x ∈ M , x ≤ 1. A finite
1-ordered monoid is always J -trivial. Indeed, if u J v, there exist x, y, z, t ∈ M

such that u = xvy and v = zyt. Now x ≤ 1, y ≤ 1 and thus u = xvy ≤ v

and similarly, v ≤ u whence u = v. The converse is not true: there exist finite
J -trivial monoids which cannot be 1-ordered.

Example 7.3 Let M be the monoid with zero presented on {a, b, c} by the rela-
tions aa = ac = ba = bb = ca = cb = cc = 0. Thus M = {1, a, b, c, ab, bc, abc, 0}
and M is J -trivial. However, M is not a 1-ordered monoid. Otherwise, one
would have on the one hand, b ≤ 1, whence abc ≤ ac = 0 and on the other
hand, 0 ≤ 1, whence 0 = 0.abc ≤ 1.abc = abc, a contradiction since abc 6= 0.
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However, Straubing and Thérien [69] proved that 1-ordered monoids generate
all the finite J -trivial monoids in the following sense.

Theorem 7.3 A monoid is J -trivial if and only if it is a quotient of a 1-ordered
monoid.

Actually, it is not difficult to establish that this result is equivalent to Simon’s
theorem. But Straubing and Thérien also gave an ingenious direct proof of their
result by induction on the cardinality of the monoid. This gives in turn a proof
of Simon’s theorem. Straubing [63] also observed the following connection with
semigroups of relations.

Theorem 7.4 A monoid is J -trivial if and only if it divides a monoid of re-
flexive relations on a finite set.

8 Locally testable languages

A language of A+ is locally testable if it is a boolean combination of languages of
the form uA∗, A∗v or A∗wA∗ where u, v, w ∈ A+. For instance, if A = {a, b}, the
language (ab)+ is locally testable since (ab)+ = (aA∗∩A∗b)\(A∗aaA∗∪A∗bbA∗).
These languages occur naturally in the study of the languages of dot-depth one.
Actually they form the first level of a natural subhierarchy of the languages of
dot-depth one (see [36] for more details). Locally testable languages also have a
natural interpretation in terms of automata. They are recognized by scanners.
A scanner is a machine equipped with a finite memory and a window of size n

to scan the input word.
The window can also be moved beyond the first and last letter of the word,

so that the prefixes and suffixes of length < n can be read. For instance, if
n = 3, and u = abbaaabab, the different positions of the window are represented
on the following diagrams:

a bbaaabab ab baaabab abb aaabab a bba aabab · · · abbaaaba b

At the end of the scan, the scanner memorizes the prefixes and the suffixes of
length < n and the set of factors of length n of the input word, but does not
count the multiplicities. That is, if a factor occurs several times, it is memorized
just once. This information is then compared to a collection of permitted sets
of prefixes, suffixes and factors contained in the memory. The word is accepted
or rejected, according to the result of this test.

The algebraic characterization of locally testable languages is slightly more
involved than for star-free or piecewise testable languages. Recall that a finite
semigroup S is said to have a property locally, if, for every idempotent e of
S, the subsemigroup eSe = {ese | s ∈ S} has the property. In particular, a
semigroup is locally trivial if, for every idempotent e of S, eSe = e and is locally
idempotent and commutative if, for every idempotent e of S, eSe is idempotent
and commutative. Equivalently, S is locally idempotent and commutative if,
for every e, s, t ∈ S such that e = e2, (ese)2 = (ese) and (ese)(ete) = (ete)(ese).
The following result was proved independently by Brzozowski and Simon [9] and
by McNaughton [29].
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Theorem 8.1 A recognizable language of A+ is locally testable if and only if
its syntactic semigroup is locally idempotent and commutative.

This result, or more precisely the proof of this result, had a strong influence
on pure semigroup theory. The reason is that Theorem 8.1 can be divided into
two separate statements.

Proposition 8.2 A recognizable language of A+ is locally testable if and only if
its syntactic semigroup divides a semidirect product of a semilattice by a locally
trivial semigroup.

