
Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Introduction to Expressivenes in Concurrency

Frank D. Valencia
CNRS-LIX Ecole Polytechnique

Nov-Dec. 2007/MPRI

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Motivation: The Notion of Expressiveness

Is the model M′ as expressive as the model M, written M′ �M ?

In Automata Theory: M′ �M iff there exists a f : M→M′

s.t. for each M ∈M, L(f (M)) = L(M).
E.g. TM � PDS � FSA and the Chomsky Hierarchy:
UG � CSG � CFG � RG
The notion of expressiveness is well-understood and settled in
automata theory.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Motivation: Expressiveness in Process Calculi

Is the calculus C′ as expressive as the calculus C, written C′ � C ?

In Concurrency Theory there is no yet an agreement upon
expressiveness. In particular, there is no “Church-Turing
Thesis” for Concurrency Theory.
Intuitively C′ � C iff for all P ∈ C, there exists an encoding
[[P]] ∈ C′ of P satisfying some correcteness criteria–e.g,
preservation of behavioral equivalence: P ∼ [[P]].

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Motivation: Relevance of expressiveness studies

Many of the expressiveness studies Concurrency Theory resemble
those for Logic, Formal Grammars, Distributed Computating. They
involve:

Identifying minimal set of operators for a given calculus. E.g.,
Is match/summation redundant in the π-calculus ?
Identifying minimal terms forms for a given calculus. E.g., Is
the asynchronous/monadic π-calculus as expressive as the
synchronous/polyadic π-calculus ?
Identifying meaningul decidable fragments of a given calculus.
E.g., Is barbed equivalence decidable for CCS with replication ?
Identifying problems a given calculus cannot solve. E.g., Can
the asynchronous π calculus solve the leader election problem.
Comparing conceptually different calculi. E.g., Can Ambients
be encoded in the π-calculus ?

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Outline

1 Introduction
Notions/Notations
Encodings: Classic Encodings
Expressiveness Criteria

2 Terms and Operators Expressiveness
Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

3 Expressing Power of Asynchronous Pi.
Encoding summations in Aπ.
Electoral Systems in π

4 Exercises and Solutions

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Notions/Notations
Encodings: Classic Encodings
Expressiveness Criteria

The π-calculus

The π-calculus (fragment) given in previous lectures:

Sometimes we use P | Q and c̄v .P for P ‖ Q and c〈v〉.P .

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Notions/Notations
Encodings: Classic Encodings
Expressiveness Criteria

The π-calculus

Reduction relation

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Notions/Notations
Encodings: Classic Encodings
Expressiveness Criteria

The π-calculus

Early Transitions

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Notions/Notations
Encodings: Classic Encodings
Expressiveness Criteria

Barbed Equivalences

Recall that P ↓µ (µ ∈ {x , x̄}) iff ∃~z , y , Q, R such that x 666∈ ~z and
P ≡ (ν~z)(π.Q ‖ R) and π = x(y) if µ = x else π = x〈y〉 .
Also P ⇓µ iff ∃Q, P −→∗ Q and Q ↓µ .

Definition (Barbed Bisimilarity)

(1) R is a barbed simulation iff for every (P, Q) ∈ R :
- If P −→ P ′ then ∃Q ′: Q −→∗ Q ′ ∧ (P ′, Q ′) ∈ R .
- If P ↓µ then Q ⇓µ.
(2) (Barbed Bisimilarity) P

.
≈ Q iff there is R such that R and R−1

are barbed simulations and (P, Q) ∈ R .
(3) (Barbed Congruence) P ∼=c Q iff K [P]

.
≈ K [Q] for every K .

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Notions/Notations
Encodings: Classic Encodings
Expressiveness Criteria

(Early) Bisimulation Equivalences

Definition (Bisimilarity)

(1) R is a (strong) simulation iff for every (P, Q) ∈ R :
- If P α−→ P ′ then ∃Q ′: Q α−→ Q ′ ∧ (P ′, Q ′) ∈ R .
(2) (Strong Bisimilarity) P ∼ Q iff there is R such that R and R−1

are simulations and (P, Q) ∈ R .
(3) (Strong Full Bisimilarity) P ∼c Q iff Pσ∼ Qσ for every
substitution σ.

The weak versions ≈ and ≈c are obtained by replacing Q α−→ Q ′

with Q α̂
=⇒ Q ′ where α̂

=⇒ is τ−→
∗ α−→ τ−→

∗
if α 6= τ , and τ−→

∗

otherwise.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Notions/Notations
Encodings: Classic Encodings
Expressiveness Criteria

Encodings

Encoding

An encoding [[·]] : C → C′ is a map from C to C′. The encoding of
P ∈ C is denoted as [[P]].

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Notions/Notations
Encodings: Classic Encodings
Expressiveness Criteria

Encodings: [[·]] : π2 → π

Recall the encoding of the bi-adic π-calculus (π2) into π.

