Problème 1: Résolution sémantique

On se référera parfois au poly ; il s'agira toujours des versions au moins égales à 4 du cours.

La résolution sémantique est un raffinement de la résolution paramétrée par la donnée d'une interprétation de Herbrand \mathcal{H}_0 .

On suppose qu'on a un algorithme \mathcal{A}^+ qui semi-décide la validité d'une clause donnée en entrée dans \mathcal{H}_0 . Autrement dit : pour toute clause C, $\mathcal{A}^+(C)$ termine, retourne un booléen, et si ce booléen est "vrai", alors $\mathcal{H}_0 \models C$. En revanche, si $\mathcal{A}^+(C)$ retourne "faux", alors on ne sait pas si $\mathcal{H}_0 \models C$ ou $\mathcal{H}_0 \not\models C$. Par contraposition, si $\mathcal{H}_0 \not\models C$, alors $\mathcal{A}^+(C)$ doit retourne "faux".

De façon symétrique, on suppose qu'on a un algorithme \mathcal{A}^- tel que si $\mathcal{A}^-(C)$ retourne "vrai", c'est que \mathcal{H}_0 rend fausse toute instance close de C. En d'autres termes, s'il existe une instance close $C\theta$ telle que $\mathcal{H}_0 \models C\theta$, alors $\mathcal{A}^-(C)$ doit retourner "faux".

La règle de résolution sémantique est :

$$\frac{C_1 \vee \pm A_1 \vee \ldots \vee \pm A_n \quad C' \vee \mp A'_1}{C_1 \sigma \vee C' \sigma}$$

où \pm désigne un signe, + ou -, et \mp désigne le signe opposé, et où les conditions suivantes sont vérifiées :

- (*i*) $n \ge 1$;
- (ii) $\sigma = \text{mgu } \{A_j \doteq A'_1 | 1 \le j \le n \};$
- (iii) $A^+(C_1 \vee \pm A_1 \vee \ldots \vee \pm A_n)$ retourne "faux", et A_1, \ldots, A_n sont maximaux dans $C_1 \vee \pm A_1 \vee \ldots \vee \pm A_n$;
- (iv) $A^-(C' \vee \mp A'_1)$ retourne "faux".

La maximalité est, comme d'habitude, comprise par rapport à un ordre strict ≻ stable.

1. Nous allons suivre l'argument de la démonstration du théorème 8 du poly, et montrer que la résolution sémantique est complète. Construisons l'interprétation *I* comme suit (je reprends les notations de la-dite démonstration).

Appelons clause *génératrice* C_N , et par extension $C_N\theta_N$, toute clause telle que $\mathcal{H}_0 \not\models C_N\theta_N$. On peut écrire $C_N\theta_N$ de façon unique sous la forme $\pm_N H_N \vee \mathcal{V}_N \vee \mathcal{F}_N$, où \mathcal{V}_N est la disjonction des littéraux (autres que $\pm_N H_N$) de $C_N\theta_N$ vrais dans \mathcal{H}_0 , et \mathcal{F}_N est celle de ceux (autres que $\pm_N H_N$) qui sont faux dans \mathcal{H}_0 . Observer que C_N est génératrice si et seulement si $\mathcal{H}_0 \not\models \pm_N H_N$ et \mathcal{V}_N est la disjonction vide, i.e., $C_N\theta_N = \pm_N H_N \vee \mathcal{F}_N$ avec $\mathcal{H}_0 \not\models \pm_N H_N$.

On construit alors une interprétation partielle I_k , c'est-à-dire un ensemble de littéraux clos ne contenant pas à la fois +A et -A pour aucun atome clos A, par récurrence sur $k:I_0$ est la fonction de domaine vide, et si I_k est déjà construite, on considère toutes les clauses génératrices C_N telles que $\pm_N H_N = \pm A_{k+1}^0$, où le signe \pm est - si $\mathcal{H}_0 \models A_{k+1}^0$, + sinon; s'il existe une telle clause génératrice telle que $I_k \not\models \mathcal{F}_N$, posons $I_{k+1} = I_k \cup \{\pm A_{k+1}^0\}$; sinon, $I_{k+1} = I_k \cup \{\mp A_{k+1}^0\}$, où \mp est le signe opposé de \pm . Finalement, $I = I_n$.

