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Motivation: The Notion of Expressiveness

Is the model M’ as expressive as the model M, written M’ = M ?
@ In Automata Theory: M’ = M iff there exists a f : M — M’
s.t. for each M € M, L(f(M)) = L(M).

e E.g. TM > PDS »~ FSA and the Chomsky Hierarchy:
UG »~ CSG - CFG - RG

@ The notion of expressiveness is well-understood and settled in
automata theory.
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Motivation: Expressiveness in Process Calculi

Is the calculus C’ as expressive as the calculus C, written C' = C ?

@ In Concurrency Theory there is no yet an agreement upon
expressiveness. In particular, there is no "“Church-Turing
Thesis” for Concurrency Theory.

e Intuitively C" = C iff for all P € C, there exists an encoding
[P] € C’ of P satisfying some correcteness criteria—e.g,
preservation of behavioral equivalence: P ~ [P].
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Motivation: Relevance of expressiveness studies

Many of the expressiveness studies Concurrency Theory resemble
those for Logic, Formal Grammars, Distributed Computating. They
involve:

@ Identifying minimal set of operators for a given calculus. E.g.,
Is match/summation redundant in the 7-calculus ?

@ lIdentifying minimal terms forms for a given calculus. E.g., Is
the asynchronous/monadic 7-calculus as expressive as the
synchronous/polyadic m-calculus 7

@ lIdentifying meaningul decidable fragments of a given calculus.
E.g., Is barbed equivalence decidable for CCS with replication ?

o I|dentifying problems a given calculus cannot solve. E.g., Can
the asynchronous 7 calculus solve the leader election problem.

e Comparing conceptually different calculi. E.g., Can Ambients
be encoded in the 7-calculus ?
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Introduction Notions/Notations

Encodings: Classic Encodings
Expressiveness Criteria

The m-calculus

The 7-calculus (fragment) given in previous lectur

Syntax:
PQ === 0 nil
P || @ parallel composition of P and @
é{v).P  output v on channel ¢ and resume as P
c(x).P  input from channel ¢
(vx)P  new channel name creation

[z
P replication

Free names (alpha-conversion follows accordingly):

m(Q) = 0 m(P || Q) = Wm(P)Um(Q)
fn(c(v).P) = {e,v}uUi(P) f(e(x).P) = (W(P)\{z})U{c}
m((pa)P) = MWm(P)\ {a} m(!P) = f(P)

Sometimes we use P | Q and ¢v.P for P || Q and ¢(v).P.
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Introduction Notions/Notations

Encodings: Classic Encodings
Expressiveness Criteria

The m-calculus

Reduction relation

Structural congruence:

PO = P PllQ@ = Q| P
FlOllr = PI@QIE) P = PP
(va)(vy)P = (vy)(ve)P
P | (vx)Q = (vr)(P || Q) if v & tu(P)

Reduction rules:
react (o) P || c(2).Q — P || Q{"%:}
P — P P — P P=FP—=Q'=Q
PAR RES STRUCT
PllQ —P|Q (ve)P — (va)P’ P—Q
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Introduction Notions/Notations
Encodings: Classic Encodings
Expressiveness Criteria

The m-calculus

Early Transitions

our ——————— Inp ———————
. P =5L P x(z). P == P{yfz}
TU, pr e P p
COMM-L w PAR-L. ————— bn(a)Nfn(Q) =0
PIQT P PIQ=P|Q
F(2) o
p 2, pr )
CLOSE-L — Q—Q #fn(Q)
PlQ—vz(PQ)
P2 P P pr
RES % 2 & nla) OPEN % :Fz
vz:P—wvzP vz P (=) P
o gy Ty, o Y, o
REP-ACT PP REP-COMM M
P Zs (P'| PYY 1P

P25 PP

T(z) Tz
pZE, pr p oz, pr
— = ¢ fn(P)

REP-CLOSE —
P — (vz (P'| P")) |IP

v
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Introduction

Notions/Notations
Encodings: Classic Encodings
Expressiveness Criteria

Barbed Equivalences

Recall that P |, (i € {x,x}) iff 3Z,y, Q, R such that x ¢ Z and
P=w2Z)(r.Q | R)and m = x(y) if u = x else m = X{y) .
Also P |, iff 3Q, P —* Qand Q |, .

Definition (Barbed Bisimilarity)

(1) R is a barbed simulation iff for every (P, Q) € R:

-If P— P then 3Q": Q —* Q" A (P, Q) e R.

~If P |, then Q |,

(2) (Barbed Bisimilarity) P~ Q iff there is R such that R and R~1
are barbed simulations and (P, Q) € R.

(3) (Barbed Congruence) P=¢ Q iff K[P] = K[Q)] for every K.
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Introduction Notions/Notations

Encodings: Classic Encodings
Expressiveness Criteria

(Early) Bisimulation Equivalences

Definition (Bisimilarity)

(1) R is a (strong) simulation iff for every (P, Q) € R:

SIfP - P then 3Q: Q-5 @ A (P, Q) €R.

(2) (Strong Bisimilarity) P ~ @ iff there is R such that R and R~}
are simulations and (P, Q) € R.

(3) (Strong Full Bisimilarity) P ~¢ Q iff Po ~ Qo for every
substitution o.