Example

[Milner 91] The encoding [[·]] : π2 → π is defined as

[[x〈z1, z2〉.P]] = (νw)x〈w〉.w〈z1〉.w〈z2〉.[[P]]
[[x(y1, y2).Q]] = x(w).w(y1).w(y2).[[Q]]

[[·]] : π2 →π is a homomorphism for the other cases.

In what sense is [[·]] : π2 →π correct ?
Question: How about the encoding from asynchronous π (Aπ)
into π ?

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Notions/Notations
Encodings: Classic Encodings
Expressiveness Criteria

Encodings: [[·]] : π → Aπ

Definition (Synchronous into asynchronous)

[Boudol 92] The encoding [[·]] : π → Aπ is defined as

[[x〈z〉.P]] = (νw)(x〈w〉 ‖ w(u).(u〈z〉 ‖ [[P]]))
[[x(y).Q]] = x(w).(νu)(w〈u〉 ‖ u(y).[[Q]])

[[·]] : Aπ →π is a homomorphism for the other cases.

How about using a protocol of two exchanges only ?

Two steps protocol

[Honda-Tokoro 92]. The encoding [[·]] : π → Aπ is defined as

[[x〈z〉.P]] = x(w).(w〈z〉 ‖ [[P]])
[[x(y).Q]] = (νw)(x〈w〉 ‖ w(y).[[Q]])

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Notions/Notations
Encodings: Classic Encodings
Expressiveness Criteria

Encodings: [[·]] : Kπ → π

Kπ extends π with finitely many paremetric recursive
definitions: P := . . . | K 〈~z〉
Each K 〈~z〉 has a unique K (~y)

def
= P with |~z | = |~y | .

Transition rule: (Cons) K 〈~z〉 τ−→ P{~z/~y} if K (~y)
def
= P .

Let K 1π be Kπ but with a single monadic definition.

Definition (Encoding of K 1π)

[Milner 91] The encoding [[·]] : K 1π → π is defined as
[[P]] = (νk)([[P]]0 ‖ [[K (y)

def
= P]]0) where

[[K 〈z〉]]0 = k〈z〉
[[K (y)

def
= P]]0 = !k(w).[[P]]0

[[·]]0 is a homomorphism for the other cases.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Notions/Notations
Encodings: Classic Encodings
Expressiveness Criteria

Expressiveness Criteria

Correctness Criteria
In what sense are the above encodings “correct” ?

The most commonly used criteria/requirenment for correctness of
the encodings are:

Preservation of Behavioral Equivalence.
Preservation of Observations.
Operational Correspondence.
Full Abstraction.
Structural Requirements: Compositionality and
Homomorphisms.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Notions/Notations
Encodings: Classic Encodings
Expressiveness Criteria

Expressiveness Criteria: Preservation of Equivalence

Semantic Preservation wrt ./

∀P ∈ C, we must have [[P]] ./ P .

Typically ./ is some bisimilarity relation.
Natural and it could be a very strong correspondence
depending on the chosen ./.
But it presupposes that the source and taget calculi are
equipped with ./.
[[·]] : π2 →π satisfies the above with ./ =

.
≈ but not for

./ = ∼=c .
[[·]] : K 1π → π satisfies the above with ./ = ∼=c .

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Notions/Notations
Encodings: Classic Encodings
Expressiveness Criteria

Expressiveness Criteria: Preservation of Observables

Preservation of Observations
∀P ∈ C, we must have obs([[P]]) = obs(P).

Here obs(.) denotes a set of observations than can be made of
processes in C ∪ C′: Typically barbs, traces, divergence, test,
failures.

Observations such as barbs and traces are not enough to
capture process behaviour.
Failures are often enough.
[[·]] : π2 →π satisfies the above for barbs but not for tests.
[[·]] : K 1π →π satisfies the above for barbs and tests.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Notions/Notations
Encodings: Classic Encodings
Expressiveness Criteria

Expressiveness Criteria: Operational Correspondence

Operational correspondence

∀P, Q ∈ C, (a) If P −→ Q then [[P]] −→∗ ./ [[Q]] and
(b) ∀R if [[P]] −→ R then ∃R ′ s.t. P −→ R ′ and R ./ [[R ′]].

(a) Preservation of reduction steps (Soundness).
(b) Reflexion of reduction steps (Completeness).
It conveys the notion of operational simulation.
Significant aspects are not covered (e.g., some observables)
[[·]] : π2 →π satisfies the above for ./ = ∼=c .
[[·]] : K 1π →π satisfies the above for ./ = ∼=c and for label
transitions.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Notions/Notations
Encodings: Classic Encodings
Expressiveness Criteria

Expressiveness Criteria: Full Abstraction

Full Abstraction
∀P, Q ∈ C, P ./C Q if and only if [[P]] ./C′ [[Q]].

I.e. equivalent processes are mapped into equivalent processes.

If Direction: Soundness.
Only-If Direction: Completeness.
Useful when [[P]] and P cannot be compared directly.
Completeness could be too demanding if ./ is a congruence.
[[·]] : π2 →π is fully abstract sound but not complete for
./ = ∼=c .

[[·]] : K 1π →π is fully abstract ./ = ∼=c .

