
A second generation model

1

The notion of instant reconsidered

• In SCCS, at each instant, each thread performs exactly 1
action.

• In the semi-formal model for synchronous algorithms, at each
instant, each thread writes and reads exactly once in the
point-to-point channels.

A more liberal viewpoint At each instant, each thread
performs an arbitrary (but hopefully finite) number of actions. The
instant ends when each thread has either terminated its task for
the current instant or it is suspended waiting for events that cannot
arise.

2

Timed CCS

A formalisation of this viewpoint in the framework of CCS.

α ::= τ || ` (usual actions)

µ ::= α || tick (extended actions)

P ::= · · · || (P . Q) (extended processes)

tick represents the move to the following instant.

(P . Q) else next operator: if cannot run P now, run Q at the
following instant.

3

Labelled transition system

Usual rules for the α actions plus:

P
α→ P ′

(P . Q) α→ P ′

Plus special rules for the tick action that say that a process can
tick if and only if it cannot perform τ actions.

4

P 6 τ→ ·

(P . Q) tick→ Q 0 tick→ 0

`.P
tick→ `.P

Pi
tick→ P ′

i i = 1, 2 (P1 | P2) 6
τ→ ·

(P1 | P2)
tick→ (P ′

1 | P ′
2)

Pi
tick→ P ′

i i = 1, 2

(P1 + P2)
tick→ (P ′

1 + P ′
2)

P
tick→ P ′

νa P
tick→ νa P ′

5

Exercise (on formalising tick actions)

1. Check that P
tick→ · if and only if P 6 τ→ · . (Indeed, this is in

perfect agreement with the usual feeling that you do not see
time passing when you have something to do)

2. The previous lts uses the negative condition P 6 τ→ ·. Show that
this condition can be formalised in a positive way by defining a
formal system to derive judgments of the shape P ↓ L where L

is a set of observable actions and P ↓ L if and only if P 6 τ→ ·
and L = {` | P `→ ·}.

6

Exercise (continuations of tick action)

We say that P is a ‘CCS process’ if it does not contain the
else next operator. Show that:

1. If P
tick→ Q1 and P

tick→ Q2 then Q1 = Q2.

2. If P is a CCS process and P
tick→ Q then P = Q.

7

Exercise (programming a switch)

Let tick .P = (0 . P) and tick n.P = tick · · · tick .P , n times.

1. Programme a light switch

Switch(press, off , on, brighter)

that behaves as follows:

• Initially the switch is off.

• If the switch is off and it is pressed then the light turns on.

• If the switch is pressed again in the following 2 instants
then the light becomes brighter while if it is pressed at a
later instant it turns off again.

• If the light is brighter and the switch is pressed then it
becomes off.

8

2. Programme a fast user Fast(press) that presses the switch
every 2 instants and a slow user Slow(press) that presses the
switch every 4 instants.

3. Consider the systems:

νpress (Switch(press, off , on, brighter) | Fast(press))

νpress (Switch(press, off , on, brighter) | Slow(press))

and determine when the light is going to be off, on, and bright.

9

Exercise (bisimulation for TCCS)

Let ≈tick be the notion of weak bisimulation where as expected

tick⇒ = τ⇒ ◦ tick→ ◦ τ⇒ .

1. Show that ≈tick is preserved by parallel composition.

2. Show that ((P1 . P2) . P3) ≈tick (P1 . P3).

10

Exercise (CCS vs. TCSS)

Recall that a process is reactive if every derivative strongly
normalizes with respect to τ reduction. Let Ω be the always
diverging process τ.τ.τ · · ·.

1. Is 0 ≈tick Ω?

2. Suppose P,Q are CCS processes. Does P ≈tick Q imply
P ≈ Q?

3. Suppose further that P,Q are reactive. Does P ≈ Q imply
P ≈tick Q?

11

References

• A notion of ‘timed’ CCS is first introduced in

Yi Wang. A calculus of real time systems. PhD thesis.
1991.

This calculus has a tick (x) operator that describes the passage
of x time units where x is a non-negative real.

• A kind of else next operator is proposed in

Nicolin, Sifakis. The algebra of timed processes.
Information and Computation, 1994.

• A testing semantics of a process calculus very close to the one
presented here is given in

Hennessy, Reagan. A process algebra of timed systems.
Information and Computation, 1995.

12

However, it seems fair to say that all these works generalise to
CCS ideas that were presented in

Berry, Cosserat. The Esterel synchronous programming
language and its mathematical semantics. INRIA report,
1988.