The weak versions ~ and ~¢ are obtained by replacing @ — Q'
with Q = Q' where = is T T fa # 7, and Tt
otherwise.

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness



Introduction Notions/Notations

Encodings: Classic Encodings
Expressiveness Criteria

Encodings

Encoding

An encoding [-] : C — C" is a map from C to C'. The encoding of
P € C is denoted as [P].
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Introduction

Notions/Notations

Encodings: Classic Encodings
Expressiveness Criteria

Encodings: []: 7> — «

Recall the encoding of the bi-adic 7-calculus (72) into 7.

[Milner 91] The encoding [-] : #* — 7 is defined as

[X(z1,22).P] = (vw)x{w).w(z1).w(z2).[P]
[x(r1,52)-Ql = x(w).w(y1).w(y2).[Q]

[]: 72 —= is a homomorphism for the other cases.

e In what sense is [] : 72 —n correct ?

@ Question: How about the encoding from asynchronous 7 (Am)
into 7 7
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Introduction

Notions/Notations
Encodings: Classic Encodings
Expressiveness Criteria

Encodings: [] : # — Arm

Definition (Synchronous into asynchronous)
[Boudol 92] The encoding [] : @ — Am is defined as

[x(z).P] (vw)(x(w) || w(u).(a(z) || [P1))
[x(»)-Q1 = x(w).(vu)(w(u) || uly).[Q])

[] : Ar —m is a homomorphism for the other cases.

@ How about using a protocol of two exchanges only 7

Two steps protocol
[Honda-Tokoro 92]. The encoding [-] : @ — A is defined as

[x(z).P1 = x(w).(w(z) | [P])
x(n)-Q1 = (vw)x{w) || w(y).[Q])
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Introduction

Notions/Notations
Encodings: Classic Encodings
Expressiveness Criteria

Encodings: []: Km — 7

@ Km extends 7 with finitely many paremetric recursive
definitions: P:=... | K(Z)

e Each K(Z) has a unique K(¥) L P with IZ| =yl .

o Transition rule: (Cons) K(Z) —— P{Z/y} if K(¥) P

o Let K17 be K but with a single monadic definition.

Definition (Encoding of K1)
[Milner 91] The encoding [-] : K7 — 7 is defined as
[P1 = (K)([Plo || [K(y) = Plo) where

[K{2)]o = k{z)

[K() = Plo = k(w).[Plo

[-Jo is a homomorphism for the other cases.
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Introduction Notions/Notations

Encodings: Classic Encodings
Expressiveness Criteria

Expressiveness Criteria

Correctness Criteria

In what sense are the above encodings “correct” 7

The most commonly used criteria/requirenment for correctness of
the encodings are:

Preservation of Behavioral Equivalence.
Preservation of Observations.
Operational Correspondence.

Full Abstraction.

Structural Requirements: Compositionality and
Homomorphisms.
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Introduction Notions/Notations

Encodings: Classic Encodings
Expressiveness Criteria

Expressiveness Criteria: Preservation of Equivalence

Semantic Preservation wrt p<
VP € C, we must have [P] > P.

e Typically < is some bisimilarity relation.

@ Natural and it could be a very strong correspondence
depending on the chosen <.

@ But it presupposes that the source and taget calculi are
equipped with .

o [] : #® — satisfies the above with =1 = =~ but not for
D = =€,

o []: K'm — m satisfies the above with ba = €.
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Introduction Notions/Notations

Encodings: Classic Encodings
Expressiveness Criteria

Expressiveness Criteria: Preservation of Observables

Preservation of Observations
VP € C, we must have obs([P]) = obs(P).

Here obs(.) denotes a set of observations than can be made of
processes in C U C’: Typically barbs, traces, divergence, test,
failures.

@ Observations such as barbs and traces are not enough to
capture process behaviour.

o Failures are often enough.

o [-]: m® —n satisfies the above for barbs but not for tests.

o []: Klm —7 satisfies the above for barbs and tests.
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Introduction Notions/Notations

Encodings: Classic Encodings
Expressiveness Criteria

Expressiveness Criteria: Operational Correspondence

Operational correspondence

VP,Q eC, (a) If P— Q then [P] —* < [Q] and
(b) VR if [P] — R then 3R’ s.t. P — R’ and R 1 [R'].

(a) Preservation of reduction steps (Soundness).
(b) Reflexion of reduction steps (Completeness).
It conveys the notion of operational simulation.
Significant aspects are not covered (e.g., some observables)

~C

[-] : 7% — satisfies the above for > =

[1: Kl — satisfies the above for 1 = 22¢ and for label
transitions.
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Introduction Notions/Notations

Encodings: Classic Encodings
Expressiveness Criteria

Expressiveness Criteria: Full Abstraction

Full Abstraction
VP,Q €C, P ¢ Q if and only if [P] i [Q].

|.e. equivalent processes are mapped into equivalent processes.

o If Direction: Soundness.
@ Only-If Direction: Completeness.
@ Useful when [P] and P cannot be compared directly.
e Completeness could be too demanding if > is a congruence.
o []: 7% —m is fully abstract sound but not complete for
D = =€
o []: K'rm —m is fully abstract 1 = =¢
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Introduction Notions/Notations

Encodings: Classic Encodings
Expressiveness Criteria

Expressiveness Criteria: Weak Full Abstraction

Weak Full Abstraction
VP,Q e,

K[P] ¢ K[Q] for all C-context K
if and only if

IK 1 TP]] ¢ [K][[Q] ] for all C-context K.

