Assistants de preuve

TD 2- Les spécificités du Calcul des Constructions Inductives

1 Prédicats inductifs

- A- Donner une définition inductive pair : nat -> Prop du prédicat « être pair ».
- B- Caractériser par un prédicat inductif exp: nat -> nat -> nat -> Prop à deux constructeurs le graphe de la fonction $n^p = q$ sur les entiers naturels.

2 Types récursifs

A- Donner en Coq une définition inductive avec paramètres qui caractérise le type suivant des listes polymorphes en ML

```
type 'a list = nil | cons of 'a * 'a list
```

B- On définit respectivement le produit, le type singleton et les entiers naturels par

```
Inductive prod (A B : Type) : Type := pair : A -> B -> prod A B.
Inductive unit : Type := tt : unit.
Inductive nat : Type := 0 : nat | S : nat -> nat.
```

Donner une expression prodn du CCI de type Type \rightarrow nat \rightarrow Type qui construise le produit n-aire d'un type A donné (c.-à-d. prodn A n est $A \times ... \times A$ (n fois)).

Donner une expression length de type $\forall A$. list $A \to \text{nat}$ qui calcule la longueur d'une liste.

Donner une expression embed de type $\forall A. \forall l$: list $A. \operatorname{prod} A$ (length l) qui traduise une liste en un n-uplet.

```
C- Définir un récurseur de type \forall A: \mathsf{Type}. \, \forall C: \mathsf{Type}. \, C \to (A \to \mathsf{list} \, A \to C \to C) \to \mathsf{list} \, A \to C.
```

Modifier ce récurseur pour qu'il puisse construire des fonctions à codomaine dépendant sur les listes (c'est-à-dire des fonctions dans un type produit Πl : list A.C(l)).

3 Décroissance des points-fixes

A- Le point-fixe suivant est-il bien fondé pour le CCI et pourquoi?

```
Fixpoint leq (n p: nat) {struct n} : bool :=
  match n with
  | 0 => true
  | S n' => match p with 0 => false | S p' => leq n' p' end
  end.
```

B- Le point-fixe suivant est-il bien fondé pour le CCI et pourquoi?

end.

Accessoirement, que valent ackermann 2 3 et ackermann 3 2 ?

4 Élimination forte

Soit t_1 et t_2 des termes arbitraires de types T_1 et T_2 dans un contexte donné. La fonction Definition g (b:bool) := match b with true => t1 | false => t2 end. est-elle typable ? Si oui, donner la clause return correspondante.

5 Restrictions d'élimination liées aux sortes

A- On pose

```
Inductive True : Prop := I : True.
```

Exhiber une fonction de unit vers True dont on peut montrer qu'elle est une bijection. B- On pose

```
Inductive BOOL : Prop := TRUE : BOOL | FALSE : BOOL.
```

Peut-on montrer l'équivalence de bool et BOOL ? Montrer que si c'était le cas, on pourrait nier le principe d'indiscernabilité des preuves (« proof-irrelevance », c'est-à-dire $\forall P: Prop \ \forall p \ q: P. \ p=q)$ dans Prop.