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Notions/Notations
Encodings: Classic Encodings
Expressiveness Criteria

Expressiveness Criteria: Weak Full Abstraction

Weak Full Abstraction
∀P, Q ∈ C,
K [P] ./ C K [Q] for all C-context K

if and only if
[[K]][[[P]]] ./C′ [[K]][[[Q]]] for all C-context K .

Here ./ is typically a non-congruence like barbed bisimulation,
trace equivalence, etc.

Completeness wrt “encoded contexts”.
[[·]] : π2 →π is weakly fully abstract for ./ =

.
≈ .

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Notions/Notations
Encodings: Classic Encodings
Expressiveness Criteria

Expressiveness Criteria: Compositionality

Compositionality and Homomorphism

(1) The encoding [[·]] : C → C′ is compositional wrt an n-ary
operator op if and only if there exists a C′-context K with n-holes
such that [[op(P1, . . . , Pn)]] = K [[[P1]], . . . , [[Pn]]].
(2) [[·]] : C → C′ is weakly compositional iff ∃K ,∀P [[P]] = K [[[P]]′]
where [[·]]′ is compositional.
(3) [[·]] : C → C′ is homomorphic wrt an n-ary operator op in C if
and only if [[op(P1, . . . , Pn)]] = op([[P1]], . . . , [[Pn]]).

Homomorphism is sometimes required for the parallel operator:
[[P | Q]] = [[P]] | [[Q]].
Compositionality and its weak version are often required.
[[·]] : π2 →π is compositional for all the operators.
[[·]] : K 1π →π is not compositional but weakly compositional.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

Correctness of [[·]] : K 1π →π.

Let [[·]] : K 1π →π be the encoding from Kπ with a single monadic
recursive definitions into π.

Theorem (Operational Correspondence)

(1) If P α−→ Q then [[P]]
α−→ ∼ [[Q]]

(2) If [[P]]
α−→ R then ∃Q P −→ Q and R ∼ [[Q]].

Proof.
(1) and (2) proceed by induction on the inference and on the size
of processes using the Replication Theorem.

Theorem (Replication Theorem (Sangiorgi’s Book))

If x occurs in Pi (i ∈ I) and R only in output subject position then
(νx)(

∏
i∈I Pi ‖!x(y).R)∼c ∏

i∈I (νx)(Pi ‖!x(y).R).

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

Correctness of [[·]] : K 1π →π.

Theorem (Semantic Preservation wrt ∼c)

P ∼c [[P]]

Proof.
Verify that R = {(P, [[P]])} is a bisimulation up-to ∼ using the
Operational Correspondence. Also R is closed under substitutions.

Theorem (Full Abstraction)

P ∼=c Q iff [[P]]∼=c [[Q]].

Proof.
Since ∼c = ∼=c and the Semantic preservation wrt ∼c .

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

Correctness of [[·]] : π2 →π.

Let [[·]] : π2 →π be the encoding from bi-adic π to π.

Theorem (Operational Correspondence)

(1) if P −→ Q then [[P]] −→∗ [[Q]] and
(2) If [[P]] −→ R then ∃Q; P −→ Q and R ∼=c [[Q]].

The proof of (1) is by induction on the inference. The proof (2) is
rather involved because arbitrary application of ≡ in [[P]] −→ R .

Theorem (preservation of barbs)

P ↓µ iff [[P]] ↓µ

Theorem (Semantic preservation wrt
.
≈)

[[P]]
.
≈ P.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

Correctness of [[·]] : π2 → π.

Corollary (Soundness)

If [[P]]∼=c [[Q]] then P ∼=c Q.

Proof.

From the homomorphic definition of [[·]] and the preservation of
.
≈ .

K [P]
.
≈ [[K [P]]] = [[K]][[[P]]]

.
≈ [[K]][[[Q]]] = [[K [Q]]]

.
≈ C [Q]

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

Correctness of [[·]] : π2 → π.

Corollary (Soundness)

If [[P]]∼=c [[Q]] then P ∼=c Q.

Exercises :

Show that the encoding is not complete. I.e., P ∼=c Q does
not imply [[P]]∼=c [[Q]].
Are the encodings [[·]] : Aπ → π by Boudol and Honda
complete wrt ∼=c ? If not, prove it.
Define a weakly compositional encoding [[·]] : Kπ → π which
is sound wrt ∼=c ? Is your encoding complete ∼=c ? If not,
argue why.

Open Question: Is there a compositional encoding [[·]] : π2 → π
fully-abstract wrt ∼=c .

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

Trios

A trios process is a polyadic π process whose prefixes are of the
form π′.π.π′′.0. Trios processes can encode arbitrary polyadic π
processes [Parrow’01].

Exercise Give an encoding [[·]] from π0 processes into π0 trios
processes. Argue that [[P]]≈ P .

Replication vs Recursion in CCS

Notice that π0 is CCS with replication instead of recursive
definitions CCS!.

