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Abstract

Valiant introduced 20 years ago V P and V NP : an algebraic ana-

logue to the classes P and NP . They are defined via non-uniform

sequences of arithmetic circuits and are especially useful to study

the complexity of polynomials families. In this paper we gather

known results and new techniques under a unifying theme, namely

the restrictions imposed upon the gates of the circuit, building a

hierarchy from formulas to circuits. As a consequence we get a

simpler proofs for known results such as the equality of the classes

V NP and V NPe, the completeness of the determinant for V QP or

the equivalence of skew and weakly skew arithmetic circuits, and

new results such as a characterisation of the classes V P and V QP

or a full answer to a conjecture of Bürgisser. We also show that for

circuits of polynomial depth and unbounded size these models all

have the same expressive power and can be used to characterize a

uniform version of V NP .

Keywords: Valiant’s theory, algebraic complexity, arithmetic circuits

Résumé

Il y a 20 ans, L. Valiant a défini des équivalents algébriques des

classes P et NP : V P et V NP . Ces classes sont définies via des

suites non uniformes de circuits arithmétiques et sont particulière-

ment utiles dans l’étude de la complexité des suites de polynômes.

Dans cet article nous utilisons des restrictions sur la structure des

circuits pour présenter de manière unifiée des résultats connus ainsi

que de nouvelles techniques et résultats.

Mots-clés: théorie de Valiant, complexité algébrique, circuits

arithmétiques



CHARACTERIZING VALIANT’S ALGEBRAIC COMPLEXITY

CLASSES

GUILLAUME MALOD AND NATACHA PORTIER

Abstract. Valiant introduced 20 years ago an algebraic analogue to the classes P and
NP. The classes VP and VNP are defined via non-uniform sequences of arithmetic
circuits and are especially useful to study the complexity of polynomial families. In this
paper we gather known results and new techniques under a unifying theme, namely the
restrictions imposed upon the gates of the circuit, building a hierarchy from formulas
to circuits. As a consequence we get a simpler proofs for known results such as the
equality of the classes VNP and VNPe, the completeness of the determinant for VQP
or the equivalence of skew and weakly skew arithmetic circuits, and new results such
as a characterization of the classes VP and VQP or a full answer to a conjecture of
Bürgisser [Bür00]. We also show that for circuits of polynomial depth and unbounded
size these models all have the same expressive power and can be used to characterize a
uniform version of VNP.

1. Introduction

Circuits play an important part in complexity theory. Boolean circuits have been used
to characterize several of the most important complexity classes. Arithmetic circuits
provide an efficient representation of polynomials, and results by Kaltofen [Kal86] and
von zur Gathen [vzG87] show that standard symbolic manipulations can be applied to
these polynomials. Arithmetic circuits have also surfaced in recent results. Kabanets and
Impagliazzo [KI03] link the de-randomization of Polynomial Identity Testing with super-
polynomial arithmetic circuit lower bounds for the Permanent. Arithmetic circuits can also
be Boolean inputs and define new problems with interesting consequences in complexity,
as is shown by [ABKPM04], where the problem of deciding whether an arithmetic circuit
computes a positive number is related to numerical analysis.

In this paper we will focus on the classes introduced by Valiant [Val79, Val82] and defined
via arithmetic circuits. Their definition is very simple so that the combinatorial insights
are unfettered by computational details (definitions are given in section 2). Moreover the
reductions used are low level (p-projections, as used for example in [IL95]), thus retaining
the algebraic character of problems. The completeness of the Permanent for the class
VNP, the most famous result in this theory, is comparable to its completeness for ♯P,
yet avoids having to deal with integers or Boolean matrices and encodings. It shows the
completeness of the permanent in a very strong sense.

We stress this combinatorial aspect by introducing restrictions on circuits to give a
characterization of the class VP (theorem 1) and of the class VQP (theorem 3), defined
to capture the complexity of the Determinant. The characterization of VP yields a simple
and intuitive proof of one the main steps in the completeness proof of the Permanent,
namely the equivalence of circuits and formulas under a Boolean sum. The characterization
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of VQP yields a full answer to a conjecture by Bürgisser [Bür00] stating that several
operations of linear algebra are VQP-complete (theorem 6). The techniques used to study
the class VQP are in fact similar to those used by Toda [Tod92]. We import his definition
of a class capturing the complexity of the Determinant and suggest that it is better suited
to the task than VQP. We show that by defining this class via weakly skew circuits,
following a different order and proving a generic universality lemma we can get simpler
proofs, for instance for the equivalence of skew and weakly skew circuits. We finally use
similar circuit techniques to characterize a uniform version of VNP (theorem 10). We try
to give the intuition behind the proofs, while technical details are omitted or left to the
appendix.

2. Basic definitions

Valiant’s complexity classes revolve around the representation of polynomials over a
given field by arithmetic circuits. These polynomials are abstract, in the sense that they
are defined by the sequence of their coefficients. One should remember to distinguish
polynomials in this sense from polynomial functions, which are the functions defined by
polynomials over a field. More details about Valiant’s theory can be found in [vzG87]
and [Bür00].

Definition 1. An arithmetic circuit is a finite acyclic directed graph with vertices of
in-degree 0 or 2 and exactly one vertex of out-degree 0. Vertices of in-degree 0 are called
inputs and labeled by a constant or a variable. The other vertices, of in-degree 2, are
labeled by × or + and called computation gates. We distinguish left and right arguments
to a computation gate (i.e. our graph is implicitly labelled on the arrows). The vertex of
out-degree 0 is called the output. The vertices of a circuit are commonly called gates and
its edges arrows.

The polynomial represented by a circuit can easily be defined by induction. Circuits
represent a computation where one can reuse partial results. If we do not allow this, that
is if we require each argument to be computed especially for a given computation step,
then the graph underlying the circuit must be a tree. Such circuits are called expressions,
arithmetic terms or formulas (we shall use the latter).

Definition 2. The size of a circuit is its number of gates. The depth is the maximal
length of a directed path from an input to an output. The degree of a gate is defined
recursively: any input is of degree 1; the degree of a + gate is the max of the incoming
degrees; the degree of a × gate is the sum of the incoming degrees. The degree of the
circuit is the degree of its output gate.