Two basic differences in the Esterel approach are that:

1. Threads interact through signals.

2. The resulting calculus is deterministic.

Next, we will take sometime to discuss this approach.

13

Another popular formalism for describing timed systems is

Alur, Dill. A theory of timed automata. Theoretical
Computer Science, 1994.

• This is an enrichment of finite state automata with timing
constraints which still enjoys decidable model-checking
properties.

• It is more a specification language for finite control systems
than a programming language.

• The implementability of certain specifications is actually
problematic and it is still a research problem.

14

Signal based interaction and
determinacy

15

SL model

• Threads interact through signals (rather than channels).

• A signal is either emitted or not. Once it is emitted it persists
during the instant and it is reset at the end of it.

• Thus the collection of emitted signals grows monotonically
during each instant.

16

A simple calculus for the SL model

We present the calculus as a fragment of timed CCS. Write s, s′, . . .

for signal names.

Processes P ::= 0 || s.P, P || (emit s) || (P | P) || νs P || A(s)

where:

s.P, Q = (s.P . Q)

(emit s) = (s.Emit(s) . 0)

where: Emit(s) = (s.Emit(s) . 0)

17

Remarks on the calculus

• There is no sum and no prefix for emission (cf. asynchronous
π-calculus).

• The input is a specialised form of the input prefix and the
(.) operator.

• The derived synchronisation rule is:

(emit s) | s.P, Q
τ→ τ→ (emit s) | P

(the second τ is just recursion unfolding and we will ignore it
in the following).

• Note that:

(emit s) | s.P1, Q1 | s.P2, Q2
τ⇒ (emit s) | P1 | P2

18

Coding tick and await

• The tick action can be expressed as

tick .P = νs s.0, P s /∈ fn(P)

• A persistent input (as in TCCS) is expressed as:

await s.P = A(s), where A(s) = s.P, A(s)

where fn(P) ∪ {s} = {s}.

19

Coding an if then else on signals

• For every signal s, we can programme a process Echo(s, s−, s+)
as follows:

Echo(s, s−, s+) = s.tick .Echo+(s, s−, s+),Echo−(s, s−, s+)

Echo+(s, s−, s+) = (emit s+) | Echo(s, s−, s+)

Echo−(s, s−, s+) = (emit s−) | Echo(s, s−, s+)

that tells us in the following instant whether the signal s was
emitted or not.

• Then we can define an if then else as follows:

(ite s P Q) = s+.P, 0 | s−.Q, 0

20

Example: programming a NOR gate in SL

• Input signals: s0, s1.

• Output signal: s.

• At instant i + 1, emit s iff neither s0 nor s1 were emitted at
instant i.

N = N0 | Echo(s0) | Echo(s1)

N0 = tick .(ite s0 N0 (ite s1 N0 N1))

N1 = (emit s) | N0

21

Remarks

• We can program the boolean function NOR rather than writing
down its truth table.

• Several threads can share the same signal:

(emit s) | s.P1, Q1 | s.P2, Q2

• We can react to the absence of a signal at the end of the instant
and therefore we can regard a signal as a binary information.

22

Exercise (programming the light switch in SL)

• Reprogramme the light switch in SL.

• Compare with the solution based on TCCS.

23

Some historical remarks

• In the Esterel model it is actually possible to react
immediately (rather than at the end of the instant) to the
absence of a signal.

• This requires some semantic care, to avoid writing paradoxical
programs such as:

s.0, (emit s)

which are supposed to emit s when s is not there (cf.
stabilization problems in synchronous circuits).

• It also requires some clever compilation techniques to determine
whether a signal is not emitted. Infact these techniques (so
far!) are specific to finite state models.

24

• SL is a relaxation of the Esterel model where the absence of
a signal can only be detected at the end of the instant.

• If we forget about name generation, then the SL model
essentially defines a kind of monotonic Mealy machine.
Monotonic in the sense that output signals can only depend
positively on input signals (within the same instant).

• The monotonicity restriction allows to avoid the paradoxical
programs (monotonic boolean equations do not have a least
fixed point!).

• The SL model has a natural and efficient implementation
model that works well for general programs (not just finite state
machines).

25

• The Esterel/SL models were conceived in Sophia-Antipolis
shortly after the SCCS/Meije models and in the same research
team.

• In spite of this, there is no strong formal result on the
possibility/impossibility of embedding one model into the other
up to some reasonable equivalence (e.g, SCCS vs. TCCS).