Proposition 8.3 A semigroup divides a semidirect product of a semilattice by a
locally trivial semigroup if and only if it is locally idempotent and commutative.

The proof of Proposition 8.2 is relatively easy, but Proposition 8.3 is much
more difficult and relies on an interesting property. Given a semigroup S, form a
graph G(S) as follows: the vertices are the idempotents of S and the edges from
e to f are the elements of the form esf . Then one can show that a semigroup
divides a semidirect product of a semilattice by a locally trivial semigroup if
and only if its graph is locally idempotent and commutative in the following
sense: if p and q are loops around the same vertex, then p = p2 and pq = qp.
We shall encounter another condition on graphs in Theorem 11.1. This type of
graph conditions is now well understood, although numerous problems are still
pending. The graph of a semigroup is a special instance of a derived category
and is deeply connected with the study of the semidirect product (see Straubing
[68] and Tilson [71]).

9 Varieties, another approach to recognizable

languages.

In 1974, the syntactic characterizations of the star-free, piecewise testable and
locally testable languages had already established the power of the semigroup
approach. However, these theorems were still isolated. In 1976, Eilenberg pre-
sented in his book a unified framework for these three results. The cornerstone
of this approach is the concept of variety.

Recall that a variety of finite semigroups (or pseudovariety) is a class of
semigroups V such that:

(1) if S ∈ V and if T is a subsemigroup of S, then T ∈ V,

(2) if S ∈ V and if T is a quotient of S, then T ∈ V,

(3) if (Si)i∈I is a finite family of semigroups of V, then
∏

i∈I Si is also in V.

Varieties of finite monoids are defined in the same way.
Condition (3) can be replaced by the conjunction of conditions (4) and (5):

(4) the trivial semigroup 1 belongs to V,

(5) if S1 and S2 are semigroups of V, then S1 × S2 is also in V.

Indeed, condition (4) is obtained by taking I = ∅ in (3).
Recall that a semigroup T divides a semigroup S if T is a quotient of a

subsemigroup of S. Division is a transitive relation on semigroups and thus
conditions (1) and (2) can be replaced by condition (1′)
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(1′) if S ∈ V and if T divides S, then T ∈ V.

Given a class C of semigroups, the intersection of all varieties containing C is
still a variety, called the variety generated by C, and denoted by 〈C〉. In a more
constructive way, 〈C〉 is the class of all semigroups that divide a finite product
of semigroups of C.

Example 9.1

(1) The class M of all finite monoids forms a variety of finite monoids.

(2) The smallest variety of finite monoids is the trivial variety, denoted by I,
consisting only of the monoid 1.

(3) The class Com of all finite commutative monoids form a variety of finite
monoids.

(4) The class J1 of all finite idempotent and commutative monoids (or semi-
lattices) forms a variety of finite monoids.

(5) The class A of all finite aperiodic monoids forms a variety of finite monoids.

(6) The class J of all finite J -trivial monoids forms a variety of finite monoids.

(7) The class of LI of all finite locally trivial semigroups forms a variety of
finite semigroups.

(8) The class LJ1 of all finite locally idempotent and commutative semigroups
forms a variety of finite semigroups.

Equations are a convenient way to define varieties. For instance, the variety of
finite commutative semigroups is defined by the equation xy = yx, the variety
of aperiodic semigroups is defined by the equation xω = xω+1. Of course,
xω = xω+1 is not an equation in the usual sense, since ω is not a fixed integer. . .
However, one can give a rigorous meaning to this “pseudoequation”. Since J.
Almeida and P. Weil present this topic in great detail in this volume, we refer
the reader to their article for more information. For our purpose, it suffices to
remember that equations (or pseudoequations) give an elegant description of
the varieties of finite semigroups, but are sometimes very difficult to determine.
We shall now extend this purely algebraic approach to recognizable languages.