Here 1 is typically a non-congruence like barbed bisimulation,
trace equivalence, etc.

@ Completeness wrt “encoded contexts''.

o []: 7% —m is weakly fully abstract for o = =~ .
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Introduction Notions/Notations

Encodings: Classic Encodings
Expressiveness Criteria

Expressiveness Criteria: Compositionality

Compositionality and Homomorphism

(1) The encoding [] : C — C’ is compositional wrt an n-ary
operator op if and only if there exists a C’-context K with n-holes
such that [op(P1, ..., P,)] = K[[Pi],-- -, [Pa]]-

(2) [[] : C — C’ is weakly compositional iff 3K, VP [P] = K[ [P]’ ]
where [-]’ is compositional.

(3) [[] : C — C’ is homomorphic wrt an n-ary operator op in C if
and only if Jop(P1, ..., Pa)] = op([Pi];-- -, [Px])-

@ Homomorphism is sometimes required for the parallel operator:
[P QI=1P] QI

o Compositionality and its weak version are often required.

o []: 7 —m is compositional for all the operators.

o []: K'm —m is not compositional but weakly compositional.
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Recursion vs Replication in 7

Terms and Operators Expressiveness Polyadicity vs Monadicity in 7
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Ax

Correctness of [] : Klm —.

Let [-] : K'7 —7 be the encoding from K7 with a single monadic
recursive definitions into 7.

Theorem (Operational Correspondence)

(1) If P =% Q then [P] - ~[Q]
(2) IF[P] - R then 3Q P — Q and R~[Q].

(1) and (2) proceed by induction on the inference and on the size
of processes using the Replication Theorem. O

Theorem (Replication Theorem (Sangiorgi's Book))

If x occurs in P; (i € 1) and R only in output subject position then

(X)L Ties Pi 'x(y)-R) ~ TLie, (vx)(Pi [I'x(y)-R).




Recursion vs Replication in 7

Terms and Operators Expressiveness Polyadicity vs Monadicity in 7
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Ax

Correctness of [] : Klm —.

Theorem (Semantic Preservation wrt ~)
P~<[P]

Verify that R = {(P,[P])} is a bisimulation up-to ~ using the
Operational Correspondence. Also R is closed under substitutions.

Theorem (Full Abstraction)
P=c Q iff [P]=°[Q].

~C

and the Semantic preservation wrt ~€. O

Since ~¢ =
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Recursion vs Replication in 7

Terms and Operators Expressiveness Polyadicity vs Monadicity in
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Ax

Correctness of [] : 72 —.

Let [] : 7 —7 be the encoding from bi-adic 7 to 7.

Theorem (Operational Correspondence)

(1) if P — Q then [P] —* [Q] and
(2) IF[P] — R then 3Q; P — Q and R=°[Q].

The proof of (1) is by induction on the inference. The proof (2) is
rather involved because arbitrary application of = in [P] — R.

Theorem (preservation of barbs)

P |, iff[P] |,

Theorem (Semantic preservation wrt )
[P]=~ P.
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Recursion vs Replication in 7
Terms and Operators Expressiveness Polyadicity vs Monadicity in
Computional Expressiveness in Process Calculi

Linearity vs Persistence in Ax

Correctness of [] : 72 — .

Corollary (Soundness)

If [P] =< [Q] then P=< Q.

From the homomorphic definition of [-] and the preservation of ~.

KIPI=[K[P]] = [KILIPT 1= [K][ [Q] ] = [K[Ql~ C[Q] [
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Recursion vs Replication in 7

Terms and Operators Expressiveness Polyadicity vs Monadicity in
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Ax

Correctness of [] : 72 — .

Corollary (Soundness)

If [P] =< [Q] then P=< Q.

Exercises :

@ Show that the encoding is not complete. l.e., P=° @ does
not imply [P]=°[Q].

@ Are the encodings [-] : At — 7 by Boudol and Honda
complete wrt =€ 7 If not, prove it.

@ Define a weakly compositional encoding [-] : K7 — 7 which
is sound wrt =¢ 7 Is your encoding complete = 7 If not,
argue why.

Open Question: s there a compositional encoding [] : 72 — 7
fully-abstract wrt =€ .
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Recursion vs Replication in 7

Terms and Operators Expressiveness Polyadicity vs Monadicity in
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Ax

A trios process is a polyadic m process whose prefixes are of the
form 7’.w.7".0. Trios processes can encode arbitrary polyadic 7
processes [Parrow'01].

Exercise Give an encoding [] from 7° processes into 7° trios
processes. Argue that [P]~ P.

Replication vs Recursion in CCS

Notice that 70 is CCS with replication instead of recursive
definitions CCS,.