26

Coming next

1. Determinacy.

2. A condition to ensure reactivity.

3. Remarks on SL semantics and extensions of SL with data types.

4. A programming exercice (Turing equivalence).

27

(Very) Strong confluence

A basic property is:

P
τ→ P1 P

τ→ P2

P1 = P2 or ∃Q (P1
τ→ Q,P2

τ→ Q)

NB We close the diagram in at most one step and up to
α-renaming.

28

Proof idea

• Internal reductions are due either to unfolding or to
synchronisation.

• The only possibility for a superposition of the redexes is:

(emit s) | s.P1, Q1 | s.P2, Q2

• And we exploit the fact that emission is persistent.

29

A simple static analysis that guarantees reactivity

• We assume the instruction tick is explicitly used in the
program.

• We compute an over-approximation of the control flow of the
system of equations.

• We check that within an instant it is not possible to loop
through a thread identifier.

30

Call graph

If P is a process then Call(P) is an over-approximation of the set
of process identifiers that P may possibly call within the current
instant:

Call(P) = case P

0 : ∅
tick .P : ∅
B(a) : {B}
(emit s) : ∅
s.P, Q : Call(P)

νs P : Call(P)

P1 | P2 : Call(P1) ∪ Call(P2)

31

Given a system of equations:

A1(a1) = P1

· · ·
An(a1) = Pn

build a (directed) call graph with nodes {A1, . . . , An} and such that

(Ai, Aj) is an edge iff Aj ∈ Call(Ai)

32

Proposition If the call graph has no loops then any process
relying on the related system of equations is reactive.

33

Proof idea

• If the graph has no loops then we can define a well-founded
order > on thread identifiers such that A > B whenever there
is an edge from A to B in the call graph.

• A process is essentially a multi-set of threads:

{|P1, . . . , Pn|}

• Whenever we perform an internal reduction either we reduce
the size of a Pi or we unfold a recursive equation Ai(a) = Pi

and then we have:

Call(Ai) = {|Ai|} >mset Call(Pi)

34

Exercise

Define a well-founded measure on processes that shows that all
internal reductions terminate.

35

Remarks on a compositional semantics for the SL model

• We have defined a bisimulation semantics ≈tick for TCCS.
This semantics can be applied to SL too.

• In SL one can expect additional equations to hold. For
instance,

s.(emit s), 0 should be ‘equivalent’ to 0

(cf. asynchronous communication).

Exercise Check that the equation does not hold in the
TCCS embedding.

• More generally, because SL is deterministic one can expect a
collapse of the bisimulation semantics with a trace semantics.

36

SL with data types

• The language with pure signals is deterministic.

• Reasonable extension to (infinite) data domains. The resulting
language becomes non-deterministic.

• Efficient implementation model.

• Embedded in many programming environments: C, C++,
Scheme, ML.

• Significant applications: event-driven control, data flow, GUI,
simulations, web services, multiplayer games.

Two references

• Boussinot. Reactive C: an extension of C to program reactive systems.

Soft. Practice and Experience, 1991.

• Mandel-Pouzet. Reactive ML, a reactive extension to ML. In Proc. ACM

PPDP, 2005.

37

A Synchronous π-calculus based on the SL model

Assume v1 6= v2 are two distinct values and

P = ν s1, s2 (s1v1 | s1v2 |
s1(x). (s1(y). (s2(z). A(x, y) , B(!s1))

, 0)

, 0)

• P is a π-calculus process if we forget about the else branches of
the read instructions.

• In Sπ, sv should be understood as (emit s v).

38

Spot the differences. . .

P = ν s1, s2 (s1v1 | s1v2 | s1(x). (s1(y). (s2(z). A(x, y) , B(!s1)), 0), 0)

• In π, P reduces to

P1 = νs1, s2 (s2(z).0, A(σ(x), σ(y)), B(!s1))

where σ(x), σ(y) ∈ {v1, v2} and σ(x) 6= σ(y).

• In Sπ, signals persist within the instant and P reduces to

P2 = νs1, s2 (s1v1 | s1v2 | (s2(z).A(σ(x), σ(y)), B(!s1)))

where σ(x), σ(y) ∈ {v1, v2}.

39

• In π, P1 is now deadlocked.

• In Sπ, the current instant ends and we move to the following
one

P2
tick→ P ′

2 = νs1, s2 B(`)

where ` ∈ {[v1; v2], [v2; v1]}.

• Thus at the end of the instant, !s1 becomes a list of (distinct)
values emitted on s1 during the instant.