If V is a variety of semigroups, we denote by V(A+) the set of recognizable
languages of A+ whose syntactic semigroup belongs to V. This is also the set
of languages of A+ recognized by a semigroup of V.

A +-class of recognizable languages is a correspondence which associates
with every finite alphabet A, a set C(A+) of recognizable languages of A+.
Similarly, a ∗-class of recognizable languages is a correspondence which asso-
ciates with every finite alphabet A, a set C(A∗) of recognizable languages of
A∗. In particular, the correspondence V → V associates with every variety of
semigroups a +-class of recognizable languages. Eilenberg gave a combinatorial
description of the classes of languages that occur in this way.

If X is a language of A+ and if u ∈ A∗, the left quotient (resp. right quotient)
of X by u is the language

u−1X = {v ∈ A+ | uv ∈ X} (resp. Xu−1 = {v ∈ A+ | vu ∈ X})

Left and right quotients are defined similarly for languages of A∗ by replacing
A+ by A∗ in the definition.

A +-variety is a class of recognizable languages such that
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(1) for every alphabet A, V(A+) is closed under finite boolean operations
(finite union and complement),

(2) for every semigroup morphism ϕ : A+ → B+, X ∈ V(B+) implies
ϕ−1(X) ∈ V(A+),

(3) If X ∈ V(A+) and u ∈ A+, then u−1X ∈ V(A+) and Xu−1 ∈ V(A+).

Similarly, a ∗-variety is a class of recognizable languages such that

(1) for every alphabet A, V(A∗) is closed under finite boolean operations,

(2) for every monoid morphism ϕ : A∗ → B∗, X ∈ V(B∗) implies ϕ−1(X) ∈
V(A∗),

(3) If X ∈ V(A∗) and u ∈ A∗, then u−1X ∈ V(A∗) and Xu−1 ∈ V(A∗).

We are ready to state Eilenberg’s theorem.

Theorem 9.1 The correspondence V → V defines a bijection between the va-
rieties of semigroups and the +-varieties.

The variety of finite semigroups corresponding to a given +-variety is the
variety of semigroups generated by the syntactic semigroups of all the languages
L ∈ V(A+), for every finite alphabet A. There is, of course, a similar statement
for the ∗-varieties.

Theorem 9.2 The correspondence V → V defines a bijection between the va-
rieties of monoids and the ∗-varieties.

Varieties of finite semigroups or monoids are usually denoted by boldface
letters and the corresponding varieties of languages are denoted by the corre-
sponding cursive letters.

We already know four instances of Eilenberg’s variety theorem.

(1) By Kleene’s theorem, the ∗-variety corresponding to M is the ∗-variety of
rational languages.

(2) By Schützenberger’s theorem, the ∗-variety corresponding to A is the ∗-
variety of star-free languages.

(3) By Simon’s theorem, the ∗-variety corresponding to J is the ∗-variety of
piecewise testable languages.

(4) By Theorem 8.1, the +-variety corresponding to LJ1 is the +-variety of
locally testable languages.

To clear up any possible misunderstanding, note that the four theorems
mentioned above (Kleene, Schützenberger, etc.) are not corollaries of the va-
riety theorem. For instance, the variety theorem indicates that the languages
corresponding to the finite aperiodic monoids form a ∗-variety; it doesn’t say
that this ∗-variety is the variety of star-free languages. . . Actually, it is often
a difficult problem to find an explicit description of the ∗-variety of languages
corresponding to a given variety of finite monoids, or, conversely, to find the
variety of finite monoids corresponding to a given ∗-variety.

However, the variety theorem provided a new direction to classify recogniz-
able languages. Systematic searches for the variety of monoids (resp. languages)
corresponding to a given variety of languages (resp. monoids) were soon under-
taken. A partial account of these results is given into the next section.
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10 Bestiary

We review in this section a few examples of correspondence between varieties of
finite monoids (or semigroups) and varieties of languages. A boolean algebra is
a set of languages containing the empty language and closed under finite union,
finite intersection and complement.

