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1 Permutations

Definition 1.1. A permutation of {1 . . . n} is a bijection from {1 . . . n} into itself.

There are several ways to represent a permutation. The first and most natural one is
given below:

σ =

(

1 2 3 4 5 6
σ(1) σ(2) σ(3) σ(4) σ(5) σ(6)

)

This representation is called the two-line representation. As the first line is always
the identity one can forget its writing and the permutation is then given by its one-line
representation:

σ =
(

σ(1) σ(2) σ(3) σ(4) σ(5) σ(6)
)

The images of elements are written σ(i) or σi throughout the lesson.
Another notation for permutations, the cyclic notation, will be given further in this

lesson.
In the first part, we are going to use statistics on permutations to give some complexity

results on sorting algorithms.
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1.1 Inversion table

Definition 1.2. (σi, σj) is an inversion in σ if and only if σi > σj and i < j. We denote
by Inv(σ) the set of all inversions. Inv(σ) = {(σi, σj), σi > σj and i < j}.

The number of inversions in σ gives the number of elementary operations (transposi-
tions) needed to transform σ into the identity element.

Definition 1.3. The inversion table of a permutation is :
Tα[i] = |{j, (j, i) ∈ Inv(σ)}|

Example: α = (375248619)

1 2 3 4 5 6 7 8 9
Tα

Note that Tα[i] is the number of elements j greater than i but before i in α’s one-line
notation. Thus Tα[n] = 0 and 0 ≤ Tα[k] ≤ n− k.

Exercise 1.1. 1. Prove that given a permutation σ you can compute in O(n2) time its
inversion table.

2. Prove that given a tabular T corresponding to a permutation σ (unknown), one can
retrieve σ in O(n2) time.

3. Can you make faster ?

1.1.1 Enumeration and application to sorting algorithm analysis

Exercise 1.2. How many inversions could a permutation have ?

Let In,k be the number of permutations of length n having k inversions. Note that:

n(n−1)
2

∑

k=0

In,k = n!

Note that In,k is also the number of arrays of size n such that 0 ≤ T [i] ≤ n− i and the sum
of all elements equals k. By deleting the first entry of the array we obtain a new array of
size n− 1 respecting all conditions such that the sum of all elements equals k−T [0]. Thus

In,k =
k

∑

k′=k−n+1

In−1,k′

Exercise 1.3. Fill the following array
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N. inversions 0 1 2 3 4 5 6 7 8 9 10
n=1 1
n=2
n=3
n=4
n=5

Let In(x) the generating function of inversions:

In(x) =
∑

In,kx
k

Note that In(x) = In−1(x)(1 + x + . . . + xn−1)
In(x) = 1(1 + x)(1 + x + x2)...(1 + x + . . . + xn−1)

Īn(x) = 1
n!

∑

n(n−1)
2

k=0 kIn,k

Īn(x) = I′n(1)
In(1)

= ∂ln(In(x))
∂x

(1)

Theorem 1.1. The average number of inversions in a permutation is n(n−1)
4

.

Another (simpler) proof is easily derived from studying the miror permutation with the
permutation.

1.1.2 Sorting by selection

In this algorithm you first find the smallest element and then you put it in the first place.

for (int i = 0; i < n ; i++)

for (int j = i+1; j < n; j++)

if (a[i] > a[j]) swap(a[i],a[j]);

When performing a swap operation, the number of inversions decrease by 1. So, the number
of swaps equal the number if inversions.

1.1.3 Sorting by insertion

for (int i = 1; i < n; i++)

for (int j = i; j !=0 && a[j]<a[j-1]; j--)

swap(a[j],a[j-1]);

Exercise 1.4. The number of tests is :
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1.2 Cycles and smallest element

Exercise 1.5. Let α be the following permutation : α = 372159648.

1. Draw the digraph (directed graph) where each vertex represents a number of the per-
mutation and there exists an arc between i and j if and only if j = α(i).

2. Write the cycles of this graph. This is called the cyclic notation of the permutation.

3. Let Cn,k be the number of permutations of size n with k cycles. Give the first values
for n ≤ 5.

4. Show that Cn+1,k = nCn,k + Cn,k−1.

5. Let Cn(x) =
∑

Cn,kx
k. Prove that

Cn(x) = Πn−1
i=0 (x + i)

6. Prove that the average number of cycles in a permutation of size n is Hn =
∑n

i=1
1
i
.