40

Non-determinacy

Non-determinism arises when emitting distinct values on the same
signal:
Within the instant...

s(x).P, Q | s0 | s1

with suitable encodings of 0 and 1.
...and at the end of the instant

tick .A(!s) | s0 | s1

Typing constraints can be imposed to avoid these situations (cf.
affine typing for the π-calculus).

41

Simulating push-down automata

• We want to write a SL program that simulates a deterministic
push-down automata.

• We adapt ideas used in the encoding of 2 counters machines in
CCS.

• The example serves three purposes:

1. Some non-trivial hacking in SL.

2. An opportunity for reactivity analysis.

3. Shows that the SL model is Turing equivalent.

42

• A configuration is a pair (q, w) where q ∈ Q is a state and
w = S · · ·SZ is a stack.

• Possible transitions are:

(q, w) → (q′, Sw) (increment)

(q, Sw) → (q′, w) (decrement)

(q, Z) → (q′, Z) (positive zero test)

(q, Sw) → (q′, Sw) (negative zero test)

• We assume that the automaton is deterministic and that we
check that the stack is not empty before running a decrement
instruction.

43

• Associate a recursive equation with each state/instruction:

q = (emit inc) | await ack .tick .q′

q = (emit dec) | await ack .tick .q′

q = zero.(tick .q′), q′′

44

• With a configuration (q, S · · ·SZ) associate the program:

νs0, . . . sn (q(s0) | S(s0, s1) | · · · | S(sn−1, sn) | Z(sn))

• Z is described by the equation:

Z(s) = (emit zero) | inc.((emit ack) | tick .νs′(S(s, s′) | Z(s′))), Z(s)

45

• and S by the equations:

S(s, s′) = Sinc(s, s′) | Sdec(s, s′)

Sinc(s, s′) = inc.tick .S+(s, s′), (ite dec 0 Sinc(s, s′))

Sdec(s, s′) = dec.tick .Sr(s, s′), (ite inc 0 Sdec(s, s′))

S+(s, s′) = (emit ack) | νs′′ (S(s, s′′) | S(s′′, s′))

Sr(s, s′) = zero′.(tick .(emit ack) | Z(s)), ((emit dec′) | Sl(s, s′))

Sl(s, s′) = ack ′.tick .((emit ack) | S(s, s′)), Sl(s, s′)

46

Some dynamics

Increment

SSZ → S+SZ → SSSZ

Decrement

SSSZ → SrSSZ → SlSrSZ → SlSlSrZ → SlSlZ → SlSZ → SSZ

47

Remarks

• In S we have two parallel threads: one waiting for the signal
inc and the other for the signal dec. At the end of the instant,
the first thread will abort if the signal dec has been emitted
(and symmetrically).

• The call graph associated with the system of equations is
acyclic. Hence the program is reactive.

• It is easy to adapt the program to simulate a two counters
machine (name generation is essential here).

48

Exercise

Show that the presented encoding of push-down automata can be
adapted to CCS.

49

Some references

• G. Berry and G. Gonthier, The Esterel synchronous programming

language. Science of computer programming, 1992.

It introduces an imperative language to program reactive systems.

The language can be compiled to finite automata. The semantics

allows to react immediately to the absence of a signal. Static

analysis is required to avoid ‘causality problems’.

• F. Boussinot and R. De Simone, The SL Synchronous Language. IEEE

Trans. on Software Engineering, 1996.

Relaxation of the Esterel model. It allows reaction to the absence

of a signal only at the end of the instant.

• A., The SL synchronous language, revisited. Journal of Logic and

Algebraic Programming, 2007.

A process calculus description of the SL model with pure signals.

• A., A synchronous π-calculus. Information and Computation, 2007.

The generalisation of the previous work to signals carrying data

values.

50

Exercise (revision)

In the context of SCCS/Meije, we specify a ternary operator rr
(round robin) by the rule:

P0
α→ P ′

0

rr(P0, P1, P2)
α→ rr(P1, P2, P

′
0)

Show that the operator rr is definable as a SCCS/Meije process.
This amounts to define a SCCS/Meije process RR(P0, P1, P2),
parametric in P0, P1, P2, which is strongly bisimilar to
rr(P0, P1, P2).

51

Exercise (revision)

We can embed SL terms in TCCS and then compare them using
the weak bisimulation for TCCS. Prove or disprove:

1. s.(s.P, Q), Q ≈tick s.P, Q.

2. (emit s) | s.P, Q ≈tick (emit s) | P .

52