Let us start our visit of the zoo with the subvarieties of the variety Com

of all finite commutative monoids: the variety Acom of commutative aperiodic
monoids, the variety Gcom of commutative groups, the variety J1 of idempo-
tent and commutative monoids (or semilattices) and the trivial variety I.

Proposition 10.1 For every alphabet A, I(A∗) = {0, A∗}.

Proposition 10.2 For every alphabet A, J 1(A
∗) is the boolean algebra gen-

erated by the languages of the form A∗aA∗ where a is a letter. Equivalently,
J 1(A

∗) is the boolean algebra generated by the languages of the form B∗ where
B is a subset of A.

Proposition 10.3 For every alphabet A, Gcom(A∗) is the boolean algebra gen-
erated by the languages of the form

L(a, k, n) = {u ∈ A∗ | |u|a ≡ k mod n}

where a ∈ A and 0 ≤ k < n.

Proposition 10.4 For every alphabet A, Acom(A∗) is the boolean algebra gen-
erated by the languages of the form

L(a, k) = {u ∈ A+ | |u|a = k}

where a ∈ A and k ≥ 0.

Proposition 10.5 For every alphabet A, Com(A∗) is the boolean algebra gen-
erated by the languages of the form

L(a, k) = {u ∈ A+ | |u|a = k} or L(a, k, n) = {u ∈ A+ | |u|a ≡ k mod n}

where a ∈ A and 0 ≤ k < n.

Consider now the variety LI of all locally trivial semigroups and its subva-
rieties LrI, L`I and Nil. A finite semigroup S belongs to LI if and only if, for
every e ∈ E(S) and every s ∈ S, ese = e. The asymmetrical versions of this
condition define the varieties LrI and L`I. Thus LrI (resp. L`I) is the variety
of all finite semigroups S such that se = e (resp. es = e). Equivalently, a
semigroup belongs to LI (resp. LrI, L`I) if it is a nilpotent extension of a rect-
angular band (resp. a right rectangular band, a left rectangular band). Finally
Nil is the variety of nilpotent semigroups, defined by the condition es = se = e

for every e ∈ E(S) and every s ∈ S. Recall that a subset F of a set E is cofinite
if its complement in E is finite.

Proposition 10.6 For every alphabet A, N il(A+) is the set of finite or cofinite
languages of A+.
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Proposition 10.7 For every alphabet A, LrI(A+) (resp. L`I(A+)) is the set
of languages of the form A∗X ∪ Y (resp. XA∗ ∪ Y ), where X and Y are finite
subsets of A+.

Proposition 10.8 For every alphabet A, LI(A+) is the set of languages of the
form XA∗Y ∪ Z, where X, Y and Z are finite subsets of A+.

Note that the previous characterizations do not make use of the complement,
although the sets N il(A+), LrI(A+), L`I(A+) and LI(A+) are closed under
complement. Actually, the following characterizations hold.

Proposition 10.9 For every alphabet A,

(1) LrI(A+) is the boolean algebra generated by the languages of the form
A∗u, where u ∈ A+,

(2) L`I(A+) is the boolean algebra generated by the languages of the form
uA∗, where u ∈ A+,

(3) LI(A+) is the boolean algebra generated by the languages of the form uA∗

or A∗u, where u ∈ A+.

It would be to long to state in full detail all known results on varieties of
languages. Let us just mention that the languages corresponding to the following
varieties of finite semigroups or monoids are known: all varieties of bands ([45]
for the lower levels and [56] for the general case), the varieties of R-trivial
(resp. L-trivial) monoids [17, 7, 37], the varieties of p-groups (resp. nilpotent
groups) [17], the varieties of solvable groups [60], the varieties of monoids whose
groups are commutative [54, 26], nilpotent [17], solvable [60], the variety of
monoids with commuting idempotents [27], the variety of J -trivial monoids
with commuting idempotents [3], the variety of monoids whose regular J -classes
are rectangular bands [55], the variety of block groups (see the author’s article
“BG = PG, a success story” in this volume) and many others which follow in
particular from the general results given in section 12.