As usual in complexity theory we are interested in asymptotics, in this case the growth of
the size of the circuits representing a sequence of polynomials. We give here the definitions
of Valiant’s classes and the reductions used. Note that the classes depend on a chosen
field, but as we are interested in combinatorial techniques this will almost never play a
role in this paper.

Definition 3. A sequence of polynomials (fn) belongs to VP if there exists a sequence of
circuits Cn of polynomially bounded size and degree such that Cn represents fn.
A sequence of polynomials (fn) belongs to VNP if there exists a polynomial p and a
sequence gn ∈ VP such that fn(x̄) =

∑

ǭ∈{0,1}p(|x̄|) gn(x̄, ǭ).

A polynomial f is a projection of a polynomial g if f(x̄) = g(a1, . . . , am), where the ai

are elements of the field or variables among x1, . . . , xn. A sequence (fn) is a p-projection
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Figure 1. A multiplicatively disjoint circuit

of a sequence (gn) if there exists a polynomially bounded function t(n) such that fn is a
projection of gt(n) for all n.

It is obvious that VP is included in VNP. Valiant’s hypothesis is that this inclusion
is strict; it remains a major open problem of complexity theory. The definition of VP
given here bounds both the degree and the size of the circuit representing a polynomial.
The definition in [Bür00] bounds the degree of the represented polynomial and the size of
the circuit. One can show that these definitions are equivalent. The following classes are
defined using formulas in place of circuits and play an important part in the completeness
proof of the permanent.

Definition 4. A sequence of polynomials (fn) belongs to the class VPe if there exists a
sequence of formulas Fn of polynomially bounded size such that Fn represents fn.
A sequence of polynomials (fn) belongs to VNPe if there exists a polynomial p and a
sequence gn ∈ VPe such that fn(x̄) =

∑

ǭ∈{0,1}p(|x̄|) gn(x̄, ǭ).

The main result in Valiant’s theory is the completeness of the Permanent family of poly-
nomials for the class VNP, over fields of characteristic different from 2. The permanent of
a matrix of size n with variables entries zi,j is defined as PERn(zi,j) =

∑

σ∈Sn

∏n
i=1 zi,σ(i).

In this definition, Sn is the group of permutations of {1, . . . , n}. This result stands in stark
contrast to the fact that the Determinant family belongs to the class VP. The determinant
is defined as the permanent but with positive and negative monomials depending on the
sign s(σ) of the permutation: DETn(zi,j) =

∑

σ∈Sn
s(σ)

∏n
i=1 zi,σ(i).

3. Characterizing VP

Whereas the class VNP captures the complexity of the Permanent and many other
problem, there is no natural complete problem for the class VP, which is still not very well
understood. We give here an intuitive characterization which we hope may provide better
insight. For this purpose we introduce the following definition, exploiting the interplay
between circuits and formulas in Valiant’s theory.

Definition 5. Let α be a gate receiving arrows from gates β and γ. We say that α is
disjoint if the sub-circuits associated to β and γ are disjoint from one another. A circuit
is multiplicatively disjoint (MD) if all its multiplication gates are disjoint.

The circuit in figure 1 is multiplicatively disjoint, as shown by the depiction of its multi-
plication gates and their respective sub-circuits. One can see MD circuits as intermediate
between formulas and circuits. A circuit is a formula if and only if all its gates are disjoint.
A multiplicatively disjoint circuit behaves like a formula for multiplications. Disjoint mul-
tiplications can be seen as a way to control the degree of the polynomial computed by a
circuit, which links this technique to the retarded multiplication scheme used in [BF91]
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Figure 2. A circuit and its parse trees

to characterize the class ♯P. However it also provides combinatorial information which we
will use in the next section. Let us now show that multiplicatively disjoint circuits enable
us to characterize VP.

Theorem 1. A sequence of polynomials (fn) belongs to VP if and only if there exists a

sequence (Cn) of multiplicatively disjoint circuits, of polynomially bounded size, such that

Cn represents the polynomial fn.

This theorem is an obvious consequence of lemma 1 and 2 below, the first of which can
be shown by an easy induction on the size of the circuit while the second is proved in
appendix A. The basic idea is comparable to the näıve transformation of a circuit into a
formula by duplicating gates, however the degree of the circuit turns out to be a bound on
the number of copies needed for a given gate, so that we avoid a potentially exponential
growth in size.

Lemma 1. If C is a multiplicatively disjoint circuit of size t, its degree is less than t.

Lemma 2. If C is a circuit of size t and degree d, there exists a multiplicatively disjoint

circuit C ′, which computes the same polynomial and whose size is less than dt.

Thus our characterization of VP uses circuits which seem to be the middle ground
between formulas and circuits. It is therefore not so surprising that we should be able to
use this characterization to compare the expressive power of both models.

4. Formulas and circuits

One major open question is whether circuits are more powerful than formulas at the
polynomial level, i.e. whether the inclusion VPe ⊆ VP is strict or not. The first step of
the completeness proof of the Permanent is to show that under a Boolean sum formulas
and circuits have the same power. A technically involved proof of this can be found for
example in [Bür00]. We use our characterization of VP to give a simpler and more intuitive
proof.

Theorem 2. VNP = VNPe over any field.

The inclusion VNPe ⊆ VNP is obvious. It is easy to see that, in order to prove the
inclusion VNP ⊆ VNPe, we need only prove the inclusion VP ⊆ VNPe. We therefore need
to express the polynomial represented by a circuit as a sum of formulas. For a given circuit
we will consider graphs called parse trees. These graphs appear under different names in
several previous works [JS82, VT89, Ven92, AJMV98, Mal03]. We will use them in the
context of arithmetic circuits, in the spirit of this quote from [JS82]: a parse tree is “a
family tree which charts the generation of a particular monomial in the final result”.
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Figure 3. The parse trees of the circuit from figure 1

Definition 6. The set of parse trees of a circuit C is defined by induction on it size:

• If C is of size 1 it has only one parse tree, itself.
• If the output gate of C is a + gate whose arguments are the gates α and β, the

parse trees of C are obtained by taking either a parse tree of Cα and the arrow
from α to the output or a parse tree of Cβ and the arrow from β to the output.

