
Lecture 10: Confluence continued

1



Termination and Local confluence

• It would be nice if we just had to consider diagrams where both
Q1 and Q2 take one step.

• By analogy with rewriting theory (Newman’s lemma), we seek
a situation where local confluence plus termination entails
confluence.

Definition

• A process P is terminating (or strongly normalising) if there is
no infinite sequence

P
τ→ P1

τ→ · · ·

• A process P is fully terminating if all its derivatives are
terminating.

2



Exercise

Consider again the process

A(a, b) = a.νc (A(a, c) | b.A(c, b))

Is the process A(a, b) (fully) terminating? Consider the cases a 6= b

and a = b.

3



Proposition (Conf 3) Let P be a fully terminating process.
Then P is confluent iff it is τ -inert and for all its derivatives Q we
have:

Q
α→ Q1 Q

α→ Q2

Q1 ≈ Q2

Q
α→ Q1 Q

β→ Q2 α 6= β

Q1
β]⇒ Q′

1 Q2
α]⇒ Q′

2 Q′
1 ≈ Q′

2

4



Proof idea

(⇒)

• If P is confluent then it is τ -inert.

• The hypotheses in (Conf 3) are particular cases of (Conf 0)
and the conclusions are the same, using τ -inertness.

5



(⇐) We show directly that the diagrams of (Conf 0) commute.

• Define P > P ′ if P reduces to P ′ by at least a τ -action.

• Because of full convergence, this is a well-founded order.

• We can show the commutation of the diagrams (Conf 0), by
induction on the well-founded order.

6



• The base case of the induction is when the process cannot
perform τ -reductions. For instance, suppose

Q
α→ Q1

τ⇒ Q2 Q
β→ Q3

τ⇒ Q4 α 6= β

– By local confluence,

Q1
β⇒ Q5 Q3

α⇒ Q6 Q5 ≈ Q6

– By τ -inertness
Q1 ≈ Q2 Q3 ≈ Q4

– By weak bisimulation

Q2
β⇒ Q7 Q5 ≈ Q7 Q4

α⇒ Q8 Q6 ≈ Q8

and by transitivity of weak bisimulation Q7 ≈ Q8.

7



• Next, let us consider a situation where the inductive hypothesis
applies. Suppose

Q
α⇒ Q1 Q

τ→ Q2
β⇒ Q3 α 6= β

• By τ -inertness, Q ≈ Q2 and therefore

Q2
α⇒ Q4 Q1 ≈ Q4

• By inductive hypothesis

Q3
α⇒ Q5 Q4

β⇒ Q6 Q5 ≈ Q6

• Since Q1 ≈ Q4, we derive that

Q1
β⇒ Q7 Q6 ≈ Q7

and by transitivity of weak bisimulation, Q5 ≈ Q7.

8



Exercise

Complete the proof by considering the remaining cases.

9



Exercise

Consider the process:

A = a.b + τ.(a.c + τ.A)

Check whether A is:

1. τ -inert,

2. locally confluent,

3. (fully) terminating.

4. determinate.

5. confluent.

10



Difference of sequences

Finally, we seek a more general definition of confluence where one
commutes sequences of actions.

• Let r, s ∈ L∗. To compute the difference r\s of r by s we scan
r from left to right deleting each label which occurs in s taking
into account the multiplicities (cf. difference of multi-sets).

(ε\s) = ε

(`r\s) =

 ` · (r\s) if ` /∈ s

r\(s1 · s2) if s = s1`s2, ` /∈ s1

• For instance
aba\ca = ba ca\aba = c

11



Exercise

Let r, s, t ∈ L∗. Show that:

1. (rs)\(rt) = s\t.

2. r\(st) = (r\s)\t.

3. (rs)\t = (r\t)(s\(t\r)).