11 Back to the early attempts

As the variety approach proved to be successful in many different situations,
it was expected to shed some new light on the difficult problems mentioned in
section 5. The reality is more contrasted. In brief, varieties do not seem to
be helpful for the star height, it is so far the most successful approach for the
dot-depth and the concatenation levels and, with regard to the extended star
height, it seems to be a useful tool, but probably nothing more. Let us comment
on this judgment in more details.

Varieties do not seem to be helpful for the star height, simply because the
languages of a given star height are not closed under inverse morphisms between
free monoids and thus, do not form a variety of languages. However, the notion
of syntactic semigroup arises in the proof of Hashiguchi’s theorems.

Schützenberger’s theorem shows that the languages of extended star height
0 form a variety. However, it seems unlikely that a similar result holds for the
languages of extended star height 1. Indeed, one can show [33] that every finite
monoid divides the syntactic monoid of a language of the form L∗, where L is
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finite. It follows that if the languages of extended star height 1 form a variety of
languages, then this variety is the variety of all rational languages. In particular,
this would imply that every recognizable language is of extended star height 0
or 1.

Varieties are much more useful in the study of the concatenation product.
We have already seen the syntactic characterization of the languages of concate-
nation level 1. There is a similar result for the languages of dot-depth one. It is
easy to see from the general definition that a language of A+ is of “dot-depth
one” if it is a boolean combination of languages of the form

u0A
∗u1A

∗u2 · · ·A
∗uk−1A

∗uk

where k ≥ 0 and ui ∈ A∗. The syntactic characterization of these languages
was settled by Knast [24, 25].

Theorem 11.1 A language of A+ is of dot-depth one if and only if the graph
of its syntactic semigroup satisfies the following condition : if e and f are
two vertices, p and r edges from e to f , and q and s edges from f to e, then
(pq)ωps(rs)ω = (pq)ω(rs)ω.

More generally, one can show that the languages of dot-depth n form a +-
variety of languages. The corresponding variety of finite semigroups is usually
denoted by Bn. Similarly, the languages of concatenation level n form a ∗-
variety of languages and the corresponding variety of finite monoids is denoted
Vn. The two hierarchies are strict [8].

Theorem 11.2 For every n ≥ 0, there exists a language of dot-depth n + 1
which is not of dot-depth n and a language of concatenation level n + 1 which
is not of concatenation level n.

An important connection between the two hierarchies was found by Straub-
ing [67]. Given a variety of finite monoids V and a variety of finite semigroups
W, denote by V∗W the variety of finite semigroups generated by the semidirect
products S ∗ T with S ∈ V and T ∈ W such that the action of T on S is right
unitary.

Theorem 11.3 For every n > 0, one has Bn = Vn ∗ LI and Vn = Bn ∩M.

In particular B1 = J∗LI. It follows also, thanks to e deep result of Straubing
[67] that Bn is decidable if and only if Vn is decidable. However, it is still an
open problem to know whether the varieties Vn are decidable for n ≥ 2. The
case n = 2 is especially frustrating, but although several partial results have
been obtained [44, 68, 72, 70, 74, 13], the general case remains open.

12 Recent developments

We shall not discuss in detail the numerous developments of the theory since
Eilenberg’s variety theorem, but we shall indicate the main trends. A quick
glance at the known examples shows that the combinatorial description of a
variety of languages follow most often the following pattern: the variety is de-
scribed as the smallest variety closed under a given class of operations, such as
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boolean operations, product, etc. Varieties of semigroups are also often defined
with the help of operators: join, semidirect products, Malcev products, etc. In
view of Eilenberg’s theorem, one may expect some relationship between the op-
erators on languages (of combinatorial nature) and the operators on semigroups
(of algebraic nature). In the late seventies, several results of this type were es-
tablished, in particular by H. Straubing. We first consider the marked product.
One of the most useful tools for studying this product is the Schützenberger
product of n monoids, which was originally defined by Schützenberger for two
monoids [53], and extended by Straubing [64] for any number of monoids.