Definition 1.4. Let σ be a permutation. σ(i) is a partial minimum if σ(i) is tricly less
than all σ(j), j < i.

The following algorithm gives the number of partial minima in a permutation.

min = a[0];

for (int i = 0; i < n ; i++)

if (a[i] < min) min = a[i];

Exercise 1.6. Show that number of changes of partial minimal is equal to Cn,k.

We can give a bijective proof of this result using Foata transformation.

1.3 Descents and excedences

Definition 1.5. Let α be a permutation of size n.

• αi is a descent if αi > αi+1

• αi is an excedence (or weak excedence) if ai ≥ i

• αi is a strict excedence if ai > i

Fill the following array:
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Nb descents Nb excedences Nb strict excedences
123
132
213
231
312
321

We denote by:

• Dn,k the number of permutation of size n having k descents.

• En,k the number of permutation of size n having k excedences.

• Fn,k the number of permutation of size n having k strict excedences.

Note that for n = 3 we have Dn,k = Fn,k = En,k+1.

Proposition 1.1. Dn,k = Dn,n−k−1.

Proof. Use α̃ the mirror permutation.

Proposition 1.2. α−1(i) = j ⇔ α(j) = i, |E(α)|+ |F (α−1)| = n. Thus En,k = Fn,n−k

Proof. • Prove that if i ≤ α(i) then α−1(α(i)) is not a strict excedent for α−1.

• Prove that if i > α(i) then α−1(α(i)) is a strict excedent for α−1.

Proposition 1.3. Dn,k = En,n−k

Proof. We only sketch the proof. Let α be a permutation with n−k excedents. We rewrite
the permutation α in the cyclic notation, with the greatest element of each cycle in the
first place and every maxima in increasing order like in Foata transformation. We obtain
a permutation with k descents.

Exercise 1.7. Make an example of this transformation and prove the property above.

Exercise 1.8. With the three last propositions, prove the claim result Dn,k = Fn,k = En,k+1

Proposition 1.4. Dn,k = (k + 1)Dn−1,k + (n− k)Dn−1,k−1

Proof. Choose where you insert the greatest element.

Exercise 1.9. Let Dn(x) =
∑

Dn,kx
k. Prove that Dn(x) = (1 + (n− 1)x) Dn−1(x) + (x−

x2)D′
n−1(x).
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2 Permutation pattern

2.1 Greatest increasing subsequence

Definition 2.1. The longest increasing subsequence of a permutation σ is the largest value
p such that there exist i1, . . . , ip and ai1 < ai2 < . . . < aip with i1 < i2 < . . . < ip.

Exercise 2.1. Let σ = (7, 9, 12, 2, 11, 3, 8, 5, 6, 1, 4, 10). Give the longest increasing subse-
quence.

Proof. Build iteratively all the longest increasing subsequences.

7 ← 9←

{

12

11

2 ← 3←











8

5← 6← 10

4

1

This leads to the following dynamic programming algorithm where you fill in two dif-
ferent arrays:

• BEST [i] = j if the longest increasing subsequence of size i ends by j and j is the
smallest value possible.

• PRED[k] = precessor of k in the largest increasing subsequence ending with k.

Exercise 2.2. Give the algorithm for computing the longest increasing subsequence.

2.2 Permutation pattern

Definition 2.2. Let σ and π be two permutations of size n and p respectively with p ≤ n.
We say that π is a pattern of σ whenever there exists i1 < i2 < . . . < ip such that σik < σil

whenever πk < πl for all 1 ≤ k 6= l ≤ p.

For example, we say that 132 occurs in 1̄236̄45̄. But we say that 543216 avoids 132. .

2.3 One-stack sortable permutations

A stack is an ordered set, with two operations, pop and push such that:

• pop returns the last element inserted and deletes it from the set.
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• push add an element to the set.

Let S be a stack. A permutation σ1σ2 . . . σn is said to be one-stack sortable if it can be
transformed to identity by the following algorithm.

1. i← 1, S is the empty stack

2. Either:

• push the element σi in the stack and increment i by one.

• or pop an element from the stack and write it out.

3. Return to step 2.

The output is the list of elements popped from the stack.

Exercise 2.3. 1. Give the one-stack sortable permutations of size 1, 2, 3 and 4.

2. Find a characterization for these permutations and prove it..

Definition 2.3. A plane tree of size n is a tree with n edges embedded in the plane and
rooted on an edge.

