
Concurrency theory

Francesco Zappa Nardelli

INRIA Rocquencourt, MOSCOVA research team

francesco.zappa nardelli@inria.fr

together with

Frank Valencia (INRIA Futurs) Catuscia Palamidessi (INRIA Futurs) Roberto Amadio (PPS)

MPRI - Concurrency September 17, 2007

Proving theorems is easy, writing programs is hard!
Anonymous

static void copy (char[] s, int i, char[] d, int j, int len)
{

for (int k = 0; k < len; ++k)
d[j + k] = s[i + k];

}

Claim: the function copy copies len characters of s starting from offset i into d
starting from offset j.

...not quite...

1

Writing program is hard, ctd.

P_M_DERIVE(T_ALG.E_BH) :=
UC_16S_EN_16NS (TDB.T_ENTIER_16S

((1.0/C_M_LSB_BH) *
G_M_INFO_DERIVE(T_ALG.E_BH)))

Claim: this instruction multiplies the 64 bits float G_M_INFO_DERIVE(T_ALG.E_BH)
by a constant and converts the result to a 16 bit unsigned integer.

(in ADA function calls and array access share the same notation).

...unfortunately...

2

Around 1949...

“As soon as we started programming, we found to our surprise that it
wasn’t as easy to get programs right as we had thought. Debugging had
to be discovered. I can remember the exact instant when I realised that
a large part of my life from then on was going to be spent in finding
mistakes in my own programs.”

Sir Maurice Wilkes (1913 -)

3

..in 2005?

“How to ensure that a system behaves correctly with respect to some
specification (implicit ot explicit)?”

Answer: formal methods.

. . . types, constraints,
denotational semantics, abstract interpretation,

mathematical logic, concurrency,
new programming languages, . . .

4

High-level programming languages

For non-distributed, non-concurrent programming, they are pretty good. We have
ML (SML/OCaml), Haskell, Java, C#, with:

• type safety

• rich concrete types — data types and functions

• abstraction mechanisms for program structuring — ML modules and abstract
types, type classes and monads, classes and objects, ...

But this is only within single executions of single, sequential programs.

What about distributed computation?

5

Challenges (selected)

• Local concurrency: shared memory, semaphores, communication, ...

• Marshalling: choice of distributed abstractions and trust assumptions, ...

• Dynamic (re)binding and evaluation strategies: exchanging values between programs,...

• Type equality between programs: run-time type names, type-safe and abstraction-safe

interaction (and type equality within programs)

• Typed interaction handles: establishing shared expression-level names between programs

• Version change: type safety in the presence of dynamic linking. Controlling dynamic linking.

Dynamic update

• Semantics for real-world network abstractions, TCP, UDP, Sockets, ...

• Security: security policies, executing untrusted code, protocols, language based

• Module structure again: first-class/recursive/parametric modules. Exposing interfaces to other

programs via communication, ...

6

Local concurrency

Local: within a single failure domain, within a single trust domain, low-latency
interaction.

• Pure (implicit parallelism or skeletons — parallel map, etc.)

• Shared memory

— mutexes, cvars (incomprehensible, uncomposable, common)

— transactional (Venari, STM Haskell/Java, AtomCaml, ...)

• Message passing

semantic choices: asynchronous/synchronous, different synchronisation styles
(CSP/CCS, Join, ...), input-guarded/general nondeterministic choice, ...

cf Erlang [AVWW96], Telescript, Facile [TLK96,Kna95], Obliq [Car95], CML [Rep99], Pict

[PT00], JoCaml [JoC03], Alice [BRS+05], Esterel [Ber98], ...

7

Concurrency theory

Set out to understand some key concepts, reveal then essential unities, classify
the important variations, behind the wide variation of concurrent systems.

8

Nondeterminism and Interaction

Idea: represent the sequential agents of a concurrent system using automatas.

U = coin.coffe.0 M = coin.(coffe.M + tea.M)

9

From automata to CCS

Given an automata,

1. remove final (we are not primarily interested in termination) state,

2. remove initial states (assimilate processes with states, hence any state is
”initial” relative to the process).

Such an automaton deprived from initial and final states is called a

labelled transition system

or LTS for short.

10

From automata to CCS, ctd.

Definition: an LTS is given by:

• a finite set of states, P,Q, ...;

• a finite alphabet Act whose members are called actions, ranged over by µ;

• transitions between them, written P
µ−−→ Q.

11

From automata to CCS, ctd.