@ Is CCS; as expressive as CCS? We shall conclude this section
we a survey on these kind of Recursion vs Replication results.
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Terms and Operators Expressiveness Polyadicity vs Monadicity in
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Ax
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Recursion vs Replication in 7
Terms and Operators Expressiveness Polyadicity vs Monadicity in 7
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Linearity vs Persistence in Ax

Computational Expressiveness of CCS

Language of a process :
L(P)={seL]3IQ: P == QAVa € Act : Q /~}.

Theorem (CCS can generate CFL)

For any context-free grammar G, there exists a CCS process Pg
such that s € L(G) iffs € L(Pg).

Hint: Consider productions in Chomsky Normal form: A — B.C or

A — a. For the case B.C provide a definition A(...) f .. which

allows for the sequentialization of B and C. O
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Recursion vs Replication in 7

Terms and Operators Expressiveness Polyadicity vs Monadicity in 7
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Ax

Computational Expressiveness of CCS

CCS is Turing-Expressive.

This can be shown by encoding Minsky Machines.

Minsky's Two-Counter Machines

Sequence of labelled instructions on two counters ¢g and c;:

L; : halt
Li : cp:=cp+1;goto L;
Li : if ¢, =0 then goto L; else ¢, := ¢, — 1; goto Ly

The machine: 1) starts at Ly, 2) halts if control reaches the
location of a halt instruction and 3) computes the value n if it halts
with ¢g = n.
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Recursion vs Replication in 7

Terms and Operators Expressiveness Polyadicity vs Monadicity in 7
Computional Expressiveness in Process Calculi

Linearity vs Persistence in Ax

Computational Expressiveness of CCS

Definition (A Counter C)

C ¥ isz.C+inc.(vI)(C{) | 1.C)
C'() = dec.].0+ inc.(v")(C{I') || I'.C'{1))

For counters X and Y replace C with X, resp Y, and isz, inc, dec
with iszX, incX, decX, resp iszY,incY, decY .

Instructions are represented as processes waiting for an input on its
label.

Ly :if X =0 then goto Lselse gotolg and L4 : halt can be
represented as L, déf/g.(iszXL.Lg + decX.incX.78.L2) and

def ;| T
La = Iy.halt .

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness



Recursion vs Replication in 7

Terms and Operators Expressiveness Polyadicity vs Monadicity in 7
Computional Expressiveness in Process Calculi
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Computational Expressiveness of CCS

Definition (A program M)
A program M(X,Y) =Ly : h;...;L,: I, can be encoded as

IMX, Y] = (ko 1) (0 | Ly oo ] Lo | X ] Y)

The correctness is stated as follows:

Theorem (Correctness)

M(X,Y) computes n on X if and only if

(IM] || halt.Decp) yes

where for n > 0, Dec, = decX.Dec,_1 and Decy = iszX .yés
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Terms and Operators Expressiveness Polyadicity vs Monadicity in 7
Computional Expressiveness in Process Calculi

Linearity vs Persistence in Ax

Computational Expressiveness of CCS 70 = CCS,

0

Theorem (7 can generate REG)

Given a regular expression e, there exists a CCS! process P, such
that s € L(e) iffs € L(Pe).

Exercise. Write a CCS! process P such that L(P) = a*c.
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Terms and Operators Expressiveness Polyadicity vs Monadicity in 7
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Computational Expressiveness of CCS 70 = CCS,

0

Theorem (7 can generate REG)

Given a regular expression e, there exists a CCS process P, such
that s € L(e) iff s € L(P.).

Proof.

Definition 4. Given a regular expression e, we define [¢] as the CCS process (v m)
([ele | ™) where [e]m, withm & fn([e]l), is inductively defined as follows:

| A\

@] = DIV
[e]m = M
[a]m = a7
lei]m if L(ea) =0
ler + e2]m = 4 [e2]m if L{e) =0
[eilm + [e2]m otherwise
ler.ez]m =  (rm)([er]m. | milealm) withma & fnler)
m if L(e) =0

[e"lm = ()’ | ' el | m' TR withm' ¢ fnle) otherwise
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Computational Expressiveness of CCS 70 = CCS,

0

Theorem (7 can generate REG)

Given a regular expression e, there exists a CCS! process P, such
that s € L(e) iffs € L(Pe).

But CCS! can generate CFL languages too.

Exercise. Write a CCS! process Q such that L(Q) = a"b".
Hint: Recall the process P such that L(P) = a"c.
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Computational Expressiveness of 70 = CCS,

e CCS!is also Turing Expressive: It can also encode Minsky
Machines.

@ The encoding is unfaithfull: [M] can evolve into a process
which does NOT correspond to any computation of M.

e Such process however never terminates (i.e., it is divergent).
@ In fact, CCS! cannot encode even CFG faithfully.

o The following theorem and a"b"c are central to this
impossibility result:

Let P € CCS!. Suppose that P =2 where s € Act* . Then P g
for some s’ € Act* whose length is bounded by a value depending
only on the size of P.
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Computational Expressiveness of 70 = CCS,

The construction in CCS! differs for registers.

C || le(vm,i,d,u)(m |!m.(inc.i+ dec.d) |
li(m || inc || || d.u.(m | dec’) ||
d.(isz | u.DIV || ©))

Instructions: Ly : if X =0 then goto Lselse gotolg can be
modelled as

lh.decX .(dec' X Iy + iszX .lg)
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Computational Expressiveness of 70 = CCS,

Theorem (Correctness)
M(X,Y) computes n on X if and only if

3Q : ([M] || halt.Decp,) = (Q || y&s) A Q #—

where for n > 0 Dec, = decX.dec'X.Dec,_1 and Dy = iszX .yes.
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Linearity.