12



A final characterisation of confluence

Proposition (Conf 4) A process P is confluent iff for all
r, s ∈ L∗ we have:

P
r⇒ P1 P

s⇒ P2

P1
s\r⇒ P ′

1 P2
r\s⇒ P ′

2 P ′
1 ≈ P ′

2

13



Proof idea

(⇐) It suffices to check that if P has property (Conf 4) then its
derivatives have it too.

• Suppose P
t⇒ Q for t ∈ L∗.

• Suppose further Q
r⇒ Q1 and Q

s⇒ Q2.

• By composing diagrams and applying (Conf 4) we get:

Q1
(ts\tr)⇒ Q′

1 Q2
(tr\ts)⇒ Q′

2 Q′
1 ≈ Q′

2

• Applying the previous exercise we derive, e.g.:

ts\tr = s\r

14



(⇒) We proceed in three steps.

1. By induction on |s| we show that:

P
τ⇒ P1 P

s⇒ P2

P1
s⇒ P ′

1 P2
τ⇒ P ′

2 P ′
1 ≈ P ′

2

2. Then, again by induction on |s|, we show that:

P
`⇒ P1 P

s⇒ P2

P1
s\`⇒ P ′

1 P2
`\s⇒ P ′

2 P ′
1 ≈ P ′

2

3. Finally we prove the commutation of diagram (Conf 4) by
induction on |r| when P

r⇒ P1

15



Exercise

Complete the proof.

16



Summary on the definitions of confluence

1. We have 5 alternative characterisations of confluence.

2. A confluent process is always τ -inert and determinate.

17



3. Having checked τ -inertness, the simplest commuting diagrams
to consider are:

Q
α→ Q1 Q

α]⇒ Q2

Q1 ≈ Q2

Q
α→ Q1 Q

β]⇒ Q2 α 6= β

Q1
β]⇒ Q′

1 Q2
α]⇒ Q′

2 Q′
1 ≈ Q′

2

18



4. Moreover, if we have (τ -inertness) and full termination, then it
is enough to consider the following diagrams:

Q
α→ Q1 Q

α→ Q2

Q1 ≈ Q2

Q
α→ Q1 Q

β→ Q2 α 6= β

Q1
β]⇒ Q′

1 Q2
α]⇒ Q′

2 Q′
1 ≈ Q′

2

19



Building confluent processes

20



Building confluent processes

Next, we return to the issue of building confluent (and therefore
determinate) processes.

Proposition If P,Q are confluent processes then so are:

1. 0, α.P .

2. νa P .

3. σP where σ is an injective substitution on the free names of P .

Proof Routine analysis of transitions (cf. similar statement for
determinacy).

21



Remark on sum

• In general, a + b is determinate but it is not confluent for a 6= b

• To have confluence, one may consider a special kind of
‘commuting sum’

(a | b).P =def a.b.P + b.a.P

22



Restricted composition

We allow a parallel composition with restriction

νa1, . . . , an (P | Q)

when:

1. P and Q do not share visible actions:

L(P ) ∩ L(Q) = ∅

2. P and Q may interact only on the names in {a}:

L(P ) ∩ L(Q) ⊆ {a1, . . . , an}

23



Proposition Confluence is preserved by restricted composition.

Proof idea

• First we observe that any derivative of νa (P | Q) will have the
shape νa (P ′ | Q′) where P ′ is a derivative of P and Q′ is a
derivative of Q.

• Since sorting is preserved by transitions, the two conditions on
sorting will be satisfied.

• Therefore, it is enough to show that the diagrams in (Conf 1)
commute for processes of the shape R = νa (P | Q) under the
given hypotheses.

24



• We consider one case. Suppose:

R
`→ νa (P1 | Q), because P

`→ P1

• Also assume:
R

`⇒ νa (P2 | Q2)

because P
s`r⇒ P2 and Q

s·r⇒ Q2 with s · r ∈ {a,a}∗ and
` /∈ {a,a}.