Exercise 2.4. 1. How many tree are there of size 1, 2 and 3.

Exercise 2.5. Let T be the following tree:

1. Number the edges through a postfix depth first traversal of the tree

2. Read the tree through a prefix depth first traversal of the tree

3. Notice that the resulting permutation avoids 231. Prove it.
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Definition 2.4. A unary-binary tree is a plane rooted tree where each vertex has arity 1
or 2 (i.e. degree 2 or 3). Vertices of arity 1 have either a right or a left son. A binary tree
is a plane rooted tree where each vertex has arity 2.

Exercise 2.6. 1. How many unary-binary trees are there of size 1, 2, 3 and 4 ?

2. Notice that a vertex of a plane tree is either the leftmost child of another node or the
brother of a node. Deduce a correspondance between unary-binary trees and plane
trees.

3. How many binary trees are there with 2, 3 and 4 leaves ?

4. Find a correspondance between those objects

2.4 Dyck paths

Definition 2.5. A Dyck path of length n is a path in the plane starting at (0, 0), ending at
(n, n) and made of n horizontal and n vertical steps that never goes under the line y = x.
A Dyck path of length n is a path in the plane starting at (0, 0), ending at (2n, 0) made of
n (1, 1) steps and n (1,−1) steps which never goes below the x axis.

Exercise 2.7. Considering a left-right depth first traversal of a plane tree, show that Dyck
paths of length n are in one-to-one correspondence with plane trees of size n.
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2.5 Enumeration

We want to enumerate the number of plane trees with n edges or the number of Dyck path
of size n or the number of unary-binary trees with n − 1 edges or the number of binary
trees with n + 1 leaves.

2.5.1 Enumeration of binary trees

A binary tree is either a leaf or an ordered set of two binary trees. Thus :

B(x) = x + B2(x)

2.5.2 Enumeration of Dyck paths

A Dyck path is either an empty one or an ordered set of two Dyck paths. Thus:

D(x) = xD2(x) + 1

2.5.3 Direct proof on Dyck path

Note that a Dyck path is a word which contains n letters a and n letters b. Get a Dyck
path and add a dwon step at the end. These paths are in bijection with Dyck paths. Then
consider all words with n letters a and n+1 letters b. Notice that only one rotation of this
word corresponds to such a path.

2.6 Enumeration of pattern-avoiding permutations

The first question which arises in this definition is given a pattern π, how many permuta-
tions of size n avoids π ?

Stanley and Wilf conjectured (Bona 1997, Arratia 1999), that for every permutation
pattern σ, there is a constant c(σ) <∞ such that for all n, F (n, σ) ≤ [c(σ)]n.

A related conjecture stated that for every σ, the limit lim(n→∞)[F (n, σ)](1/n) exists
and is finite.

Arratia (1999) showed that these two conjectures are equivalent. The conjecture was
proved by Marcus and Tardos (2004). In fact Marcus and Tardos prove The Füredi-Hajnal
conjecture on matrix containment.

See article from Marcus and Tardos for the proof.

3 Trees

Given n numbered vertices, how many trees can you draw ?

Exercise 3.1. • Try n = 2, 3, 4

• Guess a formula
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3.1 Cayley formula and Prüfer code

Definition 3.1. A tree si a set of n−1 pairs of vertices (i, j) such that the graph obtained
is acyclic.

Theorem 3.1. The number of trees (with n vertices) equals nn−2.

Note that nn−2 is also the number of words of length n− 2 on the alphabet 1, 2 . . . , n.

3.1.1 Prüfer code

The prüfer code of a tree is given by the following algorithm:

1. Let l the leave with the greatest label.

2. Write the label of the neighbor of l.

3. Delete l from the tree.

4. If the number of remaining vertices is greater than 2 goto 1.

Remark 3.1. The leaves of the original tree are the numbers which does not appear in the
code.

Exercise 3.2. Prove it

Exercise 3.3. Given the Prüfer code of a tree a1, a2, . . . , an−2 give an algorithm to find
the associated tree

Another proof of the enumeration of trees can be given via the matrix tree theorem.