Linearity of messages and input processes.

@ In the m-calculus outputs (messages) and inputs are linear.

o E.g. the parallel composition
xz | x(y).P | x(w).Q

reduces either
@ to

Piz/y} 1 Q

@ or to

P Q{z/w}

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness



Recursion vs Replication in 7

Terms and Operators Expressiveness Polyadicity vs Monadicity in 7
Computional Expressiveness in Process Calculi
Linearity vs Persistence in Am

Persistence.

Persistence of messages.

@ Other calculi follow a different pattern: Messages are
persistent. E.g.:

e Concurrent Constraint Programming (CCP)[Saraswat'90]
where

information can only increase during computation.

e Several Calculi for Security (e.g., Winskel&Crazolara's SPL)
to model a Dolev-Yao assumption:

"The Spy sees and remembers every message in transit"
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Persistence.

Persistence of messages and input process.

@ Persistent 7 input processes model functions, procedures and
higher-order communication (also arises in the notion of
w-receptiveness) [Sangiorgi'99).

@ Persistent messages and input processes can be used to reason
about protocols that can run unboundedly (see [Blanchet'04]).
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Linearity vs Persistence.

@ Does the persistence assumption restrict the kind of systems
that can be reasoned about 7 E.g.

o Can some security attacks based on linear messages be
impossible to model under the persistent message assumption
of SPL?

@ Is Linear CCP more expressive than CCP ?
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Linearity vs Persistence.

To study the expressiveness of fragments of 7 capturing the above
sources of persistence:

@ Am: Asynch. m-calculus, here denoted simply as :

P,Q :=xz | x(y).P | P|Q | (wx)P | P
e POmw: Persistent-output (messages) 7:

P,Q == Ixz | x(y)P | P|Q | (wx)P | P
o Plm: Persistent-input :

P,Q :=xz | x(y)P | P|Q | (wx)P | 'P
e Pr: Persistent (input & ouput) 7:

P.Q == Ixz | x(y).P | P|Q | (wq)P | P
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Terms and Operators Expressiveness

Encodings & Interpretations

Some studies on Linearity vs Persistence have reported:
@ The (non) existance of, compositional encodings between the
fragments fully-abstract wrt barbed congruence and barbed

bisimilarity.
e The Turing-Completeness of Prr.

e A compositional FOL interpretation of Pr.

— = encoding

------=: composition

——{—: no encoding
C . subcalculus

\/ /\/ MM : Minsky Machines
FOL

Expressiveness

MM Pr
Frank D. Valencia CNRS-LIX Ecole Polytechnique
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Applications: Decidability

As applications of the above and classic FOL results there are

@ Decidability results of barbed-congruence for n-adic versions.

| | Px | POr | Pin |

0| yes | yes no
1| 7 no
2| no

@ l|dentify meaningful decidable infinite-state mobile classes of 7
processes.
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Impossibility of a sound encoding of 7 in P

Impossibility of Sound Encodings

There is no encoding [-] : @ — Pm, homomorphic wrt parallel
composition, such that [P] = [Q] implies P = Q.

~C

° is barbed congruence for P

(the result also holds for barbed bisimilarity)
e Key property: in P, for every P, P | P=€ P.
o Key property is not trivial for P = (vx)Q and it does not hold

(vx
with mismatch. Notice that R =Ix(y).!x(y').[y # y']-t
distinguishes Q = (vz)!xz from Q | Q.
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Impossibility of a sound encoding of 7 in P

There is no encoding [-] : @ — Pm, homomorphic wrt parallel
composition, such that [P] = [Q] implies P=° Q.

The proof involves the following lemmas:
Q If P— Q then Po — Qo.

e Does it hold with mistmatch?
Q@ P=CQiff YR,o: Po || R= Qo || R. (Textbook)
Q@ P~ Qiff P Q where

e ~ is barbed bisimilarity for P7 and

o PX Q holds iff P lx <= Q Ix)

Q P Px=cP.
Take P=Q || Q, Q =X || x.x.t. Notice that P £Z° Q. But from
4

(4) [P =1Q1 || [QR] = [Q]. It remains to prove (3) and (4).
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FOL Characterization of Pr

FOL Interpretation of P
['xz] = out(x,z), ['x(y).P] =V, out(x,y) = [P]
[(vx)P] = 3[P1. [P | Q] =[PIAIR]

@ Input and “new” binders are interpreted as universal and
existential quantifiers.

Theorem: FOL Characterization of Barbed Observability

[P] = 3;out(x, z) if and only if P |x

e With mismatchand [x # y.P] = x # y = [P],
Q= (vy)(wy)ly # y']1xz Iz but [Q] /= F.out(x, z).
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FOL Characterization of Pr

o Consider the following example:

e In P =Ix(y).Q | (vz)!xz, by extruding the private name z, we
can conclude that (vz)Q{z/y} is executed in P.

o In [P] =V out(x,y) = [Q] N Fout(x,z), by moving the
existential z to outermost position, we conclude that
3,[Ql{z/y} is a logical consequence of [P].