• Since P is confluent we have:

P
`→ P1 P

s`r⇒ P2

P1
sr⇒ P ′

1 P2
τ⇒ P ′

2 P ′
1 ≈ P ′

2

25



• Then we have that:

νa (P1 | Q) τ⇒ νa (P2 | Q2)

thus closing the diagram.

26



Exercise

Complete the proof.

27



A case study: Kahn networks

Point-to-point communication for every channel there is at
most one sender and one receiver.

Ordered buffers of unbounded capacity send is non blocking
and the order of emission is preserved at the reception.

Each thread may:

1. perform arbitrary sequential deterministic computation,

2. insert a message in a buffer,

3. receive a message from a buffer. If the buffer is empty then the
thread must suspend,

A thread cannot try to receive a message from several channels at
once.

28



Semantics (informal)

• We regard the unbounded buffers as finite or infinite words
over some data domain.

• The nodes of the networks are functions over words.

• Kahn observes that the associated system of equations has a
least fixed point.

29



• Kahn networks is an important (practical) case where
concurrency and determinism coexist. For instance, they are
frequently used in the signal processing community.

• We refer to the course of Marc Pouzet for more information
on Kahn networks and related applications.

• Our modest goal is to:

1. Formalise Kahn networks as a fragment of CCS.

2. Apply the developed theory to show that the fragment is
confluent and therefore deterministic.

30



CCS formalisation of Kahn networks

• We will work with a ‘data domain’ that contains just one
element.

• The generalisation to arbitrary data domains is not difficult,
but we would need to formalise determinacy and confluence in
the framework of CCS with values (a word on this later. . .).

• First problem: how do we model unbounded buffers in CCS?

31



Representing an unbounded buffer in CCS

A unbounded buffer taking inputs on a and producing outputs on b

can be written as (yes, you have already seen this!):

Buf (a, b) = a.νc (Buf (a, c) | b.Buf (c, b))

• We will write more suggestively a 7→ b for Buf (a, b), assuming
a 6= b.

• We have already analysed the sorting of this system:

L(a 7→ b) = {a, b}

• Moreover, this system falls within the class of confluent
processes we have considered as it relies on restricted
composition:

L(a 7→ c) ∩ L(b.c 7→ b) = ∅
L(a 7→ c) ∩ L(b.c 7→ b) ⊆ {c, c}

32



• We would like to show that a 7→ b works indeed as an
unbounded buffer.

• Let cn = c . . . c, n times, n ≥ 0.

• We should have:

P (n) = νa (an | a 7→ b) ≈ b
n

• This is an interesting exercise because:

– The process P (n) has a non trivial dynamics.

– We can prove the statement just by considering finite traces.

33



Computing the trace of P (n)

• Obviously:
tr(b

n
) = {ε, b, bb, . . . , bn}

• We have L(P (n)) = {b}, thus tr(P (n)) is a non-empty prefix
closed set of finite words over b.

• For n = 0, P (n) can do no transition.

• For n > 0 we need to generalise a bit the form of the process
P (n). Let Q(n, m) be a process of the form:

Q(n, m) = νa, c1, . . . , cm (an | a 7→ c1 | · · · | cm 7→ b)

for m ≥ 0. Note that P (n) = Q(n, 0) and Q(0, k) ≈ 0 for any k.

34



• Moreover

Q(n, m) b⇒ Q(n− 1, 2m + 1)

• Thus

P (n) b⇒ · · · b⇒ Q(0, 2n − 1) ≈ 0

• Because P (n) is confluent we can conclude that:

tr(P (n)) = tr(b
n
)

35



CCS processes representing Kahn networks

We define a class of CCS processes sufficient to represent Kahn
networks.

• Let KP be the least set of processes such that 0 ∈ KP and if
P,Q ∈ KP and α is an action then

1. α.P ∈ KP ,

2. νa (P | Q) ∈ KP provided L(P ) ∩ L(Q) = ∅ and
L(P ) ∩ L(Q) ⊆ {a,a},

3. B(b) ∈ KP if the names b are all distinct.

• We admit a recursive equation A(a) = P only if P ∈ KP .