• If the output gate of C is a × gate whose arguments are the gates α and β, the
parse trees of C are obtained by taking a parse tree of Cα and a parse tree of a
disjoint copy of Cβ and the arrows from α and β to the output.

We may also describe parse trees in the following manner. If C is a multiplicatively
disjoint circuit, a graph T is an expansion of C if the following conditions are met:

(1) T is a sub-graph of C which contains the output gate of C.
(2) If α is a multiplication gate in T receiving arrows from gates β and γ in C, then

the arrows (β, α) and (γ, α) both also appear in T .
(3) If α is an addition gate in T , it receives exactly one arrow in T .
(4) Only arrows and gates obtained in this way belong to T .

Figure 2 gives an example of a circuit and its parse trees. Each parse tree is identified
with a monomial by computing the product of the values of the input gates. It turns out
that the polynomial computed by the circuit is thus the sum of the values of its parse
trees. This is true in general, and can easily be shown by induction. We write PT(C) for
the set of parse trees of a circuit C and val(T ) for the value of parse tree T .

Lemma 3. If C represents the polynomial f then f(x̄) =
∑

T∈PT(C) val(T ).

To prove the inclusion VP ⊆ VNPe we thus wish to write a polynomial in VP as a sum
of formulas. We can use the previous lemma, but we need to show that we can indeed
sum over all parse trees and compute the value of a parse tree. In other words we will in
fact sum over all possible Boolean words of a given length, as in the definition of VNPe,
therefore we need to have a formula to recognize when a word encodes a parse tree and to
compute its value. This task is easier for MD circuits, thanks to the following proposition,
which is not hard to prove (remember that we distinguish left and right arguments of a
gate).

Proposition 1. A circuit C is multiplicatively disjoint iff any parse tree of C is a sub-

graph of C.

For instance, figure 3 gives the parse trees of the circuit from figure 1 and one can see
that they are sub-graphs of the circuit. McKenzie, Vollmer and Wagner study in [MVW00]
the notion of parse trees (which they call proof trees) and the associated notion of proof
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Figure 4. A weakly skew circuit

circuits, defined as sub-circuits satisfying conditions (1)–(4) above. They study the com-
plexity of counting trees versus counting circuits. In their setting, one can see MD circuits
as the circuits whose sets of parse trees and proof circuits are equal.

The useful implication for us is that in the case of MD circuits all parse trees are sub-
graphs. And since the circuit is of polynomial size, it is straightforward, if somewhat
tedious, to recognize and compute the value of the parse trees of a circuit with a formula.
This is done in appendix B.

5. The complexity of the determinant

5.1. The class VQP. The Determinant family is known to belong to the class VP. How-
ever it is not known to be VP-complete, nor is it thought to be. The class VQP, defined
via circuits of quasi-polynomial size, was introduced to further study the complexity of
the Determinant. Indeed one can find proofs of completeness of the Determinant for VQP
in [vzG87, Bür00]. We give here a simple proof using a stronger restriction on multipli-
cations than the one used to characterize VP. Note that the notion of reduciton is also
changed in the definitions below.

Definition 7. A function t from N to N is quasi-polynomially bounded if there exists two

constants a and b such that t(n) ≤ na·logb n for all n ≥ 2.
A sequence of polynomials (fn) belongs to the class VQP if its number of variables and
degree is polynomially bounded and if it is represented by a circuit of quasi-polynomially
bounded size.
A sequence (fn) is a qp-projection of a sequence (gn) if there exists a quasi-polynomially
bounded function t such that for all n fn is a projection of gt(n)

The proof given in [Bür00] relies on a parallelization lemma [VSBR83] which states
that a circuit of size s and degree d in n variables can be parallelized to produce a circuit
of size O(d6s3) and depth O((log ds) log d + log n). A stronger version of MD circuits
was used in [Mal03] to prove the same completeness result without the need to parallelize.
These so-called strongly multiplicatively disjoint circuits are in fact the weakly skew circuits
of [Tod92]. This last work is extremely relevant to the complexity of the Determinant in
Valiant’s setting and it is surprising that this has not been noticed before. Much as
MD circuits give us more information than the retarded programs of Babai and Fortnow,
weakly skew circuits provide the necessary structural information when compared to the
restricted programs introduced by Damm [Dam91]. Recall that a circuit is skew if all
multiplications gate have at most one argument which is not an input gate. The condition
is somewhat relaxed for weakly skew circuits.

Definition 8. A circuit is weakly skew if for any multiplication gate α, receiving arrows
from gates β and γ, one of the two sub-circuits Cβ or Cγ is only connected to the rest of
the circuit by the arrow going to α.
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Formulas are circuits where arguments cannot be re-used, weakly skew circuits demand
that at least one of the two arguments of a multiplication gate be computed just for that
gate. Figure 4 gives an example of a weakly skew circuit and shows the independent
argument of each multiplication gate. Weakly skew circuits characterize VQP.

Theorem 3. A sequence of polynomials (fn) belongs to VQP if and only if there exists a

sequence (Cn) of weakly skew circuits, of quasi-polynomially bounded size and polynomially

bounded degree, such that Cn represents the polynomial fn.

Note that if one defines the class VQP with a quasi-polynomial bound on the degree
instead of a polynomial bound, then the characterization is exact (we can omit the poly-
nomial degree restriction). All the completeness results for VQP as defined above would
hold for such a class. The previous theorem is a consequence of the following lemma,
whose proof is given in appendix C.1.

Lemma 4. If C is a circuit of size t and degree d, there exists a weakly skew circuit

computing the same polynomial and of size less than tlog d.