@ FOL interpretation captures name extrusion (Pm-calculus
mobility) in FOL via existential and universal quantifiers.
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Encoding A in the semi-persistent calculi

Consider S = xu | xw | x(y).ym | x(y).yn. Want an encoding
[S] in the semi-persistent calculi s.t.:

o [S1 = [<()] | [x(w)] | [x(y) 7m] | [x(»).n] behaves
o either as (a)[u(m)] | [w(n)] or as (b)[w(m)] | [a(n)].

@ Problem: In either case input and outputs are both
consumed. In the semi-persistent calculi either input or
outputs cannot be consumed.
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Encoding Am in POx

@ The encoding [-] : # — Pl7 is a homomorphism for all
operators but:

[z(9).P] = (wt ) | lz(@)-(w 1) | B
tAL([P] | L) |
L))

@ The idea is a suitable combination of locking and forwarding
mechanisms: If the [x(y).P] has already received a message
then it forwards the current message.

e Key property: In asynch. 7, forwarders (e.g., !x(y).xy) are
barbed congruent to the null process 0.

Every (asynch) m process P is (weak) barbed congruent to [P].
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Encoding Am in POx

e Consider the encoding [-] : 7 — PO

[z(2)] = (ws)('z(s) | s(r).l7(2))
[z()-P] = x(s).(vr)(s(r) | r(4).[P])

@ Problem: An encoded input may get deadlocked. E.g.,

o Consider [x(uv)] | [x(w)] | [x(y)-P1 | [x(»)-Ql.

o Suppose [x(y).P] gets the u of [x(u)]. Then [x(y).Q] may
input the broadcast s of [x{u)] and get stuck waiting on r
unable to interact with [x{w)].

@ But this wouldn't be a problem if inputs were persistent as in
Plz: If a copy becomes unable to interact with, there is always
another able to.

@ Solution: Encode first 7 into Plm and then compose the
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References on Linearity vs Persistence

o C. Palamidessi, V. Saraswat, F. Valencia and B. Victor. On
the Expressiveness of Linearity vs Persistence in the
Asynchronous Pi Calculus. LICS 2006:59-68.

o D. Cacciagrano, F. Corradini, J. Aranda, F. Valencia.
Persistence and Testing Semantics in the Asynchronous Pi
Calculus. EXPRESS'07.
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Expressive Power of Asynchronous Communication

Motivation: To understand the expressive power of A .
@ It's theory is simpler and somewhat more satisfactory.

@ We've seen how it encodes (synchronous, polyadic) 7. Recall
e.g., Boudol's encoding.

@ But for the encodings are for m without summation.
@ We shall see how it encodes various forms of summation.
@ We shall see it cannot encode arbitrary summation.

o WEe'll do this by using electoral problems solvable in 7 but not
in Ar.
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Some Distintive Properties for Am

0 1f P ™™ P then P=x(y) | P.

Q1P ™ % pihenp W pr—pr

0 If P ™LX pr with w & fn(P) then P —">= P'{y/w}.
Exercise: Show (1-3) then Theorem below. Does (2) hold for =

?
Theorem (Diamond Property)
P
Ty i
e "R
i Fy
4 *
s
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Equivalences for Am

Definition (Asynchronous Barbed Bisimilarity)

(1) Adsgnehronsus barbed Meimilorily is the largest symmetric relation
=, #uch that whenever P ==,
(a) P lyimplies G llr
(b) P = P implics ¢ ==, P
(2] P and {;l'.nrr asynchroneus barbed congruenl, P =5 Q,
if O[P] =, €] for every context € of Ar.

Definition (Asynchronous Bisimilarity)

Asgnehronsus  Haimilarity is the largest symmebric relablon, =,
such that whenever I =, Q, 3

(1) P = P and o ls Ty or F(2) or 7, then Q ==,

(2) if P =% P' then (a) Q =%=, I or

(b) @ = Q@ and P =, (¢ [Fy).

v
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Equivalences for Am

Some useful properties in Ar:

Q If P=, Qthen P=¢, Q.
Q@ x(y).x(y) = 0 (l.e., forwarders are equivalent to 0).

Exercise: Show (2).
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The 7 calculus with prefixed summations

The m-calculus prefixed summation 7> extends the 7 fragment
we've considered so far with guarded summations:

o Pi=... | X igmiPi

Reduction rule for summation

R-INTER

(ZFy.PL+ M,) | (2(2). P2 + Mz) — P, | P {¥/z}

v
Transition rule for summation
P35 P

P+Q S P

Sum-L

v
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T

The 7 calculus with blind choice: 7

In the blind-choice m-calculus, summation takes the form
Ziel T.P; .

Exercises:

O Give an encoding [] : AT*" — Ar such that [P] ~ P.