A LTS together with one of its states, that is, a process, can be described by the
following syntax:

P ::= Σi∈Iµi.Pi

∣∣ let ~K = ~P in Kj

∣∣ K

Conventions: empty sum denoted by 0; Σ sometimes replaced by infix +; in
practice, one writes a context of (sets of mutually recursive) definitions:

K1 = P1 . . .Kn = Pn

instead of
let ~K = ~P in Kj .

12

From automata to CCS, ctd.

In CCS
Act = L ∪ L ∪ {τ}

(disjoint union), where L is the set of labels, also called names or channels, and
τ is a silent action that records a synchronisation.

Conventions:
µ ∈ Act α ∈ L ∪ L α = α

Σi∈Iai.Pi = (Σi∈I\I0
ai.Pi) + ai0.Pi0

This notation implicitely views sums as associative and commutative – to be made explicit later.

13

Synchronisation

Consider the system composed by a customer and by the (slightly revised) vending
machine running in parallel:

coin.coffe.0
n

coin.(coffe.0 + tea.0)

The two complementary actions coin and coin can synchronise:

coin.coffe.0
n

coin.(coffe.0 + tea.0) τ−−→ coffe.0
n

coffe.0 + tea.0

Exercise: draw the automata obtained from the parallel composition U
f

M .

The parallel operator transforms two automata into a quite different one.

14

Syntax of CCS

P,Q ::= Σi∈Iµi.Pi nondeterministic sum∣∣ let ~K = ~P in Kj definitions of equations∣∣ K variable∣∣ P
f

Q parallel composition of P and Q∣∣ (νa)P scope restriction

Remark: not yet the ultimate syntax.

Synchronization trees: P ::= Σi∈Iµi.Pi

Finitary CCS: P ::= Σi∈Iµi.Pi

∣∣ P
f

Q
∣∣ (νa)P

15

Labelled operational semantics

Σi∈Iµi.Pi
µi−−→ Pi

P
µ−−→ P ′ µ 6= a, a

(νa)P
µ−−→ (νa)P ′

Pj [. . . , Ki ← let ~K = ~P in Ki, . . .]
µ−−→ P ′

let ~K = ~P in Kj
µ−−→ P ′

P
µ−−→ P ′

P
f

Q
µ−−→ P ′

f
Q

Q
µ−−→ Q′

P
f

Q
µ−−→ P

f
Q′

P
a−→ P ′ Q

a−→ Q′

P
f

Q
τ−→ P ′

f
Q′

16

Labelled operational semantics, ctd.

Exercise: draw the LTS defined by the process

let K1 = a.c.K1 and K2 = b.c.K2 in (νc)(K1

n
K2)

17

Labelled operational semantics, ctd.

• τ -transitions correspond to internal evolutions

• α-transitions correspond to interactions with the environment

In λ-calculus, one considers only one (internal) reduction: β.

It is possible to formulate internal reduction in CCS without reference to the
environment.

Price to pay: work modulo structural equivalence.

18

Structural equivalence

The structural congruence relation, denoted ≡, is defined as:

P
f

Q ≡ Q
f

P (P
f

Q)
f

R ≡ P
f

(Q
f

R)

(νa)P
f

Q ≡ (νa)(P
f

Q) if a not free in Q

Σi∈Iµi.Pi ≡ Σi∈Iµf(i).Pf(i) for f permutation

let ~K = ~P in Kj ≡ Pj [. . . , Ki ← let ~K = ~P in Ki, . . .]

19

Reduction operational semantics

The reduction relation, denoted _, is defined by the rules below.

P1 + a.P
f

Q1 + a.Q _ P
f

Q P1 + τ.P _ P

P _ P ′

P
f

Q _ P ′
f

Q

P _ P ′

(νx)P _ (νx)P ′
P ≡ P ′ _ Q′ ≡ Q

P _ Q

20

Reduction operational semantics, ctd.

Theorem. The relations _ and
τ−−→≡ coincide.

Exercise: Prove it.

Hint: the claims below are useful.

• If P
µ−−→ P ′ and P ≡ Q, then there exists Q′ such that Q

µ−−→ Q′ and P ′ ≡ Q′.

• If P
α−−→ P ′, then P ≡ (ν~a)(α.Q + P1

f
P2) and P ′ ≡ (ν~a)(P1

f
P2), for some

~a, P1, P2, Q with α 6∈ ~a.

21

Semaphores in CCS

It is easy to encode a binary semaphore in CCS:

Sem = P.V.Sem

Example:
Sem

f
P .C0;V

f
P .C1;V

_ V.Sem
f

P .C0;V
f

C1;V
_∗ V.Sem

f
P .C0;V

f
V

_ Sem
f

P .C0;V
f

0

Exercise: Encode P ;Q in CCS.