Is CCS! as expressive as CCS? We shall conclude this section
we a survey on these kind of Recursion vs Replication results.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

References

Kohei Honda, Mario Tokoro: An Object Calculus for
Asynchronous Communication. ECOOP 1991: 133-147. 1991.
Gerard Boudol: Asynchrony and the π-calculus. Rapport de
Recherche RR-1702, INRIA-Sophia Antipolis. 1992
Robin Milner: The Polyadic pi-Calculus: A Tutorial. Technical
Report LFCS report ECS-LFCS-91-180, University of
Edinburgh. 1994.
J. Aranda, C. Di Giusto, C. Palamidessi and F. Valencia. On
Recursion, Replication and Scope Mechanisms in Process
Calculi. To appear in FMCO’06. ©Springer-Verlag. 2007.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

Computational Expressiveness of CCS

Language of a process :
L(P) = {s ∈ L∗| ∃Q : P s

=⇒ Q ∧∀α ∈ Act : Q 66 α−→}.

Theorem (CCS can generate CFL)

For any context-free grammar G, there exists a CCS process PG
such that s ∈ L(G) iff s ∈ L(PG).

Proof.
Hint: Consider productions in Chomsky Normal form: A → B.C or
A → a. For the case B.C provide a definition A(. . .)

def
= which

allows for the sequentialization of B and C .

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

Computational Expressiveness of CCS

Theorem
CCS is Turing-Expressive.

This can be shown by encoding Minsky Machines.

Minsky’s Two-Counter Machines
Sequence of labelled instructions on two counters c0 and c1:

Li : halt
Li : cn := cn + 1; goto Lj
Li : if cn = 0 then goto Lj else cn := cn − 1; goto Lk

The machine: 1) starts at L1, 2) halts if control reaches the
location of a halt instruction and 3) computes the value n if it halts
with c0 = n.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

Computational Expressiveness of CCS

Definition (A Counter C)

C def
= isz .C + inc.(νl)(C ′〈l〉 ‖ l .C)

C ′(l) def
= dec.l .0 + inc.(νl ′)(C ′〈l ′〉 ‖ l ′.C ′〈l〉)

For counters X and Y replace C with X , resp Y , and isz , inc , dec
with iszX , incX , decX , resp iszY , incY , decY .

Instructions are represented as processes waiting for an input on its
label.

Example
L2 : if X = 0 then goto L4 else goto L8 and L4 : halt can be
represented as L2

def
= l2.(iszX .l4.L2 + decX .incX .l8.L2) and

L4
def
= l4.halt .

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

Computational Expressiveness of CCS

Definition (A program M)

A program M(X , Y) = L1 : I1; . . . ; Ln : In can be encoded as

[[M(X , Y)]] = (νl1 . . . ln)(l1.0 ‖ L1 ‖ . . . ‖ Ln ‖ X ‖ Y)

The correctness is stated as follows:

Theorem (Correctness)

M(X , Y) computes n on X if and only if

([[M]] ‖ halt.Decn) ⇓yes

where for n > 0, Decn = decX .Decn−1 and Dec0 = iszX .yes

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

Computational Expressiveness of CCS π0 = CCS!

Theorem (π0 can generate REG)

Given a regular expression e, there exists a CCS! process Pe such
that s ∈ L(e) iff s ∈ L(Pe).

Exercise. Write a CCS! process P such that L(P) = a∗c .

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

Computational Expressiveness of CCS π0 = CCS!

Theorem (π0 can generate REG)

Given a regular expression e, there exists a CCS process Pe such
that s ∈ L(e) iff s ∈ L(Pe).

Proof.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

Computational Expressiveness of CCS π0 = CCS!

Theorem (π0 can generate REG)

Given a regular expression e, there exists a CCS! process Pe such
that s ∈ L(e) iff s ∈ L(Pe).

But CCS! can generate CFL languages too.

Exercise. Write a CCS! process Q such that L(Q) = anbn.
Hint: Recall the process P such that L(P) = anc.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

Computational Expressiveness of π0 = CCS!

CCS! is also Turing Expressive: It can also encode Minsky
Machines.
The encoding is unfaithfull: [[M]] can evolve into a process
which does NOT correspond to any computation of M.

Such process however never terminates (i.e., it is divergent).

In fact, CCS! cannot encode even CFG faithfully.
The following theorem and anbnc are central to this
impossibility result:

Theorem

Let P ∈ CCS!. Suppose that P s.α
=⇒ where s ∈ Act∗ . Then P s′.α

=⇒
for some s ′ ∈ Act∗ whose length is bounded by a value depending
only on the size of P.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

Computational Expressiveness of π0 = CCS!

The construction in CCS! differs for registers.

Counter in CCS!

C def
= c ‖ !c.(νm, i , d , u)(m ‖!m.(inc.i + dec.d) ‖

!i .(m ‖ inc ′ ‖ u ‖ d .u.(m ‖ dec ′) ‖
d .(isz ‖ u.DIV ‖ c))

Instructions: L2 : if X = 0 then goto L4 else goto L8 can be
modelled as

!l2.decX .(dec ′X .l4 + iszX .l8)

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

Computational Expressiveness of π0 = CCS!