Theorem 3.2 (Matrix Tree). Let G = (V, E) be a graph. The number of spanning trees
of this graph is given by the determinant of any of (n − 1) × (n − 1) submatrices of the
following matrix :









d1 −E(1, 2) . . . −E(1, n)
−E(2, 1) d2 . . . −E(2, n)

. . . . . . . . . . . .
−E(n, 1) −E(n, 2) . . . −dn









3.1.2 Trees with prescribed degree (proof from Wikipedia)

Another proof of the Cayley formula comes from the following Lemma:

Lemma 3.1. The number of trees on vertices 1, . . . , n with degree d1, d2, . . . , dn, (
∑

di =
2n− 2) is:

(n− 2)!

(d1 − 1)!(d2 − 1)! . . . (dn − 1)!
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Proof. We prove this formula by induction on the number of vertices. For n = 1 and
n = 2 the proposition holds trivially. So assume the proposition holds for n − 1. Since
∑

di = 2n − 2 there exists k such that dk = 1. Suppose that dn = 1 without loss of
generality. For i = 1, 2, . . . , n−1 let Bi be the set of trees on the vertex set {v1, v2, . . . vn−1}
such that:

d(vj) =

{

dj, if j 6= i

dj − 1, if j = i

Trees in Bi correspond to trees in A with the edge vi, vn, and if di = 1, then Bi = φ.
Since vn must have been connected to some node in every tree in A, we have that

|A| =

n−1
∑

i=1

|Bi|

Further, for a given i we can apply either the inductive assumption (if di > 1) or our
previous note (if di = 1, then Bi = φ) to find |Bi|:

|Bi| =

{

0, if di = 1
(n−3)!

(d1−1)!···(di−2)!···(dn−1−1)!
, otherwise

fori = 1, 2, . . . , n− 1

Observing that

(n− 3)!

(d1 − 1)! · · · (di − 2)! · · · (dn−1 − 1)!
=

(n− 3)!(di − 1)

(d1 − 1)! · · · (dn−1 − 1)!

it becomes clear that, in either case, |Bi| =
(n−3)!(di−1)

(d1−1)!···(dn−1−1)!
.

So we have

|A| =

n−1
∑

i=1

|Bi| (1)

=
n−1
∑

i=1

(n− 3)!(di − 1)

(d1 − 1)! · · · (dn−1 − 1)!
(2)

=
(n− 3)!

(d1 − 1)! · · · (dn−1 − 1)!

n−1
∑

i=1

(di − 1) (3)

And since dn = 1 and
∑n

i=1 di = 2n− 2, we have:

|A| =
(n− 3)!

(d1 − 1)! · · · (dn − 1)!
(n− 2) =

(n− 2)!

(d1 − 1)! · · · (dn − 1)!

which proves the lemma.
We have shown that given a particular list of positive integers d1, d2, . . . , dn such that

the sum of these integers is 2n − 2, we can find the number of trees with labeled vertices
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of these degrees. Since every tree on n vertices has n− 1 edges, the sum of the degrees of
the vertices in an n-vertex tree is always 2n− 2. To count the total number of trees on n
vertices, then, we simply sum over possible degree lists. Thus, we have:

|Tn| =
∑

d1+d2+···+dn=2n−2

(n− 2)!

(d1 − 1)! · · · (dn − 1)!

If we reindex with ki = di − 1 for i = 1, 2, . . . , n, we have:

|Tn| =
∑

k1+k2+···+kn=n−2

(n− 2)!

k1! · · · kn!

Finally, we can apply the multinomial theorem to find:

|Tn| = nn−2

as expected.

3.1.3 Cycles and transpositions

Let α be a cycle : α = (13758246). α can be written as a product of transpositions:

α = (13)(37)(75)(58)(82)(24)(46)

Note the you can always write a cycle as a product of n− 1 transpositions.

Theorem 3.3. The number of ways to write a cycle of length n as a product of n − 1
transpositions is nn−2.

For example: (132) = (12)(23) = (13)(12) = (23)(13)

Lemma 3.2. The product τ1τ2 . . . τn−1 is a cycle if and only if the graph G = (V, E) where
V = 1, 2, . . . , n and there is an edge between i and j if and only if (ij) is a transposition
that appears in the product.

Proof. Note first that a graph made of n vertices and n − 1 edges is either a tree (if it is
conected) or it has several connected components.

Then, note that if σ is a permutation that has k ≥ 2 cycles then στ is a permutation
with k − 1 cycles if τ = (ij) and i and j are in different cycles.