Démontrer :

- (I.1) Pour toute clause génératrice C_N telle que $I \not\models \mathfrak{F}_N$, alors $I \models \pm_N H_N$.
- (I.2) Si $I \models \pm H$ et $\mathcal{H}_0 \not\models \pm H$, alors il existe une clause génératrice C_N telle que $\pm_N = \pm$ et $H_N = H$. De plus, $I \not\models \mathcal{F}_N$.
- 2. Prémisse principale. Soit N_I le nœud d'échec correspondant à I. Montrer que l'on peut écrire C_{N_I} sous la forme $C' \vee \mp A'_1$, de sorte que (iv) soit vrai.
- 3. Prémisse auxiliaire. Montrer qu'il existe alors nécessairement une clause génératrice C_N telle que $\pm_N = \pm$ et $H_N = A'_1 \theta_{N_I}$. En déduire que C_N s'écrit sous la forme $C_1 \vee \pm A_1 \vee \ldots \vee \pm A_n$, de sorte que les conditions (i), (ii), et (iii) soient vérifiées;
- 4. Montrer que si $(T, C_{\bullet}, \theta_{\bullet})$ est un arbre décoré pour un ensemble insatisfiable de clauses S, si $C_1\sigma \vee C'\sigma$ est une clause obtenue par résolution sémantique selon les lignes des questions précédentes, et si $(T', C'_{\bullet}, \theta'_{\bullet})$ est un arbre décoré pour $S \cup \{C_1\sigma \vee C'\sigma\}$, alors $\mu(T, C_{\bullet}, \theta_{\bullet})$ (> $(>_{mul})_{mul})_{lex}$ $\mu(T', C'_{\bullet}, \theta'_{\bullet})$. Autrement dit, l'arbre décoré décroît dans la mesure μ donnée dans le cours.

On rappelle que $\mu(T, C_{\bullet}, \theta_{\bullet}) = (|T|, \mu^{-}(T, C_{\bullet}, \theta_{\bullet}))$, où la taille |T| est le nombre de nœuds dans l'arbre T, $\mu^{-}(T, C_{\bullet}, \theta_{\bullet})$ est le multi-ensemble des $\mu_{1}(C_{N}, \theta_{N})$, N parcourant les nœuds d'échec de T, et $\mu_{1}(C_{N}, \theta_{N})$ est le multi-ensemble contenant autant de fois l'entier i qu'il y a de littéraux $\pm A'$ de C_{N} tels que $A'\theta_{N} = A_{i}^{0}$.

- 5. En déduire que la résolution sémantique est complète.
- 6. Montrer que la résolution sémantique et la résolution ordonnée avec sélection ont un cas particulier en commun : pour la résolution sémantique, prendre \mathcal{H}_0 l'interprétation de Herbrand vide (qui rend tous les atomes faux ; définir les algorithmes \mathcal{A}^+ et \mathcal{A}^- explicitement ici) ; pour la résolution ordonnée avec sélection, définir explicitement la fonction de sélection correspondante.
- 7. Soit $S = S_0 \cup S_1$ un ensemble de clauses du premier ordre tel que l'on sait que S_0 est satisfiable (par exemple, un ensemble de clauses décrivant l'arithmétique, ou l'analyse). En utilisant la complétude de la résolution sémantique avec comme interprétation \mathcal{H}_0 n'importe quelle interprétation telle que $\mathcal{H}_0 \models S_0$, montrer que la règle de résolution ordonnée :

$$\frac{C_1 \vee \pm A_1 \vee \ldots \vee \pm A_n \quad C' \vee \mp A'_1}{C_1 \sigma \vee C' \sigma}$$

où \pm désigne un signe, + ou -, et \mp désigne le signe opposé, et où les conditions suivantes sont vérifiées :

- (*i*') $n \ge 1$;
- (ii') $\sigma = \text{mgu } \{A_i \doteq A'_1 | 1 \le j \le n\};$
- (iii') A_1, \ldots, A_n sont maximaux dans $C_1 \vee \pm A_1 \vee \ldots \vee \pm A_n$ et $C_1 \vee \pm A_1 \vee \ldots \vee \pm A_n$ n'est pas dans S_0 ;

lue de sorte à ce que la conclusion $C_1\sigma \vee C'\sigma$ soit ajoutée à S_1 , est complète. (Intuitivement, ceci exprime que l'on n'a pas besoin de résoudre deux clauses de S_0 ensemble, ceci ne pouvant mener à une contradiction; mais ce n'est bien sûr pas un argument formel.) On notera que S_0 ne bouge pas, seul S_1 reçoit de nouvelles clauses.

- 8. La résolution sémantique est-elle toujours complète lorsqu'on élimine les tautologies au cours de la recherche de preuve ?
- 9. La résolution sémantique est-elle toujours complète lorsqu'on élimine les clauses linéairement subsumées au cours de la recherche de preuve ?