Given a monoid M , the set of subsets of M , denoted P(M), is a semiring
under union as addition and the product of subsets as multiplication, defined,
for all X, Y ⊂ M by XY = {xy | x ∈ X and y ∈ Y }.

Let M1, . . . , Mn be monoids. We denote by M the product monoid M1 ×
· · · ×Mn, k the semiring P(M) and by Mn(k) the semiring of square matrices
of size n with entries in k. The Schützenberger product of M1, . . . , Mn, de-
noted ♦n(M1, . . . , Mn) is the submonoid of the multiplicative monoid Mn(k)
composed of all the matrices P satisfying the three following conditions:

(1) If i > j, Pi,j = 0

(2) If 1 ≤ i ≤ n, Pi,i = {(1, . . . , 1, si, 1, . . . , 1)} for some si ∈ Si

(3) If 1 ≤ i ≤ j ≤ n, Pi,j ⊂ 1× · · · × 1×Mi × · · · ×Mj × 1 · · · × 1.

Condition (1) indicates that the matrices of the Schützenberger product are
upper triangular, condition (2) enables to identify the diagonal coefficient Pi,i

with an element si of Mi and condition (3) shows that if i < j, Pi,j can be
identified with a subset of Mi × · · · × Mj . With this convention, a matrix of
♦3(M1, M2, M3) will have the form





s1 P1,2 P1,3

0 s2 P2,3

0 0 s3





with si ∈ Mi, P1,2 ⊂ M1 ×M2, P1,3 ⊂ M1 ×M2 ×M3 and P2,3 ⊂ M2 ×M3.
Notice that the Schützenberger product is not associative, in the sense

that in general the monoids ♦2(M1,♦2(M2, M3)), ♦2(♦2(M1, M2), M3) and
♦3(M1, M2, M3) are pairwise distinct.

The following result shows that the Schützenberger product is the algebraic
operation on monoids that corresponds to the marked product.

Proposition 12.1 Let L0, L1, . . . , Ln be languages of A∗ recognized by monoids
M0, M1, . . . , Mn and let a1, . . . , an be letters of A. Then the marked product
L0a1L1 · · · anLn is recognized by the monoid ♦n+1(M0, M1, . . . , Mn).

This result was extended to varieties by Reutenauer [50] for n = 1 and by
the author [36] in the general case (see also [73] for a simpler proof). Let V0,
. . . , Vn be varieties of finite monoids and let ♦n+1(V0,V1, . . . ,Vn) be the
variety of finite monoids generated by the Schützenberger products of the form
♦n+1(M0, M1, . . . , Mn) with M0 ∈ V0, M1 ∈ V1, . . . , Mn ∈ Vn.

Theorem 12.2 Let V be the ∗-variety corresponding to the variety of finite
monoids ♦n+1(V0,V1, . . . ,Vn). Then, for all alphabet A, V(A∗) is the boolean
algebra generated by all the marked products of the form L0a1L1 · · · anLn where
L0 ∈ V0(A

∗),. . . , Ln ∈ Vn(A∗) and a1, . . . , an ∈ A.
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If V0 = V1 = . . . = Vn = V, the variety ♦n+1(V,V, . . . ,V) is denoted
♦n+1V and ♦V =

⋃

n>0
♦nV denotes the union of all ♦nV. Given a ∗-variety

of languages V , the extension of V under marked product is the ∗-variety V ′

such that, for every alphabet A, V ′(A∗) is the boolean algebra generated by the
marked products of the form L0a1L1 · · · anLn where L0, L1, . . . , Ln ∈ V(A∗)
and a1, . . . , an ∈ A. The closure of V under marked product is the smallest
∗-variety V̄ such that, for every alphabet A, V̄(A∗) contains V(A∗) and all the
marked products of the form L0a1L1 · · · anLn where L0, L1, . . . , Ln ∈ V̄(A∗) and
a1, . . . , an ∈ A. The ∗-variety corresponding to ♦V is described in the following
theorem.

