
L3/M1, 2005–2006

Algorithmique effective – Examen

Mardi 30 mai 2006, 14h00 – 19h00

1 Matriochka

Russian nesting dolls are brightly painted hollow wooden figures. The dolls in a set have roughly
the same shape, typically humanoid, but different sizes. When the set is assembled, the biggest
doll contains the second-biggest doll, the second-biggest contains the third-biggest, and so on. We
can approximate the shape of a doll as a cylinder of height h, diameter d, and wall thickness w.
Such a doll would have a hollow of height h− 2w and diameter d− 2w.

Boris and Natasha each has a set of dolls. The sets are nearly identical; each has the same
number of dolls, which look the same but differ in their dimensions. Last night Boris and Natasha
were playing with their dolls and left them in the living room. Their mother tidied them away,
dumping them all in one box. Can you help Boris and Natasha separate their sets of dolls?

Standard Input will consist of several test cases. The first line of each test case will contain n,
the number of dolls in each set (1 < n ≤ 100). 2n lines follow; each gives the dimensions, h, d, w of
a different doll (h, d ≥ 2w > 0). A line containing 0 follows the last test case.

For each test case, separate the dolls into two sets of n nesting dolls such that, within each set,
the dolls fit within each other, standing straight up, as described above. The first n lines of output
should give the dimensions of the dolls in one set, in decreasing order by height. The next line
should contain a single hyphen, “-”. The next n lines should give the dimensions of the dolls in the
second set, also in decreasing order by height. There will always be a solution. If there are many
solutions, any will do. Output an empty line between test cases.

Sample Input

3

100 100 3

97 97 3

94 94 3

91 91 3

88 88 3

85 85 3

5

100 100 1

97 97 3

98 98 1

96 96 1

94 94 1

92 92 1

90 90 1

88 88 1

86 86 1

84 84 1

0

Possible Output

100 100 3

94 94 3

88 88 3

-

97 97 3

91 91 3

85 85 3

100 100 1

98 98 1

96 96 1

94 94 1

92 92 1

-

97 97 3

90 90 1

88 88 1

86 86 1

84 84 1

1

2 Terrific traffic

A city has n intersections and m bidirectional roads connecting pairs of intersections. Each road has
a certain traffic flow capacity, measured in cars per minute. There is a path from every intersection
to every other intersection along some sequence of roads. The road maintenance department is
over budget and needs to close as many roads as possible without disconnecting any intersections.
They want to do it in such a way that the minimum capacity among all of the remaining roads is
as large as possible.

Input
The first line of input gives the number of cases, N . N test cases follow. Each one starts with

a line containing n (0 < n ≤ 100) and m (0 < m ≤ 10,000). The next m lines will describe the
m roads, each one using 3 integers, u, v and c (0 ≤ u, v < n), (0 < c ≤ 1,000). u and v are the
endpoints of the road and c is its capacity.

Output
For each test case, output one line containing Case #x: followed by the capacity of the

minimum-capacity remaining road.
Sample Input

2

2 3

0 1 10

0 1 20

0 0 30

4 5

0 1 1

3 1 2

1 2 3

2 3 4

0 2 5

Sample Output

Case #1: 20

Case #2: 3

2

3 A famous station

There is a famous railway station in PopPush City. Country there is incredibly hilly. The station
was built in last century. Unfortunately, funds were extremely limited that time. It was possible to
establish only a surface track. Moreover, it turned out that the station could be only a dead-end
one (see picture) and due to lack of available space it could have only one track.

The local tradition is that every train arriving from the direction A continues in the direction
B with coaches reorganized in some way. Assume that the train arriving from the direction A has
N ≤ 1,000 coaches numbered in increasing order 1, 2, . . . , N . The chief for train reorganizations
must know whether it is possible to marshal coaches continuing in the direction B so that their
order will be a1, . . . , aN . Help him and write a program that decides whether it is possible to get
the required order of coaches. You can assume that single coaches can be disconnected from the
train before they enter the station and that they can move themselves until they are on the track
in the direction B. You can also suppose that at any time there can be located as many coaches
as necessary in the station. But once a coach has entered the station it cannot return to the track
in the direction A and also once it has left the station in the direction B it cannot return back to
the station.

Input
The input file consists of blocks of lines. Each block except the last describes one train and

possibly more requirements for its reorganization. In the first line of the block there is the integer
N described above. In each of the next lines of the block there is a permutation of {1, 2, . . . , N}.
The last line of the block contains just 0.

The last block consists of just one line containing 0.
Output
The output file contains the lines corresponding to the lines with permutations in the input file.

A line of the output file contains Yes if it is possible to marshal the coaches in the order required on
the corresponding line of the input file. Otherwise it contains No. In addition, there is one empty
line after the lines corresponding to one block of the input file. There is no line in the output file
corresponding to the last “null” block of the input file.