Theorem (Correctness)

M(X , Y) computes n on X if and only if

∃Q : ([[M]] ‖ halt.Decn) =⇒ (Q ‖ yes) ∧ Q 6−→

where for n > 0 Decn = decX .dec ′X .Decn−1 and D0 = iszX .yes.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

References

N. Busi, M.. Gabbrielli, G. Zavattaro: Comparing Recursion,
Replication, and Iteration in Process Calculi. ICALP 2004:
307-319.
N. Busi, M.. Gabbrielli, G. Zavattaro: Replication vs.
Recursive Definitions in Channel Based Calculi. ICALP 2003:
133-144.
J. Aranda, C. Di Giusto, M. Nielsen and F. Valencia. CCS
with Replication in the Chomsky Hierarchy: The Expressive
Power of Divergence. APLAS’07.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

Linearity.
Linearity of messages and input processes.

In the π-calculus outputs (messages) and inputs are linear.
E.g. the parallel composition

x̄z | x(y).P | x(w).Q

reduces either
to

P{z/y} | Q

or to
P | Q{z/w}

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

Persistence.
Persistence of messages.

Other calculi follow a different pattern: Messages are
persistent. E.g.:
Concurrent Constraint Programming (CCP)[Saraswat’90]
where

information can only increase during computation.

Several Calculi for Security (e.g., Winskel&Crazolara’s SPL)
to model a Dolev-Yao assumption:

"The Spy sees and remembers every message in transit"

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

Persistence.
Persistence of messages and input process.

Persistent π input processes model functions, procedures and
higher-order communication (also arises in the notion of
ω-receptiveness) [Sangiorgi’99].
Persistent messages and input processes can be used to reason
about protocols that can run unboundedly (see [Blanchet’04]).

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

Linearity vs Persistence.

Does the persistence assumption restrict the kind of systems
that can be reasoned about ? E.g.
Can some security attacks based on linear messages be
impossible to model under the persistent message assumption
of SPL?
Is Linear CCP more expressive than CCP ?

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

Linearity vs Persistence.

To study the expressiveness of fragments of π capturing the above
sources of persistence:

Aπ: Asynch. π-calculus, here denoted simply as π:

P, Q := x̄z | x(y).P | P | Q | (νx)P | !P

POπ: Persistent-output (messages) π:

P, Q := !̄xz | x(y).P | P | Q | (νx)P | !P

PIπ: Persistent-input π:

P, Q := x̄z | !x(y).P | P | Q | (νx)P | !P

Pπ: Persistent (input & ouput) π:

P, Q := !̄xz | !x(y).P | P | Q | (νx)P | !P

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

Encodings & Interpretations

Some studies on Linearity vs Persistence have reported:
The (non) existance of, compositional encodings between the
fragments fully-abstract wrt barbed congruence and barbed
bisimilarity.

The Turing-Completeness of Pπ.

A compositional FOL interpretation of Pπ.

PI

π

π

P π

PO π

: no encoding

: subcalculus

: encoding

: composition

: Minsky Machines

FOL MM

MM

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

Applications: Decidability

As applications of the above and classic FOL results there are

Decidability results of barbed-congruence for n-adic versions.

Pπ POπ PIπ
0 yes yes no
1 ? no
2 no

Identify meaningful decidable infinite-state mobile classes of π
processes.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

Impossibility of a sound encoding of π in Pπ

Impossibility of Sound Encodings

There is no encoding [[·]] : π → Pπ, homomorphic wrt parallel
composition, such that [[P]]∼=c [[Q]] implies P ∼=c Q.

∼=c is barbed congruence for Pπ
(the result also holds for barbed bisimilarity)

Key property: in Pπ, for every P, P | P ∼=c P .

Key property is not trivial for P = (νx)Q and it does not hold
with mismatch. Notice that R =!x(y).!x(y ′).[y 6= y ′].t
distinguishes Q = (νz)!x̄z from Q | Q.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

Impossibility of a sound encoding of π in Pπ

Theorem
There is no encoding [[·]] : π → Pπ, homomorphic wrt parallel
composition, such that [[P]]∼=c [[Q]] implies P ∼=c Q.

The proof involves the following lemmas:
1 If P −→ Q then Pσ −→ Qσ.

Does it hold with mistmatch?
2 P ∼=c Q iff ∀R, σ : Pσ ‖ R

.
≈ Qσ ‖ R . (Textbook)

3 P
.
≈ Q iff P o' Q where

.
≈ is barbed bisimilarity for Pπ and
P o' Q holds iff P ⇓x ⇐⇒ Q ⇓x)

4 P ‖ P ∼=c P .
Take P = Q ‖ Q, Q = x ‖ x .x .t. Notice that P 6 ∼=c Q. But from
(4) [[P]] = [[Q]] ‖ [[Q]]∼=c [[Q]]. It remains to prove (3) and (4).

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

FOL Characterization of Pπ

FOL Interpretation of Pπ

[[!x̄z]] = out(x , z), [[!x(y).P]] = ∀y out(x , y) ⇒ [[P]]
[[(νx)P]] = ∃x [[P]], [[P | Q]] = [[P]] ∧ [[Q]].