• We admit processes that are in KP and that depend on
recursive equations of the shape above.

• It is easily checked that a 7→ b is admissible and that Kahn
processes are confluent.

36



From a Kahn network to CCS process

Suppose we have a Kahn network with three nodes, and the
following ports and behaviours where we use ! for output and ? for
input.

Node Ports Behaviours

1 ?a, ?b, ?c, !d, !e, !f A1 =?a.!d.!e.?b.?c.!f.A1

2 !b, ?d A2 =?d.!b.A2

3 !c, ?e A3 =?e.!c.A3

37



The corresponding CCS system relies on the equations for Buf plus:

A1(a, b, c, d, e, f) = a.d.e.b.c.f .A1(a, b, c, d, e, f)

A2(b, d) = d.b.A2(b, d)

A3(c, e) = e.c.A3(c, e)

The sorting is easily derived:

L(A1(a, b, c, d, e, f) = {a, b, c, d, e, f}
L(A2(b, d)) = {b, d}
L(A3(c, e)) = {c, e}

38



To build the system, we have to introduce a buffer before every
input channel. Thus the initial configuration is:

νa′, b, b′, c, c′, d, d′, e, e′

(a 7→ a′ | b 7→ b′ | c 7→ c′ | d 7→ d′ | e 7→ e′ |
A1(a′, b′, c′, d, e, f) | A2(b, d′) | A3(c, e′) )

It is easily checked that the resulting processes belong to the class
KP.

NB Via recursion, we can represent Kahn networks with a
dynamically changing number of nodes (e.g., the buffer).

39



Summary on building confluent processes

To build confluent processes we can use:

• nil and input prefix,

• restricted composition,

• injective recursive calls,

• recursive equations A(a) = P , where P is built according to the
rules above.

This class of processes is enough to represent Kahn networks.

40



Confluence in CCS with value passing

Consider the process P

P = a(b).ab

• It seems reasonable to regard P as determinate.

• However, according to a straightforward extension of the
concept of confluence to CCS with values, P is not confluent.

• Relaxation: do not require confluence for distinct input actions
with the same subject.

41



Confluence in the π-calculus

• Consider
P = νa (ba | ca)

• Again, a straightforward definition of confluence would lead us
to conclude that P is not confluent.

• One has to take into account the fact that an output may free
names bound in another output action.

42



References

• This lecture is largely based on chapter 11 of:

Robin Milner. Communication and Concurrency,
Prentice-Hall, 1989.

43



• Amazingly, this book does not refer to Kahn networks which
were introduced in:

Gilles Kahn. The semantics of a simple language for parallel
programming, IFIP Conf. on Information Processing 74,
North-Holland, 1974.

Incidentally, synchronous data flow languages such as Lustre

can be regarded as a refinement of this model.

44



• A rather complete study of the notion of confluence in the
more general framework of the π-calculus is in:

Anna Philippou, David Walker. On confluence in the
pi-Calculus. ICALP 1997: 314-324. (See also Anna
Philippou PhD thesis, University of Warwick 1996).

• This builds on the PhD thesis of Sanderson and Tofts (in
Edinburgh in the early 90’s) where notions of confluence for
CCS with value passing were proposed.

• This paper observes that full termination plus τ -inertness plus
local confluence imply confluence.

• The proof discussed here is slightly different and follows the
pattern of the classical proof of Newman’s lemma.

45



• There have been various attempts to provide static conditions
that guarantee (partial) confluence in the π-calculus. Besides
the quoted work by Philippou and Walker, two early references
are:

– Naoki Kobayashi, Benjamin C. Pierce, David N.
Turner. Linearity and the pi-calculus. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 21(5), 1999. Extended abstract in POPL
1996.

– Uwe Nestmann. On determinacy and nondeterminacy
in concurrent programming. PhD thesis, Universität
Erlangen, 1996.

• There is still space to do research on this topic!

46