Sample Input

5

1 2 3 4 5

5 4 1 2 3

0

6

6 5 4 3 2 1

0

0

Sample Output

Yes

No

Yes

3

4 Sorting

In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a
sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is
sorted in ascending order. For the input sequence

9 1 0 5 4,

Ultra-QuickSort produces the output
0 1 4 5 9.

Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order
to sort a given input sequence. The input contains several test cases. Every test case begins with
a line that contains a single integer n < 500,000 – the length of the input sequence. Each of the
following n lines contains a single integer 0 ≤ ai ≤ 999,999,999, the i-th input sequence element.
Input is terminated by a sequence of length n = 0. This sequence must not be processed.

For every input sequence, your program prints a single line containing an integer number op,
the minimum number of swap operations necessary to sort the given input sequence.

Sample Input

5

9

1

0

5

4

3

1

2

3

0

Output for Sample Input

6

0

4

5 Type equivalence

In programming language design circles, there has been much debate about the merits of “struc-
tural equivalence” vs. “name equivalence” for type matching. Pascal purports to have “name
equivalence”, but it doesn’t; C purports to have structural equivalence, but it doesn’t. Algol 68,
the Latin of programming languages, has pure structural equivalence. A simplified syntax for an
Algol 68 type definition is as follows:

type_def -> type T = type_expr

type_expr -> T | int | real | char | struct (field_defs)

field_defs -> T | field_defs T

In this syntax, T is a programmer-defined type name (in this problem, for simplicity, a single
upper case letter). Plain text symbols appear literally in the input, and zero or more spaces or a
comma (,) may appear where there are spaces in the syntax.

Algol 68 type equivalence say that two types are equivalent if they are the same primitive type
or they are both structures containing equivalent types in the same order.

Input consists of several test cases. Each test case is a sequence of Algol 68 definitions, as
described above, one per line. A line containing “-” separates test cases. A line containing “--”
follows the last test case. The output for each case will consist of several lines; each line should
contain a list of type names, all of which represent equivalent types. Each type name should appear
on exactly one line of output, and the number of output lines should be minimized. The names in
each list should be in alphabetical order; the lines of output should also be in alphabetical order.
Output an empty line between test cases.

Sample Input

type A = int

type B = A

type C = int

type X = struct(A B)

type Y = struct(B A)

type Z = struct(A Z)

type S = struct(A S)

type W = struct(B R)

type R = struct(C W)

--

Output for Sample Input

A B C

R S W Z

X Y

5

6 Mikado

Stan has n sticks of various length. He throws them one at a time on the floor in a random way.
After finishing throwing, Stan tries to find the top sticks, that is these sticks such that there is no
stick on top of them. Stan has noticed that the last thrown stick is always on top but he wants to
know all the sticks that are on top. Stan sticks are very, very thin such that their thickness can be
neglected.

Input consists of a number of cases. The data for each case start with 1 ≤ n ≤ 100,000, the
number of sticks for this case. The following n lines contain four numbers each, these numbers are
the planar coordinates of the endpoints of one stick. The sticks are listed in the order in which
Stan has thrown them. You may assume that there are no more than 1,000 top sticks. The input
is ended by the case with n = 0. This case should not be processed.

For each input case, print one line of output listing the top sticks in the format given in the
sample. The top sticks should be listed in order in which they were thrown.

The picture below illustrates the first case from input.

Sample input

5

1 1 4 2

2 3 3 1

1 -2.0 8 4

1 4 8 2

3 3 6 -2.0

3

0 0 1 1

1 0 2 1

2 0 3 1

0

Output for sample input

Top sticks: 2, 4, 5.

Top sticks: 1, 2, 3.

6

7 Pattern matching

MegaFirm Inc. has created a set of patterns to aid its telephone help-desk operators in responding
to customers. A pattern is a phrase consisting of words and placeholders. A word is simply a
string of letters. A placeholder is a word enclosed in angle brackets (that is < ... >). A phrase
matches a pattern if each placeholder in the pattern can be systematically replaced by a word so as
to make the pattern and phrase equal. By “systematically replaced” we mean that all placeholders
enclosing the same word are replaced by the same word. For example, the phrase

to be or not to be

matches the pattern

<foo> be <bar> not <foo> <baf>

because we can replace <foo> by to, <bar> by or, and <baf> by be. Given two patterns, you are
to find a phrase that matches both.

The first line of input contains n, the number of test cases. Each test case consists of two lines
of input; each a pattern. Patterns consist of lowercase words, and placeholders containing lowercase
words. No pattern exceeds 100 characters. Words contain at most 16 characters. A single space
separates adjacent words and placeholders.

For each test case, output a phrase that matches both patterns. If several phrases match, any
will do. If no phrase matches, output a line containing “-” (a single minus sign).

Sample Input

3

how now brown <animal>

<foo> now <color> cow

who are you

<a> <a>

<a> b

c <a>

Possible Output for Sample Input

how now brown cow

-

c b

7