Input and “new” binders are interpreted as universal and
existential quantifiers.

Theorem: FOL Characterization of Barbed Observability

[[P]] |= ∃zout(x , z) if and only if P ⇓x̄

With mismatchand [[x 6= y .P]] = x 6= y ⇒ [[P]],
Q = (νy)(νy ′)[y 6= y ′].!x̄z ⇓x̄ but [[Q]] 6 |= ∃zout(x , z).

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

FOL Characterization of Pπ

Consider the following example:
In P =!x(y).Q | (νz)!xz , by extruding the private name z , we
can conclude that (νz)Q{z/y} is executed in P .
In [[P]] = ∀yout(x , y) ⇒ [[Q]] ∧ ∃zout(x , z), by moving the
existential z to outermost position, we conclude that
∃z [[Q]]{z/y} is a logical consequence of [[P]].
FOL interpretation captures name extrusion (Pπ-calculus
mobility) in FOL via existential and universal quantifiers.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

Encoding Aπ in the semi-persistent calculi

Consider S = x̄u | x̄w | x(y).ȳm | x(y).ȳn. Want an encoding
[[S]] in the semi-persistent calculi s.t.:

[[S]] = [[x〈u〉]] | [[x〈w〉]] | [[x(y).ȳm]] | [[x(y).ȳn]] behaves

either as (a)[[u〈m〉]] | [[w〈n〉]] or as (b)[[w〈m〉]] | [[u〈n〉]].

Problem: In either case input and outputs are both
consumed. In the semi-persistent calculi either input or
outputs cannot be consumed.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

Encoding Aπ in POπ

The encoding [[·]] : π → PIπ is a homomorphism for all
operators but:

The idea is a suitable combination of locking and forwarding
mechanisms: If the [[x(y).P]] has already received a message
then it forwards the current message.
Key property: In asynch. π, forwarders (e.g., !x(y).x̄y) are
barbed congruent to the null process 0.

Theorem
Every (asynch) π process P is (weak) barbed congruent to [[P]].

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

Encoding Aπ in POπ

Consider the encoding [[·]] : π → POπ:

Problem: An encoded input may get deadlocked. E.g.,
Consider [[x〈u〉]] | [[x〈w〉]] | [[x(y).P]] | [[x(y).Q]].
Suppose [[x(y).P]] gets the u of [[x〈u〉]]. Then [[x(y).Q]] may
input the broadcast s of [[x〈u〉]] and get stuck waiting on r
unable to interact with [[x〈w〉]].

But this wouldn’t be a problem if inputs were persistent as in
PIπ: If a copy becomes unable to interact with, there is always
another able to.

Solution: Encode first π into PIπ and then compose the
encodings.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Recursion vs Replication in π
Polyadicity vs Monadicity in π
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Aπ

References on Linearity vs Persistence

C. Palamidessi, V. Saraswat, F. Valencia and B. Victor. On
the Expressiveness of Linearity vs Persistence in the
Asynchronous Pi Calculus. LICS 2006:59-68.
D. Cacciagrano, F. Corradini, J. Aranda, F. Valencia.
Persistence and Testing Semantics in the Asynchronous Pi
Calculus. EXPRESS’07.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Encoding summations in Aπ.
Electoral Systems in π

Expressive Power of Asynchronous Communication

Motivation: To understand the expressive power of Aπ .

It’s theory is simpler and somewhat more satisfactory.

We’ve seen how it encodes (synchronous, polyadic) π. Recall
e.g., Boudol’s encoding.

But for the encodings are for π without summation.

We shall see how it encodes various forms of summation.

We shall see it cannot encode arbitrary summation.

We’ll do this by using electoral problems solvable in π but not
in Aπ.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Encoding summations in Aπ.
Electoral Systems in π

Some Distintive Properties for Aπ

1 If P
x〈y〉−→ P ′ then P ≡ x〈y〉 ‖ P ′.

2 If P
x〈y〉−→ α−→ P ′ then P α−→ x〈y〉−→ P ′ ≡ P ′.

3 If P
x〈y〉−→ xw−→ P ′ with w 6∈ fn(P) then P τ−→≡ P ′{y/w}.

Exercise: Show (1-3) then Theorem below. Does (2) hold for =⇒
?

Theorem (Diamond Property)

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Encoding summations in Aπ.
Electoral Systems in π

Equivalences for Aπ

Definition (Asynchronous Barbed Bisimilarity)

Definition (Asynchronous Bisimilarity)

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Encoding summations in Aπ.
Electoral Systems in π

Equivalences for Aπ

Some useful properties in Aπ:

1 If P ≈a Q then P ∼=c
a Q .

2 x(y).x〈y〉∼=c
a 0 (I.e., forwarders are equivalent to 0).

Exercise: Show (2).