The classical proof of the completeness of the Determinant is to show a so-called uni-
versality property for formulas, namely that a the polynomial computed by a formula s
is a projection of the Determinant or the Permanent of a matrix of size polynomial in s.
This is shown by building weighted graphs with adequate properties. Let G be an edge-
weighted directed graph with two vertices s and t, the weight of a path from s to t is the
product of the weights of the edges appearing in the path. The weight of (s, t) in G is the
sum of the weights of all paths from s to t. To prove the universality lemmas one starts by
building a graph whose weight is the polynomial computed by a formula (cf. [Bür00] for
example). We show here that the same construction can be done for weakly skew circuits.

Lemma 5. Let C be a weakly skew circuit of size m, there exists an acyclic directed graph

G, with two distinguished vertices s and t, such that: G is of size m + 1 and the weight of

(s, t) in G is the polynomial computed by C.

The complete proof of the lemma is given in appendix C.2. When proving the lemma
for formulas, one can build the graph by induction in the following manner, illustrated
in figure 5: an input gate becomes an edge weighted with the corresponding variable or
constant; for an addition gate we place the graphs corresponding to the arguments in
parallel; for a multiplication gate we place them in series. Going from a formula to a
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weakly skew circuit one must strengthen the property being proved so that it applies to
circuits with multiple output gates. Therefore we wish to build a graph which has a vertex
tα for several gates α in the circuit such that the weight of the graph between s and tα
is the polynomial represented by α. The induction steps above still work except that by
placing the circuits in series when we multiply we may change the weight of the gates of
the second circuit. The weakly skew condition guarantees that we will not need the values
of these gates later in the circuit, so that the construction goes through. Indeed, one can
see weakly skew circuits as the most expressive circuits for which this construction can
work, in the sense that any polynomial which is the weight of a graph of size s can be
computed by a weakly skew circuit of size polynomial in s (this is a consequence of the
completeness results which follow). From this construction we can show the universality
of the Determinant for weakly skew circuits (cf. appendix C.3).

Lemma 6. If f is a polynomial computable by a weakly skew circuit of size m, f is a

projection of DETm+1.

From this lemma and the fact that the Determinant is in VP and therefore in VQP one
can show the completeness of the Determinant.

Theorem 4. The Determinant is VQP-complete over any field.

This gives us the following algebraic characterization of whether VNP is included in
VQP, as noted in [vzG87] (it is shown in [Bür00] that VQP is not included in VNP).

Theorem 5. VNP ⊆ VQP iff the Permanent is a qp-projection of the Determinant.

Now consider the families of polynomials (Fn), (Gn) and (Hn) defined by Fn = Tr(Xn),
Gn = Tr(X1 · · ·Xn) and Hn = Tr(DET(X) ·X−1), where Tr is the trace, and X or Xi are
matrices with n2 variables. The same technique can be used to show their completeness
for VQP. One just needs to show a universality result and that they can be computed by
weakly skew circuits of quasi-polynomial size. We will only mention the steps for (Fn),
since it is the case missing from [Blä01], which gives a partial answer to the conjecture.
It is easy to show from the inductive definition that matrix powering can be computed by
weakly skew circuits, in fact one can show a stronger result using skew circuits (cf. [Tod92]).
To show universality we use the generic construction of lemma 5 and then modify the
resulting graph. The construction is much more involved than for the Determinant and
is given in appendix C.5. The construction can be simplified if we just want to prove the
completeness of computing the (1, 1)-coefficient of the power of a matrix, and this would
be our choice because the universality of matrix powering will be used later to show the
equivalence of skew and weakly circuits. As it is we show the more result with the trace
to answer Bürgisser’s conjecture.

Lemma 7. If f is a polynomial computable by a weakly skew circuit of size m, f is a

projection of F2m+3 or F2m+5.

The following theorem is thus a positive answer to conjecture 8.1 from [Bür00].

Theorem 6. The families (Fn), (Gn) and (Hn) are VQP-complete over any field.

5.2. The class VDET. We have already said that [Tod92] gives an excellent account of
the complexity of the Determinant, which can be immediately transposed into Valiant’s
setting. In fact, Toda defines the very natural class DET(poly) of polynomial families
which can be expressed as the determinant of a sequence of matrices (with variable or
constant entries) of polynomially bounded size. This class is shown to be characterized
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by skew arithmetic circuits, and equivalently by weakly skew arithmetic circuits. Let us
rename this class VDET in Valiant’s framework and define it directly by weakly skew
circuits.

Definition 9. A sequence of polynomials (fn) belongs to the class VDET if it is repre-
sented by a sequence of weakly skew circuits of polynomially bounded size.

This class is a much more natural candidate to capture the complexity of the Determi-
nant than VQP. The previous universality lemma together with a computation by weakly
skew circuits (cf. appendix C.4) gives us a natural proof of the completeness of the Deter-
minant. Note that this completeness is under standard p-projections, which is one reason
we suggest this class be preferred to VQP.

Theorem 7. The sequence (DETn) is VDET-complete over any field.

Defining VDET via weakly skew circuits puts it naturally between VPe and VP. The
proof of completeness for the Determinant is easier because it is simpler to show that it can
be copmuted by weakly skew circuits than skew circuits. Moreover, if we follow this order,
we can use the completeness of matrix powering for VDET (same proof strategy as for
VQP), to get an immediate proof of the characterization of this class by skew arithmetic
circuits, thus avoiding the more technical constructions in [Tod92]. Indeed, any family in
VDET is a p-projection of (Fn). As noticed before, (Fn) can be computed by sequences of
skew circuits of polynomial size. The strict nature of p-projections thus yields polynomial
size skew circuits for any family in VDET, including the Determinant. One can also show
the VDET-completeness of the families (Gn) and (Hn).

Theorem 8. The families (Fn), (Gn) and (Hn) are VDET-complete over any field.

Proposition 2. A sequence of polynomials (fn) belongs to the class VDET if it is repre-

sented by a sequence of skew circuits of polynomially bounded size.

We also get an algebraic characterization of a weaker form of Valiant’s hypothesis.

Theorem 9. The permanent is a p-projection of the determinant iff VDET = VNP.