As there is nn−2 different trees, and for each tree there are (n − 1)! different ways of
making the product we have a surjection from trees to cycles. But each cycle is obtained
the same number of times by symmetry so that for each cycle there is nn−2 ways of writing
it as a product of transpositions.
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3.2 Parking function

Definition 3.2. A serie a1, . . . , an is a Parking serie if the following algorithm give a
position to all cars 1, . . . , n.

1. For i from 1 to n do

2. i takes the first empty position k such that k ≥ ai

For example 111, 123, 132, 231, 213, 312, 321, 112, 121, 211, 113, 131, 311, 122, 212, 221 are
all Parking series of size 3.

Theorem 3.4. The number of Parking functions is (n + 1)n−1.

Another equivalent definition is :

Definition 3.3. a1, . . . , an is a Parking serie if and only if there exists a permutation
α = α1, α2, . . . , αn such that ∀i, ai ≤ αi.

Exercise 3.4. Is the serie 63122766 a Parking serie ?

The following java algorithm determine if a serie is a Parking serie/

Data: nthe number of cars
Data: u an array where u[i] is the choice of car i
Data: place an empty array of size n
Result: Returns true if all cars have found an empty place and false otherwise
for i = 1 to n do

j ← u[i];
while j ≤ n && place[j]! = 0 do

j ← j + 1;
if j == n + 1 then

return false;

else
place[j]← i;

return true;

To prove the enumeration formula consider a Parking with n + 1 places and a serie of
n integers between 1 and n + 1.

4 Chromatic polynomial

Let φ be a function such that φG(z) counts the number of ways to color G with exactly z
colors.

Exercise 4.1. Show that φG(z) is a polynomial by considering the coloring of G, G − e
and G/e.
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Definition 4.1. The chromatic polynomial of a graph G is a polynomial πG(z) which
counts the number of ways to color G with exactly z colors.

If e is an edge of a graph G then G − e represents the graph G where the edge e has
been deleted and G/e represents the graph where G has been contracted.

Exercise 4.2. Show that πG(z) is a polynomial by considering the coloring of G, G − e
and G/e.

Prove that :
π(x) =

∑

F⊂E

(−1)|F |x|V |−r(F ) where the sum is over all subsets F of E, and r(F ) denotes

the rank of F in G, i.e. the number of elements of any maximal cycle-free subset of F .
Compute the chromatic polynomial of Tn a tree with n vertices, Kn and Cn, .

The chromatic polynomial of a disconnected graph is the product of the chromatic
polynomials of its connected components. The chromatic polynomial of a graph of order n
has degree n, with leading coefficient 1 and constant term 0. Furthermore, the coefficients
alternate signs, and the coefficient of the (n− 1)st term is −m, where m is the number of
edges.

5 Tutte polynomial

5.1 Definitions

The Tutte polynomial TG of the graph G = (V, E) could be defined by the two following
recursive formula:

TG =











xTG/e If e is an isthmus

yTG−e If e is a loop

TG−e + TG/e Otherwise

or

TG =
∑

F⊂E

(x− 1)r<E>−r<F>(y − 1)n<F>

where r < E >= |G| − κ(E) et n < E >= |E| − |G| + κ(G) = |E| − r < E > (edges-
vertices+connected components). r is called the rank and n the nullity.

Note that the second definition yields a polynomial but the first one could give many
polynomials. First, we can prove that the first definition is correct i.e. that every sequence
of edge contraction/deletion yields to the same polynomial.

An other proof is to repark that both definitions are equivalent so that the first is a
definition !!!
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6 Evaluations of the Tutte polynomial for a connected

graph

6.1 Evaluation in (1, 1)

Give an interpretation of TG(1, 1).

6.2 TG(2, 1)

Give an interpretation of TG(2, 1).

6.3 TG(1, 2)

Give an interpretation of TG(1, 2).

6.4 TG(2, 2)

Give an interpretation of TG(2, 2).

6.5 Towards a new Definition of Tutte polynomial

TG(x, y) =
∑

i,j

tijx
iyj

where tij is the number of spanning forests of G with internal activity i and external
activity j.

The proof is by induction on the number of edges of G = (V, E). The formula is true
for G = (V, ∅). Suppose now that the formula is true till m− 1 edges and take a graph G
with n vertices and m edges e1, . . . , em.

Let G′ = G− em and G′′ = G/em. By induction TG′ =
∑

ij t′ijx
iyj et TG′′ =

∑

ij t′′ijx
iyj

We now separate different cases depending on the nature of em.