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Encoding summations in Aπ.
Electoral Systems in π

The π calculus with prefixed summations

The π-calculus prefixed summation πΣ extends the π fragment
we’ve considered so far with guarded summations:

P := . . . |
∑

i∈I πi .Pi

Reduction rule for summation

Transition rule for summation

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Encoding summations in Aπ.
Electoral Systems in π

The π calculus with blind choice: πΣτ .

In the blind-choice π-calculus, summation takes the form∑
i∈I τ.Pi .

Exercises:

1 Give an encoding [[·]] : AπΣτ → Aπ such that [[P]]∼ P .
2 Show that there cannot be an encoding [[·]] : AπΣ → Aπ such

that [[P]]∼ P .

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Encoding summations in Aπ.
Electoral Systems in π

The π calculus with input-choice: πΣi

In input-choice π summations takes the form
∑

i∈I xi (yi).Pi .

Encoding into Asynchronous (polyadic) π

Exercises:

1 Let E be the above encoding. Show that ∃P :E(P) 6 ≈a P .
2 Give E ′ : AπΣi → Aπ so that ∀P : E ′(P)≈a P .
3 Then show that E is neither sound nor complete.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Encoding summations in Aπ.
Electoral Systems in π

The π calculus with input-choice: πΣi

Encoding into Asynchronous (polyadic) π

Observations and Hints:
Consider P = x〈z〉 ‖ x(y).y + w(y).0 to show E(P) 6 ≈a P .
Note that E and E ′ act as the identity on their images. So
E(E(P)) = E(P) and E(E ′(P)) = E ′(P).
However E(P) ./ P where ./

def
= coupled-bisimulation.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Encoding summations in Aπ.
Electoral Systems in π

The π calculus with separate-choice: πΣs

In separate-choice summation can be
∑

i xi (yi).Pi or
∑

i xi 〈yi 〉.Pi

Encoding into Asynchronous (polyadic) π

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Encoding summations in Aπ.
Electoral Systems in π

The π calculus with mixed choice: πΣ

In πΣsummations are mixed. Can we encode them using the
obvious generalization of the previous
encoding of πΣs ?

Consider P = x1(y).P1 + x2〈w〉.P2 ‖ x1〈w〉.Q1 + x2(y).Q2

How about other encodings?

Impossibility Result
Under certain reasonable restrictions, no encoding of mixed-choice
into Aπ can exist.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Encoding summations in Aπ.
Electoral Systems in π

Background: Hypergraphs

Definition (Hypergraphs)

Definition (Automorphism)

The orbit n ∈ X by σ is Oσ(n) = {n, σ(n), σ2(n), . . . , σh(n)}
where h is the least power s.t. σh = id .

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Encoding summations in Aπ.
Electoral Systems in π

Background: Hypergraphs

σ is well-balanced iff all of its orbits have the same cardinality.
E.g., (1) and (2) have a one with a single orbit of size 6, (4)
has none.

Examples

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Encoding summations in Aπ.
Electoral Systems in π

Networks

A (process) networkP of size k takes the form P1 ‖ . . . ‖ Pk .
A computation C of the P takes the form:

Proj(C , i) is the contributions of Pi to C : The sequence of
transitions performed by Pi in C .

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Encoding summations in Aπ.
Electoral Systems in π

Electoral Networks

A (process) network P of size k takes the form P1 ‖ . . . ‖ Pk .
A computation C of the P takes the form:

Proj(C , i) is the contributions of Pi to C : The sequence of
transitions performed by Pi in C .

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Encoding summations in Aπ.
Electoral Systems in π

Electoral Networks in π

A network P = P1 ‖ . . . ‖ Pk is an electoral system iff for
every computation C of P :

C can be extended to a computation C ′ and
∃n ≤ k (the “leader”) s.t.,

∀i ≤ k: Proj(C ′, i) contains the action outn, and
no extension of C ′ contains any action outm with m 6= n.

The hypergraph of P , H(P) = 〈N, X , t〉 is given by:

N = {1, . . . , k},
X = fn(P)− {out},
t(x) = {n | x ∈ fn(Pn) }

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Encoding summations in Aπ.
Electoral Systems in π

Symmetric Electoral Networks in π

Given P = P1 ‖ . . . ‖ Pk , let σ be an automorphism on H(P).

P is symmetric wrt σ iff for each i ≤ k,

Pσ(i) ≡ Piσ.

P is symmetric iff symmetric wrt all automorphism on H(P)

Notice that P is symmetric wrt σ then it is symmetric wrt σi

(i > 1).
Symmetric electoral system in πΣ with ring structure:

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Encoding summations in Aπ.
Electoral Systems in π

Symmetric Electoral Networks in Aπ.

Theorem (Impossibility of electoral systems)

Let P = P1 ‖ . . . ‖ Pk be a Aπ network so that H(P) is a ring with
k > 1. Assume that P is symmetric wrt σ where σ has a single
orbit on H(P). Then P cannot be an electoral system.

The proof strategy involves:

1 Building a computation P
µ1−→ P1 . . .

µh−→ Ph so that Ph is a
symmetric network for every h > 1.