To summarize, we have considered the increasing expressive power of the following
sequence of models, when the size is polynomially bounded: formulas, skew circuits, weakly
skew circuits, MD circuits. One of the reason VQP was considered a “good” class is that
if we allow a quasi-polynomially bounded size, all these classes are equal (cf. [vzG87]).
This is also the case if we polynomially bound the depth rather than the size. And, as we
shall see in the next section, in the uniform case the resulting class characterizes VNP.

6. Characterizing VNP

The title of this section is a bit misleading as we will be characterizing a uniform version
of VNP. We wish to compare the respective expressive power of Boolean sums in front of a
circuit of polynomial size and degree (VNP) on the one hand and of circuits of polynomial
depth and degree on the other. This is related to the characterization of ♯P via circuits of
polynomial depth and degree in [Ven92]. We will show that a similar theorem holds for a
uniform version of Valiant’s algebraic classes.

At the non-uniform level it is easy to see that circuits of polynomial depth and degree are
at least as powerful as VNP. Indeed a sequence in VNP is defined from a sequence in VP
which is represented by circuits of polynomial size and degree, and therefore polynomial
depth and degree. By computing in parallel all the values of these circuits for all Boolean
strings of appropriate length and then summing, we get a circuit of polynomial depth
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and degree. The summation can be done in polynomial depth because there is a simply
exponential number of gates to sum.

For the converse we would like to express the polynomial computed by a circuit of
polynomial depth and degree as a sum of the values of a circuit of polynomial size and
degree. This sounds eerily similar to saying that the value of the circuit is the sum of the
values of its parse trees. Except that now there is no polynomial bound on the size of our
original circuit. However, as noticed in [Ven92], the constraints on depth and degree give
us a constraint on the size of the parse trees.

Lemma 8. If C is a circuit of depth p and degree d, any parse tree of C is of size less

than pd.

Thus a circuit of polynomial size and degree has parse trees of polynomial size. In fact
this characterizes such circuits, because if all the parse trees of a circuit are of size bounded
by t, then by computing all the values of the parse trees in parallel and adding the results
we get a circuit of depth 2t and degree t; in the case of parse trees of polynomial size
this means we get a circuit of polynomial size and degree. Note that we can also obtain
in this manner a formula of polynomial depth and degree so that, as mentioned at the
end of section 5, the different restrictions imposed on circuits all have the same power for
polynomial depth and degree.

Let us go back to the converse inclusion. We know that the polynomial represented by a
circuit of polynomial depth and degree is the sum of the values of its parse trees, which are
of polynomial size and in simply exponential number. Thus the polynomial represented
is a sum of simply exponential number of monomials. However to show that it is in VNP
we need to be able to recognize efficiently whether a Boolean string encodes a parse tree
or not. This does not seem true for non-uniform sequences of circuits of polynomial depth
and degree in general (we will return to this point later). By adding a uniformity condition
we can get exactly what we need. We will use the condition given in [Ven92]. Define the
direct connection language of a sequence of circuits Cn as the set of strings of the form
〈n, g, y, p〉 such that either (i) g is an addition gate in cn and y is an input of g, or (ii) g is
a multiplication gate in cn and y is a left or right input of g depending on p, or (iii) g is a
gate name in cn and y is the type of g. A sequence of circuits Cn is DLOGTIME-uniform
if its direct connection language can be recognized by a deterministic Turing machine in
time logarithmic in the size of the circuits. In our case, with circuits of exponential size,
it means that we can get information on an arrow or a gate in polynomial time.

Let us now define the uniform classes we have mentioned. For Valiant’s classes, unifor-
mity is the most common notion, meaning that the circuit Cn is produced by a Turing
machine in polynomial time upon input of n in unary.

Definition 10. A sequence of polynomials is in the class VPu if it is represented by a
P-uniform sequence of circuits of polynomial size and degree.

A sequence of polynomials (fn) belongs to VNPu if there exists a polynomial p and a
sequence gn ∈ VPu such that fn(x̄) =

∑

ǭ∈{0,1}p(|x̄|) gn(x̄, ǭ).

Theorem 10. A sequence of polynomials (fn) belongs to VNPu iff it can be represented

by a DLOGTIME-uniform sequence of circuits of polynomial depth and degree.

The proof of this theorem follows the sketch given above. The remainder is technical
details which we will not give here. Note the similarity of this characterization with the
characterization of ♯P by Venkateswaran [Ven92]. In both cases the class characterized
is uniform. In our description of the proof strategy we emphasize the role played by
uniformity. What happens in the non-uniform case?
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We will use a converse of Valiant’s criterion (cf. [Bür00]) to sketch an answer to this
question. Valiant gave a criterion for showing that specific sequences of polynomials belong
to VNP, the rough idea being that sequences whose coefficient function is in ♯P/poly belong
to VNP. One can show a converse of this theorem by using the coefficient function (we
will not give details here, this is noted in [Pér04] and can be proved using techniques
in [Mal03]). Such a converse states that if we have a family of functions (fn), where

fn : {0, 1}n →
[

0, . . . , 2p(n)
]

, and if we define gn(x1, . . . , xn) =
∑

ǭ∈{0,1}n fn(ǭ) xǫ1
1 · · · xǫn

n ,

then (gn) ∈ VNP implies (fn) ∈ ♯P/poly .
Now suppose that the characterization of VNPu holds in the non-uniform case. Consider

any sequence of functions (fn), with fn : {0, 1}n →
[

0, . . . , 2p(n)
]

. View this sequence as
the coefficient function of a polynomial sequence gn(x̄) =

∑

ǭ fn(ǭ)xǫ1
1 · · · xǫn

n .
We can compute in polynomial depth these monomials and the integer coefficients and

just sum them, so that the sequence (gn) can be computed by a sequence of circuits of
polynomial depth and degree. If the hypothesis is true in this non-uniform case, then
(gn) belongs to VNP. Thus (fn) belongs to ♯P/poly . This would show that counting with
polynomial advice is more powerful than any integer function.