@ Show that there cannot be an encoding [-] : At> — Ar such
that [P] ~ P.
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The 7 calculus with input-choice: 7

>

In input-choice m summations takes the form ., x;(yi).P;
Encoding into Asynchronous (polyadic) 7

i xi(z). P] £ wé( PROCEED(¢)

|TL; x¢(2). (wp. f) (€lp. f) | p. (FAIL(E) | [P])
where £, p, and f are fresh and

£ (FAIL(E) | FH{=})))

PROCEED () %f

lp.f).7
FAIL (6} &' gip. /). 7.
Exercises:

@ Let & be the above encoding. Show that 3P :£(P) A, P
@ Give &' : An™ — Ar so that VP : &'(P)~, P

© Then show that £ is neither sound nor complete.
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The 7 calculus with input-choice: 7%/

Encoding into Asynchronous (polyadic) 7

B; xi(z). P)] € wi{ PROCEED(§)
|1'[ zilz). (vp. f) (€lp. f) | p. (FAIL(E)| [F3])

A F_iILf_f:l EREANN)
where £, p, and f are fresh and

PROCEED (¢) £ ¢(p.f).7
FAIL{€) L' ¢(p. /). 7.

Observations and Hints:

e Consider P =X(z) || x(y).y + w(y).0 to show E(P) 4. P

@ Note that £ and £’ act as the identity on their images. So
E(E(P)) =&(P) and E(E'(P)) = E'(P).

o However £(P) > P where ©f coupled-bisimulation.
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The 7 calculus with separate-choice: 7>°

In separate-choice summation can be >, xj(y;).Pi or Y. Xi(yi).P;

Encoding into Asynchronous (polyadic) 7

1= 7di. P} & ws ( PROCEED(s)
, | I; wa F5{d;, 5, a). (wp, f) (@p. f) | p- {P:} | 1. 0))
{2 (). @} ' vr ( PROCEED(r)
vyl g _
Ygowilz, s,0) (epy, L) Fipy f1)
pi-(epe, f2) ( Fipa. f2)
pa. ( FAIL(r)
FAIL(s)
PROCEED(a)
RCa)
f2. { PROCEED(r)
FAIL(s)
FAIL(a)
il
i (FAIL(r}) | Tilz.s.a)))))

el
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>

The 7 calculus with mixed choice: 7

In m>summations are mixed. Can we encode them using the

obvious generalization of the previous

encoding of 75 ?
e Consider P = x1(y).P1 +X2(w).Py || X1(w).Q1 + x2(y).Q2
@ How about other encodings?

Impossibility Result

Under certain reasonable restrictions, no encoding of mixed-choice
into Am can exist.
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Background: Hypergraphs

Definition (Hypergraphs)

A hypergraph is a tuple H = (N, X ¢) where N, X are finite sets whose elements
are called nodes and edges (or hyperedges) respectively, and ¢ (type) is a function which
assigns to each » € X a set of nodes, representing the nodes connected by z. We will also
use the notation 2 : ny, ..., ng to indicate t(z) = {ny,..., ng}.

Definition (Automorphism)

The concept of graph automorphism extends naturally to hypergraphs: Given a hy-
pergraph H = (N, X.,t), an automorphism on H is a pair ¢ = (on,0x) such that
ox : N =+ N and ox : X = X are permutations which preserve the type of edges,
namely for each z € X, if 2z : ny, ..., ng, then ox(z) : on(ny),...,on(ng).

A

o The orbit n € X by o is O,(n) = {n,a(n),d?(n),...,a"(n)}
where h is the least power s.t. o = id.
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Background: Hypergraphs

@ o is well-balanced iff all of its orbits have the same cardinality.

e E.g., (1) and (2) have a one with a single orbit of size 6, (4)

has none.
SENES
Q. Q. Q
Q 0] & / 0 Q O
_ ¥ .
O O O A0 O | ] 0]
O O [e]
1 2
o O  node
—  edge connecting two nodes
@ edge connecting three nodes
© © _+_ edge connecting four nodes
4
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Networks

e A (process) networkP of size k takes the form Py || ... || Px.
o A computation C of the P takes the form:

PP)|...|P. 5 PLPY...|P}
£ i ip

“5  pp|pp|...Pp

{ = )
]

@ Proj(C,i) is the contributions of P; to C: The sequence of
transitions performed by P; in C.

-1 -2 an—1 -
" " "

. B L p S pr s S eSS
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Electoral Networks

e A (process) network P of size k takes the form Py || ... || Pk.
o A computation C of the P takes the form:

PP)|...|P. 5 PLPY...|P}
£ i ip

“5  pp|pp|...Pp

{ = )
o

@ Proj(C,i) is the contributions of P; to C: The sequence of
transitions performed by P; in C.

-1 -2 “n—1 -
" " "

PR ESEPRLS . S S
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Electoral Networks in 7

@ A network P = Py || ... || Pk is an electoral system iff for
every computation C of P:

o C can be extended to a computation C’ and
o In < k (the "leader”) s.t.,

e Vi < k: Proj(C’,i) contains the action outn, and
@ no extension of C’ contains any action outm with m # n.

e The hypergraph of P, H(P) = (N, X, t) is given by:

o N={1,...,k},
o X = fn(P) — {out},
o t(x)={n | xc (P}
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Symmetric Electoral Networks in 7

@ Given P =Py || ... || Pk, let o be an automorphism on H(P).
o P is symmetric wrt o iff for each i < k,
o P(,(,-) = P,'O'.

e P is symmetric iff symmetric wrt all automorphism on H(P)

o Notice that P is symmetric wrt o then it is symmetric wrt o'

(i>1).
@ Symmetric electoral system in 7 with ring structure:
A
x
1 O+ u 1
Py = yoout 1+ Foul 0

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness



Encoding summations in A.
Expressing Power of Asynchronous Pi. Electoral Systems in 7

Symmetric Electoral Networks in Ar.