• If em is an isthmus (or bridge), then em belongs to any spanning forest of G. Moreover,
em is internal active in every forest. So F is a (i, j) spanning forest if and only if
F − em is a (i − 1, j) spanning forest of G − em. Indeed em does not modify the
activity of any other edges.

Hence:

∑

i,j

tijx
iyj =

∑

i,j

t′i−1,jx
iyj = x

∑

i,j

t′i−1,jx
i−1yj = xTG−em

(x, y) = TG(x, y)
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• If em is a loop, then em belongs to no spanning forest. A subgraph F is a spanning
foret if and only if it is a spanning forest of G− em. Moreover, em is external active
in any spanning forest. F is a (i, j) spanning forest iff it is a (i, j−1) spanning forest
of G− em.

• Otherwise notice that we can separate the spanning forests of G into two parts: those
which contain em and the others. The first ones are in bijection with spanning forests
of G− em and the others with G/em.

This new definition allow to prove that the number of spanning trees whose internal activity
and external activity is given do not depend on the numbering of the edges.

6.6 Hardness of computation

Computing TG(a, b) for a graph G is ♯P -hard everywhere except for (1, 1), (−1,−1), (0,−1),
(−1, 0), (i,−i), (−i, i), (j, j2), (j2, j) where the evaluation is polynomial.

7 Words

7.1 Exhaustive generation

The goal is to give an algorithm to compute all words of size n on an alphabet with m
letters.

The first and naive algorithm consists in counting from 0000000 to (m−1)(m−1)(m−
1) . . . by adding 1 at each step.

The algorithm becomes:

Data: n the size of words
Data: m the size of the alphabet, here m = 2
Result: Compute all words of size n
while (true){ do

print(f);
j = n-1;
while (f [j] == 1) do

f[j] = 0;
j–;

if (j == −1) then
Exit;

else
f[j] = 1;

Proposition 7.1. The number of comparisons is 2n+1 − 1.
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7.2 Gray Code

We want to compute every word but changing only one bit between two words.

Exercise 7.1. • Find an ordering of words of size n verifying the above property. Try
for n = 1, 2, 3.

• Write the form of the serie.

• Write the example for n = 4.

• Guess an algorithm to compute all words using this Gray code.

7.3 Factors of a word

We want to find a word such that all words of size n are factors of this word. For example
00110 for n = 2 and 0001011100 for n = 3 are such words. This words are called De Bruijn
words. Their length is 2n + n− 1.

8 Lyondon words

Definition 8.1. A word is a Lyndon word iff ∀f = f ′f ′′, f ′ 6= ǫ we have f < f ′′ for the
lexicographic order.

For example 010 is not a Lyndon word because 0 < 010.

Exercise 8.1. Give all Lyndon words of size 1, 2, 3, 4. Prove that every word (except 0)
begins with 0 and ends with 1.

Proposition 8.1. Every word which is not a power of another word has a unique conjugate
which is a Lyndon word.

8.1 Enumeration

Theorem 8.1. Let Lm(d) the number of Lyndon words of size d on alphabet {0, 1, . . . , m−
1}.

∑

d|n

dLm(d) = mn

Theorem 8.2. The Mbius function is a number theoretic function defined by µ(n) =










0ifnhasoneormorerepeatedprimefactors;

1ifn == 1;

(−1)kifnisaproductofkdistinctprimes,

The moebius inversion formula is the transform inverting the sequence g(n) = sum(d|n)f(d)
into f(n) =

∑

(d|n) µ(d)g(n/d)
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where the sums are over all possible integers d that divide n and µ(d) is the Mbius
function.

Theorem 8.3.
Lm(n) = 1/n

∑

d|n

µ(d)mn/d

8.2 Fundamental Theorem

Theorem 8.4. Every word f can be written in a unique way as f = λ1λ2 . . . λk such that
λi is a Lyndon word and λi ≥ λi+1

Proof. Existence by induction by taking the largest suffix that is a Lyndon word. Unicity
: If λ1 . . . λk = λ′

1 . . . λ′
k′ suppose that λ′

k = uλk.

Theorem 8.5. For all n, the word obtained by taking all Lyondon words of size d|n followed
by its n−1 first letters is a De Bruijn word. The Lyondon words are taken in lexicographic
order.

Example, for n = 4 the word 0, 0001, 0011, 01, 0111, 1, 000 has length 19 and each factor
of length 4 is distinct.
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