Theorem 12.3 Let V be a monoid variety and let V be the corresponding ∗-
variety. Then the ∗-variety corresponding to ♦V is the extension of V under
marked product.

Corollary 12.4 A ∗-variety is closed under marked product if and only if the
corresponding variety of monoids V satisfies V = ♦V.

The Schützenberger product has a remarkable algebraic property [64, 39].
Let M1, . . . , Mn be monoids and let π : ♦n(M1, . . . , Mn) → M1 × · · · ×Mn be
the monoid morphism that maps a matrix onto its diagonal.

Theorem 12.5 For every idempotent e of M1×· · ·×Mn, the semigroup π−1(e)
is in the variety B1.

Given a variety of finite semigroups V, a finite monoid M is called a V-
extension of a finite monoid N if there exists a surjective morphism ϕ : M → N

such that, for every idempotent e of N , ϕ−1(e) ∈ V. Theorem 12.5 shows
that the Schützenberger product of n finite monoids is a B1-extension of their
product. Given a variety of finite monoids W, the Malcev product V M©W is
the variety of finite monoids generated by all the V-extensions of monoids of
W. This gives the following relation between the Vn.

Theorem 12.6 For every n ≥ 0, Vn+1 is contained in B1 M©Vn.

It is conjectured that Vn+1 = B1 M©Vn for every n. If this conjecture were
true, it would reduce the decidability of the dot-depth to a problem on the
Malcev products of the form B1 M©V.

Malcev products actually play an important role in the study of the marked
product. For instance, Straubing has established the important following result,
which gives support to the previous conjecture.

Theorem 12.7 Let V be a monoid variety and let V be the corresponding ∗-
variety. Then the ∗-variety corresponding to A M©V is the closure of V under
marked product.

Example 12.1 Let H be a variety of finite groups (for instance, the variety of
all finite commutative groups, nilpotent groups, solvable groups, etc.). Denote
by H̄ the variety of all monoids whose subgroups (that is, H-classes containing
an idempotent) belong to H. One can show that A M© H̄ = H̄. Therefore, the
corresponding ∗-variety is closed under marked product.
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The marked product L = L0a1L1 · · · anLn of n languages L0, L1, . . . , Ln

is unambiguous if every word u of L admits a unique factorization of the form
u0a1u1 · · ·anun with u0 ∈ L0, u1 ∈ L1, . . . , un ∈ Ln. The following result was
established in [35, 46] as a generalization of a former result of Schützenberger
[55].

Theorem 12.8 Let V be a monoid variety and let V be the corresponding ∗-
variety. Then the ∗-variety corresponding to LI M©V is the closure of V under
unambiguous marked product.

The extension of a given ∗-variety is also characterized in [46]. Other vari-
ations of the marked product have been considered [55, 35, 49]. They lead to
some interesting algebraic constructions.

Another operation on semigroups has a natural counterpart in terms of lan-
guages. Given a variety of finite monoids V, denote by PV the variety of
finite monoids generated by all the monoids of the form P(M), for M ∈ V.
A monoid morphism ϕ : B∗ → A∗ is length preserving if it maps a letter
of B onto a letter of A. Given a ∗-variety of languages V , the extension of
V under length preserving morphisms is the smallest ∗-variety V ′ such that,
for every alphabet A, V ′(A∗) contains the languages of the form ϕ(L) where
L ∈ V(B∗) and ϕ : B∗ → A∗ is a length preserving morphism. The closure
of V under length preserving morphisms is the smallest ∗-variety V̄ containing
V such that, for every length preserving morphism ϕ : B∗ → A∗, L ∈ V̄(A∗)
implies ϕ−1(L) ∈ V̄(B∗). We can now state the result found independently by
Reutenauer [50] and Straubing [62].

Theorem 12.9 Let V be a monoid variety and let V be the corresponding ∗-
variety. Then the ∗-variety corresponding to PV is the extension of V under
length preserving morphisms.