7. Conclusion

We have shown in this paper that different classes in Valiant’s framework can be de-
fined via a hierarchy of circuits of polynomial size, from formulas to weakly skew circuits
to multiplicatively disjoint circuits, and that all these restrictions become equivalent for
polynomial depth (in the uniform case) and define the class VNP. These characterizations
came with new results and new proofs of old results. In our view, one important aim of
this paper is to bring attention to the work of Toda [Tod92] and suggest the adoption of
the class VDET.

To stress the importance of this class we could like to find other complete polynomi-
als. For any polynomial family which is shown to be in VP we should check if one can
show that it is in VDET and complete. For instance the generating function of trees
(cf. [Bür00] chapter 3) is reduced to the Determinant and thus belongs to VDET. It
would be interesting to know whether it is complete.

As for the characterization of VP, it could help us find a natural complete problems. If
we were in the Boolean setting we would have MD circuit value as a complete problem, but
in Valiant’s framework it is more complicated. We would need a “universal” MD circuit.
One can be built ad hoc from the VP-complete polynomial family given in [vzG87] or
in [Bür00] by applying lemma 2, but that is not a natural family of polynomials. Perhaps
one could use the fact that the parse trees of MD circuits are sub-graphs of the circuit.

One last obvious question is the separation of VP and VDET, or in other words whether
an MD circuit can be transformed into a weakly skew circuit without an exponential
blow-up in size. If the answer is positive, then the classes VP and VDET are equal, the
determinant is VP-complete, and interestingly the theorem stating that VNP = VNPe is
not necessary to prove the completeness of the permanent, thus considerably simplifying
the proof. On the other hand, if sequences in VP do not admit sequences of weakly skew
circuits of polynomial size, than the classes VPe and VP are distinct, an answer to a major
open question, and the determinant is not VP-complete. Thus the restrictions imposed
on multiplications seems to be a crucial point to investigate in order to better understand
Valiant’s complexity classes, although answers to the above questions will be hard to come
by.
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Appendix A

Proof of lemma 2. As will happen in several other proofs, we allow circuits to have
several output gates. We shall build a sequence of multiplicatively disjoint circuits Cf ,
with f ranging from 1 to d such that for any gate α of C which is of degree e less than f
the following conditions hold:

• Cf has gates α1, . . . , αd+1−e which compute in Cf the polynomial computed by α
in C; gate αk is called the clone of α of index k.

• the gates in the sub-circuit of Cf associated with the clone αk are clones whose
index lies between k and k + e − 1 included.

Circuit C1 is made of d copies of the sub-circuit of C containing only gates of formal
degree 1. Therefore it does not contain any multiplication gate and is thus multiplicatively
disjoint. Each gate α of C of degree 1 has d clones and the gates of the sub-circuit
associated with αk are clones of index k = k + 1 − 1. The aforementioned conditions are
met.

Suppose now that the circuits Cf have been built up to e − 1. We start by adding
multiplication gates. Let α be a multiplication gate in C of degree e, receiving arrows
from gates β and γ of degree e1 and e2 respectively (with e = e1 + e2). We add the clones
α1, . . . , αd+1−e. For i ranging from 1 to d + 1 − e, αi receives an arrow from the clone βi

and an arrow from the clone γi+e1 of Ce−1 (these clones exist because 1 ≤ i ≤ d+1−e and
e1 +1 ≤ i+ e1 ≤ d+1− e2). Since each clone of β in Ce−1 computes the same polynomial
as β in C, and similarly for γ, each clone of α in Ce−1 computes the polynomial computed
by α in C. In order to show that the resulting circuit is multiplicatively disjoint, one need
only check that each gate αi is disjoint. But the gates in the sub-circuit associated with
βi are clones whose index lies between i and i+e1−1 and that the gates in the sub-circuit
associated with γi+e1−1 are clones whose index lies between i + e1 and i + e1 + e2 − 1.
The two sub-circuits which send an arrow to αi are therefore disjoint. Finally one can
check the last required property: the sub-circuit associated with αi is the union of the
sub-circuit associated with βi with the sub-circuit associated with γi+e1−1. The gates are
therefore clones of index ranging from i to i + e1 + e2 − 1 = i + e − 1.

We then add the addition gates, following an order such that when we clone a gate,
each gate from which it receives an arrow has already been cloned. Let α be an addition
gate in C of degree e, receiving arrows from gates β and γ of respective degree e and e′

(with e′ ≤ e). We add the clones α1, . . . , αd+1−e. For i ranging from 1 to d + 1 − e, αi

receives an arrow from the clone βi and an arrow from the clone γi. Since we are adding
an addition gate, the circuit stays multiplicatively disjoint. Each clone of α computes the
adequate polynomial. And the gates of the sub-circuit associated with αi are clones whose
index lies between i and i + e − 1, because e′ is less than e.

Let C ′ be the associated sub-circuit for the output gate of C in Cd. By construction
this circuit is multiplicatively disjoint and computes the same polynomial as C. Each gate
in C has been cloned at most d times, so the size of C ′ is less than dt.

Appendix B

End of the proof of VNP = VNPe. Let us label the gates of C with the numbers from 1
to t. We then partition the set {1, 2, . . . , t} in three sets I, M , A which respectively contain
the labels for input gates, multiplication gates and addition gates and let us suppose that
t labels the output gate. For i in E, let Vi be the variable for the input gate i. a parse
tree D shall be encoded by the variables ai,j for i and j ranging from 1 to t and such that
the arrow (i, j) belongs to C, with the idea that this variable is 1 if the arrow (i, j) is in
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D and 0 otherwise, and by the variables pi for i raging from 1 to t, this variable being 1
if gate i is in D and 0 otherwise.

We shall compute the product of the following polynomials, each being used to meet
one of the requirements in the definition of a parse tree of a circuit.

We start by demanding that if an arrow is in D then the gates it links must belong to
D:

∏

(i,j)∈C

(ai,jpipj + 1 − ai,j).

(i) To ensure that D contains the output gate of C:

pt.

(ii) To ensure that for any multiplication gates in D, both arrows it receives are also in
D:

∏

i∈M and j,k such that
(j,i)∈C and (k,i)∈C

(piaj,iak,i + (1 − pi)).