Theorem (Impossibility of electoral systems)

Let P= Py || ... || Px be a At network so that H(P) is a ring with
k > 1. Assume that P is symmetric wrt o where o has a single
orbit on H(P). Then P cannot be an electoral system.

The proof strategy involves:

© Building a computation P 5 Pl ... £ phgo that Ph s a

symmetric network for every h > 1.
@ Usind Diamond Lemma and Symmetry of P~ to build Ph.

© The symmetry cannot be broken, hence no leader can be
selected.
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Symmetric Electoral Networks in Ar.

Corollary:

o There is no encoding [-] : 7 — Ar such that

O [P Q]=T[F]I[C]

Q [Po] =[Plo

© Preservation of obervables (actions on visible channels) on
maximal computations.

Proof idea: (1) and (2) preserve symmetry and (3) distinguishes
an electoral system from a non-electoral one.
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Summary

Expressiveness Hiera

——: identity embedding
: uniform & fully abstract
: uniform & reasonable

: impossible
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Exercises and Solutions

Exercises: Non-Complete Encodings

Exercises :

@ Show that the encoding [-] : #* — 7 is not complete. .e.,
P =¢ Q does not imply [P] =°[Q].

o Take P =X(yz).0 || X(yz).0 and Q = X(yz).X(yz).0. Consider
the context K = [] || x(u).x(w).E(t).

o Are the encodings [-] : Ar — 7 by Boudol and Honda
complete wrt =¢ 7 If not, prove it.

e Boudol's as above and Honda's as above but with
P =x(y).0 || x(y).0 and Q@ = x(y).x(y).0.

@ Define a weakly compositional encoding [-] : Km# — m which
is sound wrt =¢ 7 Is your encoding complete = 7 If not,
argue why.

o Take the composite encoding Km — 7« — 7 . Notice that the
polyadic communication occur on the private channels.
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Exercises and Solutions

Exercises: Trios

A trios process is a polyadic m process whose prefixes are of the
form n’/.w.7”.0. Trios processes can encode arbitrary polyadic 7
processes [Parrow'01].

Exercise Give an encoding [] from 7° processes into 7° trios
processes so that [P]~ P .
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Exercises and Solutions

Exercises: Trios

A trios process is a polyadic m process whose prefixes are of the
form 7’.w.7".0. Trios processes can encode arbitrary polyadic 7
processes [Parrow'01].

Exercise Give an encoding [-] from 70 processes into 7 trios
processes so that [P]~ P

Solution

Definition 6. Given a CCS: process P, [P] is the trios-process (v 1)(v.7.l | [P]i)
where [P, with | & n(P), is induetively defined as follows:

[o]: = 0

[Pli= (I)(.aT | [Plv)wherel' ¢ n(P)

[P | Q=@ ")yt | [Pl | [Pl) wherel',I" ¢ n(P) Un(Q)
[Pl=  (U)UTT | '[P)y) where ' & n(P)

[(vz)Pli = (v2)[Pl:

v
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Exercises and Solutions

Exercises: Language of Processes

Exercises:
o Write a CCS! process P such that L(P) = a*c.
o P=wh(I|\(l.a]) ]| I.c)
o Write a CCS! process Q such that L(Q) = a"b".
o P =T |I'(l.a(T] u)) | I.lu.b)
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Exercises and Solutions

Exercises: Properties of Ar

In Ar the following holds:

Q If P XY P then P=x(y) | P

@ 1P ™ 2 prihenp 2 pr—pr
Q@ x(y)x(y)=% 0.
Exercise: Show (1) and (2) then Theorem below. Also show (3).

Theorem (Diamond Property for Ar)
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Exercises for Choice Operators.

In the blind-choice m-calculus, summation takes the form

Exercises:

© Give an encoding [[] : AT*" — Ar from asynchronous 7 with
blind-choice to Ar such that [P] ~ P.

@ Show that there cannot be an encoding [-] : Ar> — Ar from
asynchronous 7 with choice to Amsuch that [P] ~ P.
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Exercises for Choice Operators

Encoding into Asynchronous (polyadic) 7

[Zi #i(z). P] & vé( PROCEED (¢)
|TL z(#). (wp. f) (Elp. £} | p- (FAIL(E)| [P])
£ (FAIL(E) | F7{=))))
where £, p, and f are fresh and
PROCEED (£) %' ¢(p. f).5
FAIL(E) 2 g(p ). 7.

Exercises:

@ Let £ be the above encoding. Show that 3P :£(P) 4, P .
Q Give & : An™ — Ar so that VP : E'(P)~, P .
© Then show that £ is neither sound nor complete.

e Hint: Consider P = X(z) || x(y).¥ + w(y).0 to show
E(P) foa P

e Hint: Note that £ acts as the identity on its images. So
E(E(P)) =&(P) and E(E'(P)) = E'(P).
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