Corollary 12.10 A ∗-variety is closed under length preserving morphisms if
and only if the corresponding variety of monoids V satisfies V = PV.

These results motivated the systematic study of the varieties of the form
PV, which is not yet achieved. See the survey article [38] for the known results
prior to 1986 and the book of J. Almeida [1] for the more recent results.

The Schützenberger product and the power monoid are actually particular
cases of a general construction which gives the monoid counterpart of a given
operation on languages [42, 43, 40]. This general construction works for most
operations on languages, with the notable exception of the star operation, but
its presentation would take us to far afield. We conclude this section by a few
results on the semidirect product of two varieties.

We have already defined the semidirect product V ∗W of a variety of finite
monoids V and a variety of finite semigroups W. One can define similarly the
semidirect product of two varieties of finite monoids or of two varieties of finite
semigroups. For instance, if V and W are two varieties of finite monoids, V∗W
is the variety of finite monoids generated by the semidirect products M ∗N with
M ∈ V and N ∈ W such that the action of N on M is unitary. This variety is
also generated by the wreath products M ◦N with M ∈ V and N ∈ W.

Straubing has given a general construction to describe the languages recog-
nized by the wreath product of two finite monoids. Let M ∈ V and N ∈ W be
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two finite monoids and let η : A∗ → M ◦N be a monoid morphism. We denote
by π : M ◦ N → N the monoid morphism defined by π(f, n) = n and we put
ϕ = π ◦ η. Thus ϕ is a monoid morphism from A∗ into N . Let B = N ×A and
σ : A∗ → B∗ be the map (which is not a morphism!) defined by

σ(a1a2 · · ·an) = (1, a1)(ϕ(a1), a2) · · · (ϕ(a1a2 · · ·an1
), an)

Then Straubing’s “wreath product principle” can be stated as follows.

Theorem 12.11 If a language L is recognized by η : A∗ → M ◦N , then L is a
finite boolean combination of languages of the form X ∩ σ−1(Y ), where Y ⊂ B∗

is recognized by M and where X ⊂ A∗ is recognized by N .

Conversely, the finite boolean combinations of languages of the form X ∩
σ−1(Y ) are not necessarily recognized by M ◦N , but are certainly recognized by
a monoid of the variety V∗W. Therefore, a careful study of the languages of the
form σ−1(Y ) usually suffices to give a combinatorial description of the languages
corresponding to V ∗W. A similar wreath product principle holds when V or
W are varieties of finite semigroups. Examples of application of this technique
include Proposition 8.2 and the proof of Schützenberger’s theorem based on the
fact that every finite aperiodic monoid divides a wreath product of copies of
U2. Straubing also has successfully used this principle to describe the variety of
languages corresponding to solvable groups (solvable groups are wreath products
of commutative groups) and in his proof of the equality Bn = Vn ∗ LI.

13 Conclusion

We have centered our presentation around the notion of variety and voluntarily
left out several aspects of the theory which are developed extensively in other
articles of this volume: H. Straubing, D. Thérien and W. Thomas survey the
connections with formal logic and boolean circuits, J. Almeida and P. Weil
present the implicit operations, D. Perrin and the author treat the theory of
automata on infinite words, J. Rhodes states a general conjecture on Malcev
products, the topological aspects are mentioned in the author’s account of the
success story BG = PG, S.W. Margolis and J. Meakin cover the extensions of
automata theory to inverse monoids, M. Sapir demarcates the border between
decidable and undecidable and H. Short shows that automata are also useful
in group theory. Some other extensions are not covered at all in this volume,
in particular the connections with the variable length codes, the rational and
recognizable sets on arbitrary monoids and the extension of the theory to power
series and algebras.

We hope that the reading of the articles of this volume will convince the
reader that the algebraic theory of automata is a recent but flourishing subject.
It is intimately related to the theory of finite semigroups and certainly one of
the most convincing applications of this theory.
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