(iii) To ensure that for any addition gate in D, it receives exactly one arrow in D:
∏

i∈A and j,k such that
(j,i)∈C and (k,i)∈C

( pi (aj,i(1 − ak,i) + ak,i(1 − aj,i)) + 1 − pi ).

(iv) To ensure that any gate in D which is not the output gate sends at least one arrow
toward another gate in D (do note that if a sub-graph of a multiplicatively disjoint satisfies
conditions (ii) and (iii) then any of its gates sends at most one arrow, and we can thus
write a disjunction as a sum):

∏

1≤i<t









pi ·









∑

j such that
(i,j)∈C

ai,j









+ 1 − pi









.

At last, after having checked that ā, p̄ does encode a parse tree of C, to compute the
associated monomial:

∏

i∈E

(pi · Vi + 1 − pi) .

These polynomials can clearly be computed by arithmetic formulas of polynomial size
with regard to the number of gates in the multiplicatively disjoint circuit C.

Appendix C

C.1. Proof of lemma 4. We will consider circuits with multiple output gates. The
degree of such a circuit C is the maximal degree of a gate in C. If a circuit is weakly skew,
for any multiplication gate one of the argument sub-circuit is independent from the rest
of the circuit, in the sense that the values computed by its gates are not used elsewhere.
A gate will be called reusable if it does not belong to the independent sub-circuit of a
multiplication gate. In the case of figure 4, all gates are reusable except the leftmost input
gate (x1), the addition gate to which it is connected and the rightmost input gate (x3).

Let us show by induction on n that for any integer d such that 2n ≤ d ≤ 2n + 1, for
any (multiple output) circuit of size t and degree d, there exists a a weakly skew circuit
C ′ such that:

• the size of C ′ is at most tlog d.
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at most t1 + 1 copies of C ′
0

×

×

×

Figure 6

• for any gate α of C, there exists a reusable gate in C ′ which computes the poly-
nomial computed by α in C.

If n is 0, the degree of C is 1 so that there are no multiplication gates in C. Thus C is
weakly skew circuit and the property is true.

Suppose now that the property is true for all k strictly less than n, with n ≥ 1. Consider
C a circuit of size t and degree d, with 2n ≤ d < 2n+1. Call C0 the circuit obtained by
removing all gates of degree strictly greater than ⌊d/2⌋. Let t0 be the size of C0 and t1
the number of gates of C of degree strictly greater than ⌊d/2⌋. We apply the induction

hypothesis to C0. This yields a circuit C ′
0 of size at most t

log⌊d/2⌋
0 . For any gate of C0 there

exists a reusable gate in C ′
0 computing the same polynomial. Consider now a multiplication

gate of C of degree strictly greater than ⌊d/2⌋:

• if both its arguments are of degree at most ⌊d/2⌋, we add to C ′ a multiplication
gate receiving arrows from a reusable gate of the first copy of C ′

0 and from a
reusable gate of a new copy of C ′

0 (cf. figure 6).
• otherwise, since at least one of the arguments is of degree at most ⌊d/2⌋, the other

having already been computed by a gate of C ′, we add to C ′ a multiplication gate
receiving arrows from the gate of degree greater than ⌊d/2⌋ and from a reusable
gate of a new copy of C ′

0.

Addition gates are easy to deal with, we just connect them to reusable gates computing
their arguments. The resulting circuit is weakly skew and satisfies the required conditions.
Since t = t0 + t1, one can bound the size of C ′ as follows:

(t1 + 1) · t
log⌊ d

2⌋
0 + t1

≤ t · tlog⌊
d
2⌋

≤ tlog(2·⌊
d
2⌋)

≤ tlog d.

C.2. Proof of lemma 5. We will show a stronger result in the case of circuits with
multiple outputs. We also keep the notion of reusable gates for a weakly skew circuit.

Let us show by induction on circuit size m that for any multiple output weakly skew
circuit C there exists an acyclic directed graph G with a distinguished vertex s, satisfying
the following conditions:
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(b)(a)

tα
G′

s

tβ

2

G

tα
tγ

tβ

G′

s

G

Figure 7. Addition gate

• G is of size at most m + 1.
• for any reusable gate α of C there exists a vertex tα in G such that the weight of

(s, tα) in G is the polynomial computed by α in C.

A circuit of size m = 1 is made of one gate α with a (constant or variable) label u. The
graph G with two vertices s and tα and an edge (s, tα) of weight u meets our requirements.

Suppose the above property is true for all integers strictly less than m (m ≥ 2). Let C
be a weakly skew circuit of size m and α one of its output gates.

If α is an input gate labeled u we just need to apply the induction hypothesis to the
circuit C ′ with α removed. This yields a graph G′ to which we add a new vertex tα with
an edge from s to tα of weight u. Clearly the graph G thus obtained satisfies the necessary
conditions.

If α is an addition gate, let C ′ be the circuit C without gate α. By induction hypothesis
there exists a graph G′ of size at most m. If α receives both its incoming arrows from one
(necessarily reusable) gate β, there exists a vertex tβ in G′ such that the weight of (s, tβ)
in G′ is the polynomial computed by β in C. We add a new vertex tα and the edge (tβ, tα)
with weight 2 (cf. figure 7 (a)). If α receives an arrow from two distinct gates β and γ, both
necessarily reusable, there exist vertices tβ and tγ in G′ such that the weights of (s, tβ)
and (s, tγ) in G′ are the polynomials computed in C by β and γ respectively. We then add
a new vertex tα to G′ and the edges (tβ, tα) and (tγ , tα) with weight 1 (cf. figure 7 (b)).
In both cases, the resulting graph G is of size at most m + 1 and satisfies the conditions.