22

Scope and recursion

Consider (example due to Frank Valencia):

P1 = let K = a
n

(νa)(a.test
n

K)) in K .

Applying the rules, after on unfolding we focus on

a
n

(νa)(a.test
n

a
n

(νa)(a.test
n

K))

and we derive that P1
τ−−→ a

f
(νa)(test

f
0

f
(νa)(a.test

f
K)). Now consider

P2 = let K = a
n

(νb)(b.test
n

K)) in K

The double unfolding yields a
f

(νb)(b.test
f

a
f

(νb)(b.test)
f

K), which does
not reduce as P1.

23

Scope and recursion, ctd.

P1 = let K = a
f

(νa)(a.test
f

K)) in K

P2 = let K = a
f

(νb)(b.test
f

K)) in K

There is a tension:

• these two definitions have a different behaviour;

• the identity of bound names should be irrelevant (α-conversion).

24

Scope and recursion, ctd.

Let us α-convert the bound a in the first definition:

P3 = let K = a
n

(νb)(b.test
n

K[a← b])) in K

• K[a← b] should be a substitution (or explicit relabelling) that is delayed until
K is replaced by its actual definition;

• in (νa)P = (νy)P [x← y] the name y shoud be chosen not free for P ; but
in the example above we cannot chose y until K is unfolded;

• clean solution (definition with parameters): maintain the list of free variables
of a constant K: write K(~x) with the restriction that in let K(~x) = P in Q
we have fv(P) ⊆ ~x.

25

Scope and recursion, ctd.

Using this syntax (cf. Milner’s book on π-calculus), relabelling can be omitted
from syntax, i.e. left implicit, since e.g. K(a, b)[a← c] = K(c, b).

Exercise: Express the LTS rule for constants in this new setting.

26

The dining philosophers: the philosopher

Each philosopher is represented by a process P n,p,a, where

• n/h stands for not hungry/hungry,

• a/p for absent/present (resp. left and right fork).

P n,p,a = τ.P h,p,a + τ.P n,p,a + cl.P n,a,a

P n,a,p = symmetric

P n,a,a = τ.P n,a,a + τ.P h,a,a

P h,a,a = cl.P h,p,a + cr.P h,a,p

P h,p,a = cl.P h,a,a + cr.P h,p,p

P h,a,p = symmetric

P h,p,p = eat.P n,p,p

P n,p,p = cl.P n,a,p + cr.P n,p,a

27

The dining philosophers: linking

P h,p,a = cl.P h,a,a + cr.P h,p,p

The action cl

• stands for “give back the left fork”,

• should synchronise with the action cr realised by its neighbour process.

We can program this linking using parametrisation Pn,p,a(cl, cr), and restriction:

(νf1)(νf2)(P n,p,a(f1, f2)
n

P n,p,a(f2, f1))

Exercise: propose a linking strategy that generalises to n > 2 philosophers.

28

The dining philosophers: properties

Fairness: a hungry philosopher, or a philosopher who has just eaten, is not ignored
forever.

Progress: if at least one philosopher is hungry, then eventually one of the hungry
philosophers will eat.

We show that, at any stage, Fairness⇒ Progress.

29

By contradiction: suppose P is the state of the system in which one philospher at least is hungry,

and suppose that there is an infinite fair evolution P
τ−→∗ that makes no progress. Then:

Step 1: Eventually all philosophers hold at most one fork. No philosopher at any stage can be

in state (h, p, p), since by fairness this philosopher will eventually give one of his forks. No

philosopher at any stage can be in state (n, p, p) unless it was already in this state in P , since

the only way to enter this state is after eating. Hence all the (n, p, p) states will eventually

disappear.

Step 2: Eventually, all philosphers hold exactly on fork. This is because if one philospher had no

fork, then another one would hold two (n forks for n− 1 philosphers).

Step 3: When this happens, our philosopher is still hungry (he cannot revert to non-hungry unless

he eats), say it is in state (h, p, a), and eventually by Fairness it is his turn. The transition

(h, p, p) is forbidden. Hence he gives his fork to the left neighbour. Only a hungry philosopher

receives forks, hence the neighbour is in state (h, p, a), but then makes the transition (h, p, p)

which is also forbidden.

30

Buffers

A bidirectional 1-place communication channel:

Chan(i1, i2, o1, o2) = i1.o1.Chan(i1, i2, o1, o2) + i2.o2.Chan(i1, i2, o1, o2)

graphically represented as:

Chan

2

i
2

o
1

i
1

o

Exercise: by means of only constant application, parallel composition, and
restriction, use two copies of Chan to construct a bidirectional 2-place channel.

Exercise: do you really trust your implementation of bidirectional 2-place channel?

31