2 Usind Diamond Lemma and Symmetry of Ph−1 to build Ph.
3 The symmetry cannot be broken, hence no leader can be

selected.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Encoding summations in Aπ.
Electoral Systems in π

Symmetric Electoral Networks in Aπ.

Corollary:

There is no encoding [[·]] : πΣ → Aπ such that
1 [[P ‖ Q]] = [[P]] ‖ [[Q]]
2 [[Pσ]] = [[P]]σ
3 Preservation of obervables (actions on visible channels) on

maximal computations.

Proof idea: (1) and (2) preserve symmetry and (3) distinguishes
an electoral system from a non-electoral one.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Encoding summations in Aπ.
Electoral Systems in π

Summary

Expressiveness Hierarchy

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Encoding summations in Aπ.
Electoral Systems in π

References

Catuscia Palamidessi: Comparing The Expressive Power Of
The Synchronous And Asynchronous Pi-Calculi. Mathematical
Structures in Computer Science 13(5): 685-719 (2003).
Uwe Nestmann: What is a "Good" Encoding of Guarded
Choice? Inf. Comput. 156(1-2): 287-319 (2000).
Uwe Nestmann, Benjamin C. Pierce: Decoding Choice
Encodings. Inf. Comput. 163(1): 1-59 (2000)

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Exercises: Non-Complete Encodings

Exercises :

Show that the encoding [[·]] : π2 → π is not complete. I.e.,
P ∼=c Q does not imply [[P]]∼=c [[Q]].

Take P = x〈yz〉.0 ‖ x〈yz〉.0 and Q = x〈yz〉.x〈yz〉.0. Consider
the context K = [·] ‖ x(u).x(w).t〈t〉.

Are the encodings [[·]] : Aπ → π by Boudol and Honda
complete wrt ∼=c ? If not, prove it.

Boudol’s as above and Honda’s as above but with
P = x(y).0 ‖ x(y).0 and Q = x(y).x(y).0.

Define a weakly compositional encoding [[·]] : Kπ → π which
is sound wrt ∼=c ? Is your encoding complete ∼=c ? If not,
argue why.

Take the composite encoding Kπ → πn → π . Notice that the
polyadic communication occur on the private channels.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Exercises: Trios

A trios process is a polyadic π process whose prefixes are of the
form π′.π.π′′.0. Trios processes can encode arbitrary polyadic π
processes [Parrow’01].

Exercise Give an encoding [[·]] from π0 processes into π0 trios
processes so that [[P]]≈ P .

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Exercises: Trios

A trios process is a polyadic π process whose prefixes are of the
form π′.π.π′′.0. Trios processes can encode arbitrary polyadic π
processes [Parrow’01].

Exercise Give an encoding [[·]] from π0 processes into π0 trios
processes so that [[P]]≈ P .

Solution

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Exercises: Language of Processes

Exercises:

Write a CCS! process P such that L(P) = a∗c .

P = (νl)(l ‖!(l .a.l) ‖ l .c)

Write a CCS! process Q such that L(Q) = anbn.

P = (νl)(l ‖!(l .a.(l ‖ u)) ‖ l .!u.b)

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Exercises: Properties of Aπ

In Aπ the following holds:

1 If P
x〈y〉−→ P ′ then P ≡ x〈y〉 ‖ P ′.

2 If P
x〈y〉−→ α−→ P ′ then P α−→ x〈y〉−→ P ′ ≡ P ′.

3 x(y).x〈y〉∼=c
a 0.

Exercise: Show (1) and (2) then Theorem below. Also show (3).

Theorem (Diamond Property for Aπ)

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Exercises for Choice Operators.

In the blind-choice π-calculus, summation takes the form∑
i∈I τ.Pi .

Exercises:

1 Give an encoding [[·]] : AπΣτ → Aπ from asynchronous π with
blind-choice to Aπ such that [[P]]∼ P .

2 Show that there cannot be an encoding [[·]] : AπΣ → Aπ from
asynchronous π with choice to Aπsuch that [[P]]∼ P .

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

institution-logo

Introduction
Terms and Operators Expressiveness

Expressing Power of Asynchronous Pi.
Exercises and Solutions

Exercises for Choice Operators

Encoding into Asynchronous (polyadic) π

Exercises:
1 Let E be the above encoding. Show that ∃P :E(P) 6 ≈a P .
2 Give E ′ : AπΣi → Aπ so that ∀P : E ′(P)≈a P .
3 Then show that E is neither sound nor complete.

Hint: Consider P = x〈z〉 ‖ x(y).y + w(y).0 to show
E(P) 6 ≈a P .
Hint: Note that E acts as the identity on its images. So
E(E(P)) = E(P) and E(E ′(P)) = E ′(P).

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

	Introduction
	Notions/Notations
	Encodings: Classic Encodings
	Expressiveness Criteria

	Terms and Operators Expressiveness
	Recursion vs Replication in
	Polyadicity vs Monadicity in
	Computional Expressiveness in Process Calculi
	Linearity vs Persistence in A

	Expressing Power of Asynchronous Pi.
	Encoding summations in A.
	Electoral Systems in

	Exercises and Solutions