If α is a multiplication gate, consider the distinct gates β and γ from which α receives
an arrow. Suppose the sub-circuit Cγ is independent from the rest of the circuit, then the
circuit C ′ obtained by removing α is composed of two disjoint circuits Cβ and Cγ , of size
mβ and mγ such that m = mβ + mγ + 1. Applying the induction hypothesis separately
to Cβ and to Cγ yields two graphs Gβ and Gγ . In the first there are two vertices s and
tβ such that the weight of (s, tβ) in Gβ is the polynomial computed by β in C. In the
second there are two vertices (sγ , t) such that the weight of (sγ , t) in Gγ is the polynomial
computed by γ in C. We obtain G by identifying the vertices tβ and sγ (cf. figure 8). G
is of size at most mβ + 1 + mγ + 1 − 1 = m + 1. The weight of (s, t) in G is clearly the
product of the weight of (s, tβ) in Gβ and of the weight of (sγ , t) in Gγ , i.e. the polynomial
computed by α in C. We have changed the value of the weights (s, v) for all vertices v in
Gγ , but since these vertices were associated to the circuit Cγ whose gates are not reusable,
the necessary properties still hold.

C.3. Proof of lemma 6. From the graph G built in lemma 5 we build a graph G′ by
identifying the vertices s and t and adding a loop to each vertex except s = t. Now
consider the graph G′′ obtained from G′ by changing the weight of every edge which is
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GγGβ
s tγ

=

G

tβ

sγ

Figure 8. Multiplication gate

not a loop into its opposite: if A = (ai,j) is the matrix representing G′, than the matrix
representing G′′ is the matrix B defined by bi,j = −ai,j if i 6= j and bi,i = ai,i for all i. It
can be shown that the determinant of B is the polynomial −f . One need just add a last
row and last column full of 0 except for the value in the bottom right hand corner which
is −1. The determinant of the resulting matrix is f .

C.4. Computing the Determinant.

Proposition 3. (DETn) can be computed by a sequence of weakly skew circuits of poly-

nomial size.

Proof. We will recall here the algorithm given in [Val92] to compute the determinant of
a matrix X and show that this computation can be done by a weakly skew circuit of
polynomial size. Let Bk (0 ≤ k ≤ n − 1) be the principal (n − k) × (n − k) minor of X.
Define the (n − k) × 1 matrix Ck and the 1 × (n − k) matrix Dk for 1 ≤ k ≤ n − 1 as
follows:

Bk−1 =

(

Bk Ck

Dk Xn−k+1,n−k+1

)

For each k (1 ≤ k ≤ n) define Tk as the following (n + 2 − k) × (n + 1 − k) matrix:

(Tk)i,j =



















0 if i > j + 1

−1 if i = j + 1

Xn−k+1,n−k+1 if i = j

DkB
j−i−1
k Ck if i < j

Then the coefficients of the characteristic polynomial are given by the (n + 1) × 1 matrix
∏n

k=1 Tk, where the (1, 1) coefficient is the determinant.
Because a product of matrices can be computed by a weakly skew circuit of polynomial

size, each Tk can be computed by an weakly skew circuit of size polynomial in n (each
entry of a given Tk is computed separately). In computing the product of the Tk we will
need at most (n + 1) distinct copies of each Tk, so the overall size of the weakly skew
circuit stays polynomial in n. �

C.5. Proof of lemma 7. Let f be a polynomial computed by a weakly skew circuit C.
Define a walk of length k in a directed graph as a sequence of vertices (t1, . . . , tk) such
that the edges (ti, ti+1) and the edge (tk, t1) belong to the graph. A walk may go through
a given vertex several times. The vertex t1 is called the origin of the walk. The weight of
a walk is the product of the weights of its edges. The k-weight of a graph G is the sum of
the weights of all walks of length k.
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Figure 9

Let X be the matrix with entries xi,j (1 ≤ i, j ≤ n), it is easy to show that the
polynomial Tr(Xn) is equal to:

∑

1≤k1,...,kn≤n

xk1,k2 · · · xkn−1,kn
xkn,k1.

If we interpret the matrix X as the adjacency matrix of a graph G, we can see that Tr(Xn)
is the n-weight of G. We therefore wish to build a graph of size l whose l-weight is the
polynomial f .

Lemma 5 yields an acyclic directed graph G of size m + 1, with vertices s and t such
that the weight of (s, t) is the polynomial f . We start by adding m vertices s1, . . . , sm, and
the edges (t, s1), (si, si+1), all with weight 1, and finally the edge (sm, s), whose weight is
a new variable y. We also add a loop of weight 1 to the vertex s, a vertex v with a loop
of weight −1 and an isolated vertex. (cf. figure 9). The size of the resulting graph G′ is
2m + 3. Let us study the walks of G of length 2m + 3.

There is a unique walk of length 2m + 3 which consists in looping on the vertex v.
Because 2m + 3 is an odd integer, its weight is −1.

There is a unique walk of length 2m + 3 which consists in looping on the vertex s. Its
weight is 1.

Let τ = s, v1, . . . , vk−1, t be a path from s to t of length k in G (and therefore in G′).
The vertex vi is the origin of a unique walk of length 2m + 3 going through τ . It consists
in going to t via τ (length k− i), then going to s via the vertices si (length m+1), looping
m + 2 − k times in s (one can check that m + 2 − k ≥ 0) finally returning to vi via τ
(length i). The total length is 2m + 3. The path τ yields a unique walk for each of the
vertices t, s1, . . . , sm. For each of the vertices, any other walk would include going around
twice, thus its length would be at least 2(m + 2), which is strictly greater than 2m + 3.
There are also m + 3 − k walks with s as origin, of length 2m + 3 and going through τ ,
depending on whether one loops 0, 1, . . . or m + 2 − k times in s before going on τ . All
these walks have the same weight, namely the weight of τ multiplied by y. there are thus
2m + 3 walks of length 2m + 3 associated with τ . The (2m + 3)-weight of G′ is therefore:

(−1) + 1 +
∑

τ path
from s to t

y(2m + 3) · weight(τ).
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In characteristic 0, we just have to substitute (2m + 3)−1 for the variable y to get the
polynomial f .

In characteristic p > 0, we need to be a little more careful. For a fixed m the same
construction can be done if p does not divide 2m+3, and then use the inverse of 2m+3 as
above. If p divides 2m + 3, then p is strictly greater than 2, and p does not divide 2m + 5.
We follow the above construction but add two vertices sm+1 and sm+2.
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